Honeywell CLEEN II Consortium Presentation –Open Discussion

Total Page:16

File Type:pdf, Size:1020Kb

Honeywell CLEEN II Consortium Presentation –Open Discussion Dan Frias HONEYWELL CLEEN II 05/07/2019 Consortium Presentation – Open Discussion UNLIMITED RIGHTS Agreement Number: DTFAWA-15-A-80017 Contractor Name: Honeywell International Inc. Address: 111 S. 34th Street Phoenix, Arizona 85072-2181 21-15790(07)-2 1 Agenda • Elevator Speech • Honeywell’s Products and CLEEN II • CLEEN II Technologies • Technology Maturation Approach and Program Schedule • Engine and Aircraft Systems Analysis Status • Technologies Status – Compact Combustor • Technologies Status – Blade Outer Air Seal (BOAS) • Future Plans • Summary 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 2 CLEEN II Elevator Speech • Honeywell’s CLEEN II program is maturing advanced turbine and combustor technologies to reduce weight for improved fuel burn and reduced emissions 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 3 Next Generation Turbofan Can Benefit from CLEEN Technologies to Reduce Fuel Burn and Emissions HTF7000 Series • State-of-the-art (SOA) performance Engine Platform • Industry leading dispatch reliability HTF7000 Bombardier Challenger 300 • Quantum leap in value: cost and durability HTF7350B Bombardier Challenger 350 • Versatile technology: 7000-10000 lbs thrust HTF7250G Gulfstream G280 • Five aircraft applications to date - > 1000 engines in service HTF7500E Embraer Legacy 450/500 - > 2 million flight hours HTF7700L Cessna Citation Longitude CLEEN Technologies Enhance Future Product Capabilities 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 4 Honeywell CLEEN II Technologies • Under CLEEN II Honeywell is developing and demonstrating advanced Combustor and Turbine technologies Blade Outer Air Seal The advanced Turbine BOAS increases high pressure turbine efficiency, resulting in reduced fuel burn. Compact Low Emissions Combustor integrates RICH advanced aerodynamics and QUENCH LEAN fuel injection technologies to reduce engine NO emissions Compact X Combustor and weight, contributing to reducing fuel burn. 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 5 CLEEN II Technology Summary CLEEN Goal Technology Benefits, Applications and Collateral Benefits Impact Name Compact Emissions • Goal - Reduce NOx emissions to >50% margin (CAEP/8), Combustor for next generation super mid-sized class business jet System turbofan engines for 2025 entry into service (EIS) Advanced Fuel Burn • Goal - Enable turbofan engine fuel burn reduction >22% Turbine BOAS relative to the baseline engine for next generation turbofan, System turboshaft, turboprop engines for 2025 EIS Compact Collateral Benefits Combustor • FAA CLEEN programs support validation of Low-k thermal barrier coating (TBC) and Alloy 10 powder metal super-alloy • Currently being evaluated by major aerospace and industrial engine original equipment manufacturer (OEMs) • Applied to current and future turbine propulsion and industrial engines should increase fuel efficiency and lower operating costs 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 6 CLEEN II Value and Opportunity Cost Technology CLEEN II Value Opportunity Cost (If FAA had not funded…) Fuel Burn Enables >22% fuel burn Likely delays technology development improvement over baseline engine and implementation of advanced fuel through an advanced engine burn technologies impacting near term architecture with high efficiency reductions in fuel burn and CO2 turbine technologies emissions. Emissions Enables > 2x improvement in NOx Achieving ultra-low emissions is very margin over Honeywell SOA challenging and requires major combustor through integration of investment. advanced combustor aerodynamics, Without FAA support, level of internal fuel placement and materials investment reduced and level of current customer/regulatory requirements, will result in delayed implementation of ultra low emissions technologies. 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 7 Technology Maturation Approach TRL 3 TRL 4 TRL 5 TRL 6 Analysis and Technology Component / System Engine Demonstration Testing Development Testing Demonstration and Validation Testing RICH QUENCH LEAN May 2019 Status Progressive Approach to Validate Technology and Reduce Risk 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 8 Progress and Achievements • Systems Engineering - Engine detailed design review (DDR) complete - Gulfstream assessment complete - Provide assessment information to Georgia Tech upon test completion • BOAS Development - Coupon material characterization testing complete - Structural test of engine attachment design complete - Thermal characterization test complete - Shroud engine hardware inspection complete (Engine Test Q3 2019) - Air plasma spray (APS) TBC process down-select complete • Combustor Development - Initial rig testing complete - Second Phoenix rig test underway (Q2 2019) - Preliminary NASA rig design nearing completion Next Steps to Validate Technology Designs 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 9 2019 Program Schedule 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 10 2020 Program Schedule 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 11 Engine and Aircraft Systems Analysis Status 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 12 Systems Progress and Achievements • DDR Complete - Engine system architecture and cycle defined - Reference aircraft and engine analysis complete - >22% aircraft mission fuel burn reduction over baseline engine achieved with CLEEN II and Honeywell technologies - Ground engine test configuration layout complete - Linkage with Honeywell’s marketing plans for near- and long-term potential platforms complete Next Steps to Refine and Validate Technology Designs 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 13 CLEEN II Aircraft Fuel Benefits • CLEEN II aircraft mission fuel burn reduction goal of 22% from baseline engine • Fuel burn reduction includes CLEEN and Honeywell technologies CLEEN I Technologies CLEEN II 5.0% Technologies Fuel Burn 2.1% Benefit Fuel Burn Benefit CLEEN II Continues to Contribute to Fuel Burn Reduction 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 14 Engine and Aircraft Benefits Systems Analysis • Improved power-to-weight ratio • Reduced engine thrust specific fuel consumption (TSFC) • Reduced fuel burn and NOx emissions Risks/Mitigations • Insufficient aircraft fuel burn assessment/work with Gulfstream and Georgia Tech Objectives Accomplishments/Milestones • Define a ‘CLEEN II’ engine with • Engine DDR complete advanced technologies that enable • Gulfstream assessment complete reduction in fuel burn and NOx emissions Technology Schedule Work Statement • Perform engine preliminary and detail Task 1 - PDR engine concept reviews along with independent assessments of the Task 2 - DDR technology benefits 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 15 CLEEN II Technologies Status Compact Combustor 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 16 Compact Combustor Technology Compact Combustor Attributes • Improved aerodynamic design • Advanced cooling and materials • Improved durability enabling higher temperature cycle to reduce fuel burn • Reduced weight Compact Combustor is an advanced combustor design that integrates SOA aerodynamic design, advanced material selection and coatings and RICH improved fuel control. QUENCH LEAN Combustor Technology to Reduce NOx to >50% Margin to CAEP/8 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 17 Compact Combustor Accomplishments • Combustor technology demonstration testing progressing to enable refinements to combustor system to meet program goals - Evaluated multiple fuel injector and combustor aerodynamic design configurations designed using advanced computational fluid dynamics (CFD) large eddy simulation (LES) analysis to optimize performance, emissions and wall cooling • Currently rig testing latest CLEEN II combustor in Phoenix Combustor Test Laboratory with results expected in June • Completed design review with NASA and FAA of CLEEN II annular combustor rig to be tested in the NASA Glenn Advanced Subsonic Combustor Rig (ASCR) facility in mid-2020 Combustor Technology Progressing to TRL 4 in Q2 2019 21-15790(07)-2 Use or disclosure of information contained on this page is subject to the restrictions on the cover. 18 Compact Combustor Next Steps • Continue technology demonstration and annular combustor system development rig testing through Q4 2019 • Complete fabrication and build NASA rig (adaptive rig hardware) to support validation testing at NASA ASCR test facility in Q2 2020 to: Honeywell Rig Testing - Validate combustor NOx emissions
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Noise Reduction Technologies for Turbofan Engines
    NASA/TM—2007-214495 Noise Reduction Technologies for Turbofan Engines Dennis L. Huff Glenn Research Center, Cleveland, Ohio September 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. Includes compilations of significant • Access the NASA STI program home page at scientific and technical data and information http://www.sti.nasa.gov deemed to be of continuing reference value.
    [Show full text]
  • A Comparison of Combustor-Noise Models – AIAA 2012-2087
    A Comparison of Combustor-Noise Models – AIAA 2012-2087 Lennart S. Hultgren, NASA Glenn Research Center, Cleveland, OH 44135 Summary The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current- generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas- generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]
  • Helicopter Turboshafts
    Helicopter Turboshafts Luke Stuyvenberg University of Colorado at Boulder Department of Aerospace Engineering The application of gas turbine engines in helicopters is discussed. The work- ings of turboshafts and the history of their use in helicopters is briefly described. Ideal cycle analyses of the Boeing 502-14 and of the General Electric T64 turboshaft engine are performed. I. Introduction to Turboshafts Turboshafts are an adaptation of gas turbine technology in which the principle output is shaft power from the expansion of hot gas through the turbine, rather than thrust from the exhaust of these gases. They have found a wide variety of applications ranging from air compression to auxiliary power generation to racing boat propulsion and more. This paper, however, will focus primarily on the application of turboshaft technology to providing main power for helicopters, to achieve extended vertical flight. II. Relationship to Turbojets As a variation of the gas turbine, turboshafts are very similar to turbojets. The operating principle is identical: atmospheric gases are ingested at the inlet, compressed, mixed with fuel and combusted, then expanded through a turbine which powers the compressor. There are two key diferences which separate turboshafts from turbojets, however. Figure 1. Basic Turboshaft Operation Note the absence of a mechanical connection between the HPT and LPT. An ideal turboshaft extracts with the HPT only the power necessary to turn the compressor, and with the LPT all remaining power from the expansion process. 1 of 10 American Institute of Aeronautics and Astronautics A. Emphasis on Shaft Power Unlike turbojets, the primary purpose of which is to produce thrust from the expanded gases, turboshafts are intended to extract shaft horsepower (shp).
    [Show full text]
  • F404 Turbofan Engines 17,700-19,000 Lb Thrust Range
    www.ge.com/aviation F404 turbofan engines 17,700-19,000 lb thrust range The F404 family of engines powers a broad spectrum afterburner sections result in increased performance of aircraft with missions ranging from low-level subsonic while maintaining the F404’s characteristic durability. attack to high-altitude interception. The first version of Its simple, modular design is reliable and easy to the F404 was developed to power the Boeing F/A-18, maintain. and non-afterburning derivatives powered the F-117A The F404/RM12 is a derivative developed in conjunction Stealth Fighter and the Singapore A4-SU Super Skyhawk. with Volvo Aero Corporation to power the Saab Gripen, Developed for the Korean KAI/LMTAS T-50 advanced a multi-role fighter, attack and reconnaissance aircraft. trainer/light fighter, the F404-GE-102 is the latest The F404/RM12 model also includes single-engine safety derivative of the F404 family. It includes single-engine features and a FADEC. safety features and a Full Authority Digital Electronic The F404-GE-IN20 engine is an enhanced production Control (FADEC) derived from GE’s F414 engine. The version of the F404, which is successfully powering F404-GE-102 is supplied to ROKAF by Samsung Techwin India’s Light Combat Aircraft MKI. The highest thrust under a licensed production program with GE. variant of the F404 family, the F404-GE-IN20 The F404-GE-402 provides higher power, improved incorporates GE’s latest hot section materials and fuel efficiency and increased mission capability for the technologies, as well as a FADEC for reliable power and combat-proven Boeing F/A-18C/D Hornet.
    [Show full text]
  • Reusable Ram Booster Launch Design Emphasizes Use of Existing
    National Aeronautics and Space Administration technology opportunity Reusable Ram Booster Launch Design Emphasizes Use of Existing Components to Achieve Space Transport for Satellites and Spacecraft Using off-the-shelf technology to make space transport more affordable Engineers at NASA’s Dryden Flight Research Center have designed a partially reusable launch Benefits system to propel a payload-bearing spacecraft t Economical: Lowers the cost of space access, into a low Earth orbit (LEO). The concept design with use of reusable components and a simplified propulsion system for the three-stage Ram Booster employs existing turbofan engines, ramjet propulsion, and an already t Efficient: Maximizes use of already operational components by using off-the-shelf technology operational third-stage rocket to achieve LEO t Effective: Enables fast turnaround between missions, for satellites and other spacecraft. Excluding with reuse of recoverable first and second stages payload (which stays in orbit), over 97 percent t Safer: Operates with jet fuel in lower stages, of the Ram Booster’s total dry weight (including eliminating the need for hazardous hypergolic or cryogenic propellants and complex reaction three stages) is reusable. As the design also control systems draws upon off-the-shelf technology for many t Simpler: Offers a single fuel type for air-breathing of its components, this novel approach to space turbofan and ramjet engines transport dramatically lowers the cost of access to t Novel: Approaches space launch complexities space. The technology has applications for NASA, in a new way, providing a conceptual technical breakthrough for first and second stage boost the military, and the commercial aerospace sectors.
    [Show full text]
  • Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV
    Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV BJÖRN MONTGOMERIE Mixed fl ow turbofan schematic FOI is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology development, as well as studies for the use of defence and security. The organization employs around 1350 people of whom around 950 are researchers. This makes FOI the largest research institute in Sweden. FOI provides its customers with leading expertise in a large number of fi elds such as security-policy studies and analyses in defence and security, assessment of dif- ferent types of threats, systems for control and management of crises, protection against and management of hazardous substances, IT-security an the potential of new sensors. FOI Defence Research Agency Phone: +46 8 555 030 00 www.foi.se Systems Technology Fax: +46 8 555 031 00 FOI-R-- 1835 --SE Scientifi c report Systems Technology SE-164 90 Stockholm ISSN 1650-1942 December 2005 Björn Montgomerie Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV FOI-R--1835--SE Scientific report Systems Technology ISSN 1650-1942 December 2005 Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1835--SE Scientific report Systems Technology Research area code SE-164 90 Stockholm 7. Mobility and space technology, incl materials Month year Project no. December 2005 E830058 Sub area code 71 Unmanned Vehicles Sub area code 2 Author/s (editor/s) Project manager Björn Montgomerie Fredrik Haglind Approved by Monica Dahlén Sponsoring agency Swedish Defense Materiel Administration (FMV) Scientifically and technically responsible Fredrik Haglind Report title Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV Abstract A study of two turbofan engine types has been carried out.
    [Show full text]
  • An Online Performance Calculator for Ramjet, Turbojet, Turbofan, and Turboprop Engines
    An Online Performance Calculator for Ramjet, Turbojet, Turbofan, and Turboprop Engines Evan P. Warner∗ Virginia Tech, Blacksburg, VA, 24061, USA This paper documents the theory, equations, and assumptions behind an HTML-based online performance calculator for ramjet, turbojet, turbofan, and turboprop engines. Based on inputs of design parameters, flight con- ditions, and engine parameters, the specific thrust (()), thrust specific fuel consumption ()(), propulsive efficiency ([ ?), thermal efficiency ([Cℎ), and overall efficiency ([0) will be output for the engine of interest. Several sample cases are analyzed to verify the functionality of the calculator. These sample cases are derived from engines associated with Virginia Tech, which include: Pratt & Whitney’s PT6A-20 and JT15D-1, Honeywell’s TFE731-2B, and the Rolls Royce Trent 1000. With the help of this calculator, students will now be able to verify their air-breathing jet engine performance value calculations. This calculator is available here. I. Nomenclature "0 = Ambient Mach Number 2 ?1 = Specific Heat of the Burner W0 = Ambient Specific Heat Ratio 2 ?C = Specific Heat of the Turbine W3 = Diffuser Specific Heat Ratio 2 ? 5 = Specific Heat of the Fan W2 = Compressor Specific Heat Ratio )0 = Ambient Static Temperature W1 = Burner Specific Heat Ratio ?0 = Ambient Static Pressure WC = Turbine Specific Heat Ratio ?4 = Exit Static Pressure W= = Nozzle Specific Heat Ratio '08A = Gas Constant for Air W 5 = Fan Specific Heat Ratio '?A>3 = Gas Constant for the Products of Fuel/Air Mixture W= 5 = Fan Nozzle
    [Show full text]
  • Characteristics of the Specific Fuel Consumption for Jet Engines
    1 Project Characteristics of the Specific Fuel Consumption for Jet Engines Author: Artur Bensel Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Delivery Date: 31.08.2018 Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering 2 DOI: https://doi.org/10.15488/4316 URN: http://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-08-31.016 Associated URLs: http://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2018-08-31.016 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (http://www.dnb.de) Repositorium der Leibniz Universität Hannover (http://www.repo.uni-hannover.de) This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/LZNNL1 3 Abstract Purpose of this project is a) the evaluation of the Thrust Specific Fuel Consumption (TSFC) of jet engines in cruise as a function of flight altitude, speed and thrust and b) the determina- tion of the optimum cruise speed for maximum range of jet airplanes based on TSFC charac- teristics from a). Related to a) a literature review shows different models for the influence of altitude and speed on TSFC.
    [Show full text]
  • Propulsion Type the Aircraft Type of Propulsion System an Electrical Engine
    ECCAIRS Aviation 1.3.0.12 Data Definition Standard English Attribute Values ECCAIRS Aviation 1.3.0.12 VL for AttrID: 232 - Propulsion type The aircraft type of propulsion system an electrical engine. 100 (Electrical) The aircraft type of propulsion system was a reciprocating engine. (Reciprocating) 1 Reciprocating Engine : An engine, especially an internal-combustion engine, in which a piston or pistons moving back and forth work upon a crankshaft or other device to create rotational movement. Also include here: Rotary Engine An engine, especially an internal-combustion engine, in which the pressure of combustion is contained in a chamber formed by part of the housing and sealed in by one face of the triangular rotor work upon a crankshaft or other device to create rotational movement. Like a piston engine, the rotary engine uses the pressure created when a combination of air and fuel is burned. In a piston engine, that pressure is contained in the cylinders and forces pistons to move back and forth. The connecting rods and crankshaft convert the reciprocating motion of the pistons into rotational motion that can be used to power a car. In a rotary engine, the pressure of combustion is contained in a chamber formed by part of the housing and sealed in by one face of the triangular rotor, which is what the engine uses instead of pistons. The aircraft type of propulsion system was turboprop engine. (Turboprop) 2 Turbo-Prop engine: A simple turbojet core with the addition of a propeller output reduction gearbox and a propeller shaft. Types of Turbo-Prop 1.
    [Show full text]
  • Type-Certificate Data Sheet
    TCDS No.: E.004 CFM International CFM56-7B series engines Issue: 06 Date: 12 December 2019 TYPE-CERTIFICATE DATA SHEET No. E.004 for CFM56-7B series engines Type Certificate Holder CFM International SA 2, boulevard du Général Martial Valin F‐75724 Paris Cedex 15 France For Models: CFM56-7B20, CFM56-7B22, CFM56-7B22/B1, CFM56-7B24, CFM56-7B “SAC” CFM56-7B24/B1, CFM56-7B26, CFM56-7B26/B1, CFM56-7B26/B2, CFM56-7B27, CFM56-7B27/B1, CFM56-7B27/B3, CFM56-7B27A CFM56-7B20/2, CFM56-7B22/2, CFM56-7B24/2, CFM56-7B26/2, CFM56-7B “DAC” CFM56-7B27/2 CFM56-7B20/3, CFM56-7B22/3, CFM56-7B22/3B1, CFM56-7B24/3, CFM56-7B24/3B1, CFM56-7B26/3, CFM56-7B26/3F, CFM56-7B “TI” CFM56-7B26/3B1, CFM56-7B26/3B2, CFM56-7B26/3B2F, CFM56-7B27/3, CFM56-7B27/3F, CFM56-7B27/3B1, CFM56-7B27/3B1F, CFM56-7B27/3B3, CFM56-7B27A/3 CFM56-7B20E, CFM56-7B22E, CFM56-7B22E/B1, CFM56-7B24E, CFM56-7B24E/B1, CFM56-7B26E, CFM56-7B26E/F, CFM56-7B26E/B1, CFM56-7B “E” CFM56-7B26E/B2, CFM56-7B26E/B2F, CFM56-7B27E, CFM56-7B27E/F, CFM56-7B27E/B1, CFM56-7B27E/B1F, CFM56-7B27E/B3, CFM56-7B27AE TE.CERT.00052‐001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Page 1 of 22 An agency of the European Union Intentionally left blank TE.CERT.00052‐001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Page 2 of 22 An agency of the European Union TCDS No.: E.004 CFM International CFM56-7B series engines Issue: 06 12 December 2019 TABLE OF CONTENTS I.
    [Show full text]