A Scoping Study for Hypersonic Transport Propulsion Systems

Total Page:16

File Type:pdf, Size:1020Kb

A Scoping Study for Hypersonic Transport Propulsion Systems E AMEICA SOCIEY O MECAICA EGIEES 2G40 4 E. 4 St., Yr, .Y. 00 h St hlt nt b rpnbl fr ttnt Of pnn dvnd n ppr r n d- n t tn f th St r f It vn r Stn r prntd n t pbltn n prntd nl If th ppr pblhd n n ASME rnl pr r vlbl fr ASME fr fftn nth ttr th tn rntd n USA Copyright © 1992 by ASME A Spn Std fr prn rnprt rpln St Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A032/2401615/v002t02a032-92-gt-409.pdf by guest on 02 October 2021 SIMIO C. KUO, AY . OEAC nd GEOGE CAMAGE rtt Whtn—GES W l h A. AAA nd . UAMUA K v Indtr C td Kb pn Y. WAAAE Ihj-r v Indtr C td pn . AOKI Mtbh v Indtr C td pn ASAC IOUCIO Hypersonic aircraft and their propulsion systems are The need for hypersonic aircraft arises from the desire exposed to severe aerothermal environments which require a to shorten the length of travel time for Pacific Rim, system approach to create innovative designs able to respond Trans-Atlantic, and Europe-Asia flights which can require to the environmental challenges. This paper describes a up to 12 or 14 hours of subsonic flight. Mach 5 hypersonic preliminary study used to scope the technical challenges and flight would reduce the block time of these long flights to less identify the necessary development plans for the aircraft than 3 hours. As discussed in Reference 1. hypersonic flight propulsion system. Presented here are the interim results of is possible using a turboramjet propulsion system; but as this scoping study for a turboramjet conceptual design explained in Reference 2. the turbojet must be protected from conducted by UTC, Pratt & Whitney. This study is the first of the ram air stagnation temperature at Mach 5 speeds. four phases in a 6 year program on Hypersonic Transport References 3. and 4. conclude that aircraft inlet, Ramjet (HYTRAM) system R&D sponsored by NEDO, as an turbojet, ramjet and nozzle integration is a complex process integral part of the Japanese National Project on and that this integration becomes more important as flight "Super/Hypersonic Transport Propulsion Systems (HYPR)". speed increases. This type of large, high speed aircraft, as Various turboramjet configurations were evaluated pointed out in Reference 5., raises concern for atmospheric and two attractive candidates, a co-axial and a split flow pollution, noise and the problem of fitting into the existing configuration, were selected. Performance analyses were world airport infrastructure. conducted for these two by incorporating the subsystem Past approaches using airbreathing propulsion engine performance data provided by the Japanese companies (IHI for supersonic flight include existing commercial and on the turbofan and MI on the inlet and nozzle). military applications. The most well known applications are Pre-conceptual mechanical design sketches were prepared to the commercial Mach 2 Concorde and the military Mach 3+ provide some elementary definitions of the co-axial and the SR-71 Blackbird. There are also several Turboramjet split flow turboramjet to assist in selecting a baseline programs such as the Lockheed Mach 5 Penetrator, the configuration. Candidate materials including composites for General Dynamics Mach 5 INCAAPS, The Boeing Mach 4-6 the major subsystems were selected, using metals for Interceptor/Reconnaissance Aircraft, and the Mach 5+ near-term applications and including ceramics for far-term NASA Himate. applications. Using the above results from this scoping study, the co-axial configuration was selected as the baseline Previous manned supersonic aircraft such as the because of its higher Figure of Merit estimated from its Concorde and the SR-71 are limited to Mach 3+. However, performance, mechanical design characteristics and the a hypersonic aircraft equipped with the HYTRAM engines technical challenge it presented. will fly at Mach 5 which will encounter a much more hostile rntd t th Intrntnl G rbn nd Arnn Cnr nd Exptn Cln Grn n 1- 199 environment. These propulsion systems, therefore, require Details of a typical flight shown in Figure 2 can be careful assessments of the operating conditions and used in designing the propulsion system and aircraft. The incorporate innovative approaches to the design of the cruise portion shown is for a Mach 5 aircraft speed at an propulsion engine with adequate cooling and minimum altitude of 27 Kilometers. The figure also shows that a fuel environmental effect. reserve of 5% has been included as well as a subsonic cruise This paper presents the interim results of a one-year leg flying at Mach 0.9 at an altitude of 9.0 kilometers plus a preliminary Ramjet Conceptual Design Scoping Study to 30-minute hold at 4.5 kilometers. ensure that the technological requirements are put in perspective so that a clear program direction and specific technical tasks could be established. The relative performance and mechanical complexity Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A032/2401615/v002t02a032-92-gt-409.pdf by guest on 02 October 2021 of several Mach 5 methane fueled turboramjets were examined. Pre-conceptual designs were conducted for a co-axial and a split flow configuration to identify the thermal, mechanical, and structural requirements of a Mach 5 propulsion system. A baseline turboramjet cycle configuration was then selected jointly with other HYPR contractors; this preliminary conceptual design configuration is a co-axial arrangement where the ramduct surrounds the turbofan and valving is used to direct the airflow into either the ramjet or the turbofan or both. FIG. 2 TYPICAL FLIGHT PROFILE/RESERVE The turboramjet propulsion performance has been REQUIREMENTS calculated to define the operation of the engine throughout its required flight regime. The baseline preliminary design Depletion of the high atmosphere ozone layer has analysis was conducted to determine materials and inlet and become an issue of critical importance. Figure 3 presents nozzle integration requirements and to define a thermal ozone concentration as a function of altitude and shows a management scheme. maximum at about 20 km. Pollution by NOx emissions of the Environmental protection from noise and air ozone layer through combustion of hydrocarbon fuels, such pollution must be seriously considered. Solutions such as as methane (CH4), is thought to aggravate the depletion and large engines with low exhaust speed will benefit noise and since this transport cruises at 27 km, it will pass into these holding combustion temperatures to less than stoichiometric layers where NOx emissions control must be considered. will benefit Nox formation. These and other options will be considered as the study progresses. SAOSEIC OOE EIO SY O: EMISSIOS Finally, using information generated by the study, the critical technologies required to develop this turboramjet 42000 OSUAE CAAI WIC MCAISM O + 3 O + 02 6000 •• O+ O engine concept to practical operation have been identified. + (E 0000 HYPERSONIC TRANSPORT CHARACTERISTICS — Mh .0 24000 Md, 4.0 — Mh .2 Hypersonic transport characteristics have benefits p — Mh 2.4 and drawbacks on the intended mission. The advantage of — Mh 2.0 hypersonic trips to various popular destinations can be seen 2020 Sbn flt in Figure 1; a conventional flight, over the longest market 60006000 routes, of 12 hours could be reduced to 3 hours using a Mach 5 transport. 0.2 0.4 Cnntrtn (M, FIG. 3 OZONE CONCENTRATION VERSUS ALTITUDE TURBORAMJET CONFIGURATION ALTERNATIVES Twelve configurations using various combinations of inlet, turbofan engine, ram duct, ramjet burner and exhaust nozzle options were evaluated. The best co-axial flow and the best split flow turboramjet configurations were identified as candidates for the baseline selection. Efforts to select initial turboramjet configurations for study began by FIG.! TYPICAL CITY PAIRS & ESTIMATED BLOCK grouping the five components to form 12 candidate TIME REDUCTIONS - MACH 5.0 CRUISE configurations thought to be possible and workable. These 2 TABLE 1. ASSUMPTIONS FOR PERFORMANCE configurations included variations of all the turboramjet EVALUATION subsystem options discussed above. The selections were made using combinations of components thought to be • r thn fl (C fl htn vl = 95 j/ workable. The 12 selections were judged using 23 • Gptntl lttd considerations and ranking each accordingly. From these 12 • US tndrd tphr 197 t btn bnt ndtn turboramjet configurations, the best co-axial flow and the • Inlt ttl ndtn lltd bd n dbt best split flow configuration were chosen for performance nd ntrp pr evaluations. • MI nlt ttl prr r rvr bl Mh 137 MI-E57 bv Mh 137 • Enn nlt rfl hdl dfnd b II (trb Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A032/2401615/v002t02a032-92-gt-409.pdf by guest on 02 October 2021 fn d nd KEII (rjt d Figure 4 shows the co-axial turboramjet • MI nzzl ntrnl prfrn (trbfn (Cv=97 configuration and Figure 5 shows the split flow turboramjet rjt Cv=95 configuration chosen for further evaluation. The co-axial • tr bld r hrpr xtrtn turboramjet is shown in both the turbomachinery only (top) and the ramjet (bottom) modes of operation. The ramjet Table 2 shows the operating Mach number ranges for burner is located downstream of the turbofan and is used to both selected configurations and shows where each augment the turbofan flow during dual, i.e., combined component operates. The turbofan operates in the low Mach turbofan/ramjet operation. A common 2D nozzle is used for number range, both the turbofan and the ramjet (noted as both the turbofan and ramjet. In the split flow configuration dual) operate in the mid Mach number range, and the ramjet the ramjet is separated from the dry (non-augmented) alone will be used for propulsion in high Mach number flight.
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Noise Reduction Technologies for Turbofan Engines
    NASA/TM—2007-214495 Noise Reduction Technologies for Turbofan Engines Dennis L. Huff Glenn Research Center, Cleveland, Ohio September 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. Includes compilations of significant • Access the NASA STI program home page at scientific and technical data and information http://www.sti.nasa.gov deemed to be of continuing reference value.
    [Show full text]
  • A Comparison of Combustor-Noise Models – AIAA 2012-2087
    A Comparison of Combustor-Noise Models – AIAA 2012-2087 Lennart S. Hultgren, NASA Glenn Research Center, Cleveland, OH 44135 Summary The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current- generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas- generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]
  • Helicopter Turboshafts
    Helicopter Turboshafts Luke Stuyvenberg University of Colorado at Boulder Department of Aerospace Engineering The application of gas turbine engines in helicopters is discussed. The work- ings of turboshafts and the history of their use in helicopters is briefly described. Ideal cycle analyses of the Boeing 502-14 and of the General Electric T64 turboshaft engine are performed. I. Introduction to Turboshafts Turboshafts are an adaptation of gas turbine technology in which the principle output is shaft power from the expansion of hot gas through the turbine, rather than thrust from the exhaust of these gases. They have found a wide variety of applications ranging from air compression to auxiliary power generation to racing boat propulsion and more. This paper, however, will focus primarily on the application of turboshaft technology to providing main power for helicopters, to achieve extended vertical flight. II. Relationship to Turbojets As a variation of the gas turbine, turboshafts are very similar to turbojets. The operating principle is identical: atmospheric gases are ingested at the inlet, compressed, mixed with fuel and combusted, then expanded through a turbine which powers the compressor. There are two key diferences which separate turboshafts from turbojets, however. Figure 1. Basic Turboshaft Operation Note the absence of a mechanical connection between the HPT and LPT. An ideal turboshaft extracts with the HPT only the power necessary to turn the compressor, and with the LPT all remaining power from the expansion process. 1 of 10 American Institute of Aeronautics and Astronautics A. Emphasis on Shaft Power Unlike turbojets, the primary purpose of which is to produce thrust from the expanded gases, turboshafts are intended to extract shaft horsepower (shp).
    [Show full text]
  • F404 Turbofan Engines 17,700-19,000 Lb Thrust Range
    www.ge.com/aviation F404 turbofan engines 17,700-19,000 lb thrust range The F404 family of engines powers a broad spectrum afterburner sections result in increased performance of aircraft with missions ranging from low-level subsonic while maintaining the F404’s characteristic durability. attack to high-altitude interception. The first version of Its simple, modular design is reliable and easy to the F404 was developed to power the Boeing F/A-18, maintain. and non-afterburning derivatives powered the F-117A The F404/RM12 is a derivative developed in conjunction Stealth Fighter and the Singapore A4-SU Super Skyhawk. with Volvo Aero Corporation to power the Saab Gripen, Developed for the Korean KAI/LMTAS T-50 advanced a multi-role fighter, attack and reconnaissance aircraft. trainer/light fighter, the F404-GE-102 is the latest The F404/RM12 model also includes single-engine safety derivative of the F404 family. It includes single-engine features and a FADEC. safety features and a Full Authority Digital Electronic The F404-GE-IN20 engine is an enhanced production Control (FADEC) derived from GE’s F414 engine. The version of the F404, which is successfully powering F404-GE-102 is supplied to ROKAF by Samsung Techwin India’s Light Combat Aircraft MKI. The highest thrust under a licensed production program with GE. variant of the F404 family, the F404-GE-IN20 The F404-GE-402 provides higher power, improved incorporates GE’s latest hot section materials and fuel efficiency and increased mission capability for the technologies, as well as a FADEC for reliable power and combat-proven Boeing F/A-18C/D Hornet.
    [Show full text]
  • Reusable Ram Booster Launch Design Emphasizes Use of Existing
    National Aeronautics and Space Administration technology opportunity Reusable Ram Booster Launch Design Emphasizes Use of Existing Components to Achieve Space Transport for Satellites and Spacecraft Using off-the-shelf technology to make space transport more affordable Engineers at NASA’s Dryden Flight Research Center have designed a partially reusable launch Benefits system to propel a payload-bearing spacecraft t Economical: Lowers the cost of space access, into a low Earth orbit (LEO). The concept design with use of reusable components and a simplified propulsion system for the three-stage Ram Booster employs existing turbofan engines, ramjet propulsion, and an already t Efficient: Maximizes use of already operational components by using off-the-shelf technology operational third-stage rocket to achieve LEO t Effective: Enables fast turnaround between missions, for satellites and other spacecraft. Excluding with reuse of recoverable first and second stages payload (which stays in orbit), over 97 percent t Safer: Operates with jet fuel in lower stages, of the Ram Booster’s total dry weight (including eliminating the need for hazardous hypergolic or cryogenic propellants and complex reaction three stages) is reusable. As the design also control systems draws upon off-the-shelf technology for many t Simpler: Offers a single fuel type for air-breathing of its components, this novel approach to space turbofan and ramjet engines transport dramatically lowers the cost of access to t Novel: Approaches space launch complexities space. The technology has applications for NASA, in a new way, providing a conceptual technical breakthrough for first and second stage boost the military, and the commercial aerospace sectors.
    [Show full text]
  • Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV
    Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV BJÖRN MONTGOMERIE Mixed fl ow turbofan schematic FOI is an assignment-based authority under the Ministry of Defence. The core activities are research, method and technology development, as well as studies for the use of defence and security. The organization employs around 1350 people of whom around 950 are researchers. This makes FOI the largest research institute in Sweden. FOI provides its customers with leading expertise in a large number of fi elds such as security-policy studies and analyses in defence and security, assessment of dif- ferent types of threats, systems for control and management of crises, protection against and management of hazardous substances, IT-security an the potential of new sensors. FOI Defence Research Agency Phone: +46 8 555 030 00 www.foi.se Systems Technology Fax: +46 8 555 031 00 FOI-R-- 1835 --SE Scientifi c report Systems Technology SE-164 90 Stockholm ISSN 1650-1942 December 2005 Björn Montgomerie Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV FOI-R--1835--SE Scientific report Systems Technology ISSN 1650-1942 December 2005 Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1835--SE Scientific report Systems Technology Research area code SE-164 90 Stockholm 7. Mobility and space technology, incl materials Month year Project no. December 2005 E830058 Sub area code 71 Unmanned Vehicles Sub area code 2 Author/s (editor/s) Project manager Björn Montgomerie Fredrik Haglind Approved by Monica Dahlén Sponsoring agency Swedish Defense Materiel Administration (FMV) Scientifically and technically responsible Fredrik Haglind Report title Design of a Turbofan Engine Cycle with Afterburner for a Conceptual UAV Abstract A study of two turbofan engine types has been carried out.
    [Show full text]
  • An Online Performance Calculator for Ramjet, Turbojet, Turbofan, and Turboprop Engines
    An Online Performance Calculator for Ramjet, Turbojet, Turbofan, and Turboprop Engines Evan P. Warner∗ Virginia Tech, Blacksburg, VA, 24061, USA This paper documents the theory, equations, and assumptions behind an HTML-based online performance calculator for ramjet, turbojet, turbofan, and turboprop engines. Based on inputs of design parameters, flight con- ditions, and engine parameters, the specific thrust (()), thrust specific fuel consumption ()(), propulsive efficiency ([ ?), thermal efficiency ([Cℎ), and overall efficiency ([0) will be output for the engine of interest. Several sample cases are analyzed to verify the functionality of the calculator. These sample cases are derived from engines associated with Virginia Tech, which include: Pratt & Whitney’s PT6A-20 and JT15D-1, Honeywell’s TFE731-2B, and the Rolls Royce Trent 1000. With the help of this calculator, students will now be able to verify their air-breathing jet engine performance value calculations. This calculator is available here. I. Nomenclature "0 = Ambient Mach Number 2 ?1 = Specific Heat of the Burner W0 = Ambient Specific Heat Ratio 2 ?C = Specific Heat of the Turbine W3 = Diffuser Specific Heat Ratio 2 ? 5 = Specific Heat of the Fan W2 = Compressor Specific Heat Ratio )0 = Ambient Static Temperature W1 = Burner Specific Heat Ratio ?0 = Ambient Static Pressure WC = Turbine Specific Heat Ratio ?4 = Exit Static Pressure W= = Nozzle Specific Heat Ratio '08A = Gas Constant for Air W 5 = Fan Specific Heat Ratio '?A>3 = Gas Constant for the Products of Fuel/Air Mixture W= 5 = Fan Nozzle
    [Show full text]
  • Characteristics of the Specific Fuel Consumption for Jet Engines
    1 Project Characteristics of the Specific Fuel Consumption for Jet Engines Author: Artur Bensel Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Delivery Date: 31.08.2018 Faculty of Engineering and Computer Science Department of Automotive and Aeronautical Engineering 2 DOI: https://doi.org/10.15488/4316 URN: http://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-08-31.016 Associated URLs: http://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2018-08-31.016 © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de This work is part of: Digital Library - Projects & Theses - Prof. Dr. Scholz http://library.ProfScholz.de Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science This report is deposited and archived: Deutsche Nationalbiliothek (http://www.dnb.de) Repositorium der Leibniz Universität Hannover (http://www.repo.uni-hannover.de) This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/LZNNL1 3 Abstract Purpose of this project is a) the evaluation of the Thrust Specific Fuel Consumption (TSFC) of jet engines in cruise as a function of flight altitude, speed and thrust and b) the determina- tion of the optimum cruise speed for maximum range of jet airplanes based on TSFC charac- teristics from a). Related to a) a literature review shows different models for the influence of altitude and speed on TSFC.
    [Show full text]
  • Propulsion Type the Aircraft Type of Propulsion System an Electrical Engine
    ECCAIRS Aviation 1.3.0.12 Data Definition Standard English Attribute Values ECCAIRS Aviation 1.3.0.12 VL for AttrID: 232 - Propulsion type The aircraft type of propulsion system an electrical engine. 100 (Electrical) The aircraft type of propulsion system was a reciprocating engine. (Reciprocating) 1 Reciprocating Engine : An engine, especially an internal-combustion engine, in which a piston or pistons moving back and forth work upon a crankshaft or other device to create rotational movement. Also include here: Rotary Engine An engine, especially an internal-combustion engine, in which the pressure of combustion is contained in a chamber formed by part of the housing and sealed in by one face of the triangular rotor work upon a crankshaft or other device to create rotational movement. Like a piston engine, the rotary engine uses the pressure created when a combination of air and fuel is burned. In a piston engine, that pressure is contained in the cylinders and forces pistons to move back and forth. The connecting rods and crankshaft convert the reciprocating motion of the pistons into rotational motion that can be used to power a car. In a rotary engine, the pressure of combustion is contained in a chamber formed by part of the housing and sealed in by one face of the triangular rotor, which is what the engine uses instead of pistons. The aircraft type of propulsion system was turboprop engine. (Turboprop) 2 Turbo-Prop engine: A simple turbojet core with the addition of a propeller output reduction gearbox and a propeller shaft. Types of Turbo-Prop 1.
    [Show full text]
  • Type-Certificate Data Sheet
    TCDS No.: E.004 CFM International CFM56-7B series engines Issue: 06 Date: 12 December 2019 TYPE-CERTIFICATE DATA SHEET No. E.004 for CFM56-7B series engines Type Certificate Holder CFM International SA 2, boulevard du Général Martial Valin F‐75724 Paris Cedex 15 France For Models: CFM56-7B20, CFM56-7B22, CFM56-7B22/B1, CFM56-7B24, CFM56-7B “SAC” CFM56-7B24/B1, CFM56-7B26, CFM56-7B26/B1, CFM56-7B26/B2, CFM56-7B27, CFM56-7B27/B1, CFM56-7B27/B3, CFM56-7B27A CFM56-7B20/2, CFM56-7B22/2, CFM56-7B24/2, CFM56-7B26/2, CFM56-7B “DAC” CFM56-7B27/2 CFM56-7B20/3, CFM56-7B22/3, CFM56-7B22/3B1, CFM56-7B24/3, CFM56-7B24/3B1, CFM56-7B26/3, CFM56-7B26/3F, CFM56-7B “TI” CFM56-7B26/3B1, CFM56-7B26/3B2, CFM56-7B26/3B2F, CFM56-7B27/3, CFM56-7B27/3F, CFM56-7B27/3B1, CFM56-7B27/3B1F, CFM56-7B27/3B3, CFM56-7B27A/3 CFM56-7B20E, CFM56-7B22E, CFM56-7B22E/B1, CFM56-7B24E, CFM56-7B24E/B1, CFM56-7B26E, CFM56-7B26E/F, CFM56-7B26E/B1, CFM56-7B “E” CFM56-7B26E/B2, CFM56-7B26E/B2F, CFM56-7B27E, CFM56-7B27E/F, CFM56-7B27E/B1, CFM56-7B27E/B1F, CFM56-7B27E/B3, CFM56-7B27AE TE.CERT.00052‐001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Page 1 of 22 An agency of the European Union Intentionally left blank TE.CERT.00052‐001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Page 2 of 22 An agency of the European Union TCDS No.: E.004 CFM International CFM56-7B series engines Issue: 06 12 December 2019 TABLE OF CONTENTS I.
    [Show full text]