CJ-3000 Turbofan Engine Design Proposal

Total Page:16

File Type:pdf, Size:1020Kb

CJ-3000 Turbofan Engine Design Proposal CJ-3000 Turbofan Engine Design Proposal Team Leader: Wang Yingjun Team Member: Guo Minghao & Hu Yu Faculty Advisor: Dr. Chen Min SIGNATURE PAGE Design Team: Wang Yingjun: #921794 Guo Mingha: #921803 Hu Yu: #921800 Acknowledgements The authors would like to thank the following individuals who were instrumental in the success of this engine design: Dr. Chen Min for his tremendous help in completing this proposal. Dr. Li Lin and Dr. Fan Yu for their advice on rotor dynamics Dr. Chen Jiang for his guidance on turbomachinery aerodynamics Dr. Joachim Kurzke, Prof. Peter Jeschke, and Mr. Guo Ran for their aids on GasTurb Our colleague Zhao Jiaheng for his novel idea on cycle design Our senior Li Mingzhe for his instruction on turbine design The work site provided by our College All the teachers, students and facilities who have aided. Abstract The CJ 3000 is a triple-spool, mixed flow, middle bypass ratio turbofan engine designed as a candidate engine for the next generation supersonic transport. The performance of the CJ 3000 is shown to reach all requirements of the RFP. The CJ 3000 offers great performance gains over the requirements and baseline engine, providing required thrust levels and a significantly lower TSFC for all four main flight conditions, less total engine weight, less fuel consumption and NOx emissions, and lower exhaust noise at takeoff. The practical and advanced technologies CJ 3000 employed are presented as follows. Engine Component Technologies Employed Engine Configuration Triple-Spool Engine Inlet System Two-Dimensional Mixed Compression Inlet Transonic Fan Polyimide Composites Fan Blades with Ti-6Al-4V Leading Edges Internal-Pressure Compressor TMMC Compressor Blades High-Pressure Compressor TMMC and Nickel-Base Super-Alloy Compressor Blades Combustion Chamber Hybrid Diffuser (Flat-Wall and Dump Diffuser) Lean Direct Injection (LDI) Combustor Convective Film Cooling via SiC/CMC with EBCs Liner High-Pressure Turbine SiC/CMC with EBCs Turbine Blades Internal-Pressure Turbine SiC/CMC with EBCs Turbine Blades Low-Pressure Turbine PST-TA and SiC/CMC with EBCs Turbine Blades Mixer Force Flow Lobed Mixer Exhaust System Variable Area Convergent-Divergent Nozzle Helmholtz Resonators and Sawtooth Trailing Edge Nozzle for Noise Suppression The charts required by RFP will be shown next as parts of the content. Table RFP-1 Performance Requirements Matrix Parameter Required Value Design Value Margin Relative to Requirement Takeoff Thrust (lb) 64625 64754.3 0.20% Max Thrust at Transonic Pinch Point (lb) 14278 14287.03 0.06% TSFC at Transonic Pinch Point (lbm/lbf/hr) 0.950 0.8276 12.88% Max Thrust at Supersonic Cruise (lb) 14685 15010.70 2.22% TSFC at Supersonic Cruise (lbm/lbf/hr) 1.091 0.9874 9.50% Fan Diameter (in) 98.6 94.5 8.10% Bare Engine Weight (excl. inlet) (lb) 13000 11252 13.45% Takeoff Exhaust Jet Velocity (ft/s) 1375 1327.92 3.42% LTO NOx (g) 154 30.81 80.00% Supersonic Cruise NOx (g/kg fuel) 5 1.27 74.60% Table RFP-2 Compliance Matrix General characteristics Wing area (ft2) 3804.65 Max. take-off weight (lb) 312282 Takeoff-Thrust (lb) 2 ×56210 2 ×64754 each @ SLS; Design Thrust (lb) 2 ×56582 each @ Hot Day Performance Maximum speed (ft/s) 1742.76 Cruise speed (ft/s) 1549.11 Mission Fuel Burn (lb) 125983.18 Cruise TSFC (lbm/lbf/hr) 0.9132 Takeoff TSFC (lbm/lbf/hr) 0.4185 Engine Weight (lb) 11252 Fan Diameter (in) 94.5 Required Trade Studies Aircraft Constraint Diagram Page # 10 Engine Cycle Design Space Carpet Plots Page # 6 In-Depth Cycle Summary Page # 7 Final engine flow path (Page #) 48 Final cycle study using chosen cycle program (Page #) III & IV Detailed stage-by-stage turbomachinery design information and velocity triangles (page # for each Fan: V, IPC: VI, HPC: VIII component) HPT: X, IPT: XI, LPT: XII Detailed inlet and nozzle performance characteristics (Page #) Inlet: 16, Nozzle: 35 i Table RFP-3 Engine Summary Table Summary Data Design MN 1.6 Design Altitude (ft) 52500 Design Fan Mass Flow (lb) 661.94 Design Gross Thrust (lb) 47872.9 Design Bypass Ratio 2.75 Design Net Thrust (lb) 15010.7 Design TSFC (lbm/lbf/hr) 0.9268 Design Overall Pressure Ratio 45 Design T4.1 (°R) 3282.5 Design Engine Pressure Ratio 2.13 Design Fan / LPC Pressure Ratio 2.44 Design Chargeable Cooling Flow (%@25) 3 Design Non-Chargeable Cooling Flow (%@25) 2 Design Adiabatic Efficiency for Each Turbine HPT: 0.9200, IPT: 0.9200, LPT: 0.9200 Design Polytropic Efficiency for Each Compressor Fan:0.8939, IPC: 0.9023, HPC: 0.8984 Design HP/IP/LP Shaft RPM 12000/7800/4000 Flow Station Data (List for Each Engine Component at Design Condition) Inflow Corrected Inflow Inflow Total Pressure Inflow Total Temperature Refer to Appendix A: Simulation Validation of Engine by GasTurb 13 Inflow Fuel-air-Ratio Inflow Mach # Inflow Area Pressure Loss/Rise Across Component Additional Information Design HP/LP Shaft Off-take Power 100 hp @ HP Design Customer Bleed Flow 1% @25 Table RFP-4 Required Detailed Stage and Component Information Compressor Turbine Lieblein Diffusion Factor Zweifel Coefficient De Haller Number AN2 Stage Pressure Ratio Stage Pressure Ratio Work Coefficient Work Coefficient Flow Coefficient Flow Coefficient Hub-to-Tip Ratio Hub-to-Tip Ratio Mean radius Mean radius Number of Blades (Rotor & Refer to Section 6: Number of Blades (Rotor & Refer to Section 6: Stator) Aerodynamic Design of Stator) Aerodynamic Design of Aspect Ratio Turbomachinery System & Aspect Ratio Turbomachinery System & Taper Ratio 12.1.6 Blade Structure Taper Ratio 12.1.6 Blade Structure Tip Speed Analysis Tip Speed Analysis Stagger Angle Stagger Angle Velocity Triangles (hub, Velocity Triangles (hub, mean, mean, & tip) & tip) Blade chord Blade chord Degree of Reaction Degree of Reaction Mach Numbers (absolute & Mach Numbers (absolute & relative) relative) ii Table of Contents 1 Introduction ............................................................................................................................................................................................ 1 2 Cycle Analysis ....................................................................................................................................................................................... 1 2.1 Advanced Engine Cycle Concepts for the CJ 3000 ..................................................................................................................... 1 2.1.1 Conventional Dual-spool Turbofan Engine ....................................................................................................................... 1 2.1.2 Dual-spool Turbofan Engine with CCA System ................................................................................................................ 2 2.1.3 Triple -spool Turbofan Engine ........................................................................................................................................... 2 2.2 Engine Components and Diagrams .............................................................................................................................................. 3 2.3 On-Design Analysis and Simulation Validation of Baseline Engine ........................................................................................... 4 2.4 CJ 3000 Cycle Analysis: New Engine Optimization ................................................................................................................... 4 2.4.1 On-Design Parametric Analysis of the CJ 3000 ................................................................................................................ 4 2.4.2 Off-Design Analysis of the CJ 3000 .................................................................................................................................. 7 2.4.3 Engine Weight Analysis ..................................................................................................................................................... 9 2.5 Performance Comparison with the Baseline Engine Model and Requirements .......................................................................... 9 3 Constraint Analysis .............................................................................................................................................................................. 10 3.1 Determination of Mission Weights ............................................................................................................................................ 10 3.2 Drag Polar Estimation ................................................................................................................................................................ 11 3.3 Takeoff Distance Constraint ....................................................................................................................................................... 11 3.4 Landing Distance Constraint...................................................................................................................................................... 11 3.5 Climb Constraint ........................................................................................................................................................................ 11 3.6 Supersonic Cruise Constraint ..................................................................................................................................................... 11 3.7 Determination of Takeoff Wing Loading and Takeoff Thrust-to-Weight .................................................................................
Recommended publications
  • Project No.: R. 089145.001
    Project No.: R. 089145.001 Section 01 01 50 Mission Minimum Institution GENERAL INSTRUCTIONS 33737 Dewdney Trunk Road, Mission, BC Page 1 of 18 EXPANSION OF HEALTH CARE 1 SUMMARY OF WORK .1 Work covered by Contract Documents: .1 Work under this Contract comprises construction of a health care building expansion and renovation work as indicated, located at Mission Minimum Institution, Mission, B.C. .2 Contractor’s Use of Premises: .1 Contractor has controlled use of site within the construction area for Work, storage, and access as directed by the Departmental Representative. .2 Use of areas inside Mission Institution, for access to the construction site is controlled, by the Departmental Representative. .3 Obtain and pay for use of additional storage or work areas needed for operations under this Contract. .4 The new building will be constructed inside the security fence. The institution will be fully operational during work of this Contract. Provide temporary construction fence around site until new security fencing is installed. .3 Conform to National Building Code 2015 or British Columbia Building Code 2012 as applicable. .4 Contractor to apply for Building Permit before construction and Occupancy Permit upon Substantial completion. .1 Departmental Representative will supply the required drawings and Letters of Assurance for such applications. .2 Contractor to pay for all required fees for Building Permit and Occupancy Permit. .3 Before issuing the Substantial Completion certificate, Contractor must provide fire alarm verification report and Occupancy Permit from local authority having jurisdiction. 2 WORK RESTRICTIONS .1 Notify, Departmental Representative of intended interruption of disconnected services and provide schedule for review.
    [Show full text]
  • Failure Analysis of Gas Turbine Blades in a Gas Turbine Engine Used for Marine Applications
    INTERNATIONAL JOURNAL OF International Journal of Engineering, Science and Technology MultiCraft ENGINEERING, Vol. 6, No. 1, 2014, pp. 43-48 SCIENCE AND TECHNOLOGY www.ijest-ng.com www.ajol.info/index.php/ijest © 2014 MultiCraft Limited. All rights reserved Failure analysis of gas turbine blades in a gas turbine engine used for marine applications V. Naga Bhushana Rao1*, I. N. Niranjan Kumar2, K. Bala Prasad3 1* Department of Marine Engineering, Andhra University College of Engineering, Visakhapatnam, INDIA 2 Department of Marine Engineering, Andhra University College of Engineering, Visakhapatnam, INDIA 3 Department of Marine Engineering, Andhra University College of Engineering, Visakhapatnam, INDIA *Corresponding Author: e-mail: [email protected] Tel +91-8985003487 Abstract High pressure temperature (HPT) turbine blade is the most important component of the gas turbine and failures in this turbine blade can have dramatic effect on the safety and performance of the gas turbine engine. This paper presents the failure analysis made on HPT turbine blades of 100 MW gas turbine used in marine applications. The gas turbine blade was made of Nickel based super alloys and was manufactured by investment casting method. The gas turbine blade under examination was operated at elevated temperatures in corrosive environmental attack such as oxidation, hot corrosion and sulphidation etc. The investigation on gas turbine blade included the activities like visual inspection, determination of material composition, microscopic examination and metallurgical analysis. Metallurgical examination reveals that there was no micro-structural damage due to blade operation at elevated temperatures. It indicates that the gas turbine was operated within the designed temperature conditions. It was observed that the blade might have suffered both corrosion (including HTHC & LTHC) and erosion.
    [Show full text]
  • Aircraft Engine Performance Study Using Flight Data Recorder Archives
    Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3.
    [Show full text]
  • 2.0 Axial-Flow Compressors 2.0-1 Introduction the Compressors in Most Gas Turbine Applications, Especially Units Over 5MW, Use Axial fl Ow Compressors
    2.0 Axial-Flow Compressors 2.0-1 Introduction The compressors in most gas turbine applications, especially units over 5MW, use axial fl ow compressors. An axial fl ow compressor is one in which the fl ow enters the compressor in an axial direction (parallel with the axis of rotation), and exits from the gas turbine, also in an axial direction. The axial-fl ow compressor compresses its working fl uid by fi rst accelerating the fl uid and then diffusing it to obtain a pressure increase. The fl uid is accelerated by a row of rotating airfoils (blades) called the rotor, and then diffused in a row of stationary blades (the stator). The diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. A compressor consists of several stages: 1) A combination of a rotor followed by a stator make-up a stage in a compressor; 2) An additional row of stationary blades are frequently used at the compressor inlet and are known as Inlet Guide Vanes (IGV) to ensue that air enters the fi rst-stage rotors at the desired fl ow angle, these vanes are also pitch variable thus can be adjusted to the varying fl ow requirements of the engine; and 3) In addition to the stators, another diffuser at the exit of the compressor consisting of another set of vanes further diffuses the fl uid and controls its velocity entering the combustors and is often known as the Exit Guide Vanes (EGV). In an axial fl ow compressor, air passes from one stage to the next, each stage raising the pressure slightly.
    [Show full text]
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Noise Reduction Technologies for Turbofan Engines
    NASA/TM—2007-214495 Noise Reduction Technologies for Turbofan Engines Dennis L. Huff Glenn Research Center, Cleveland, Ohio September 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. Includes compilations of significant • Access the NASA STI program home page at scientific and technical data and information http://www.sti.nasa.gov deemed to be of continuing reference value.
    [Show full text]
  • Aerodynamic Design of ART-2B Rotor Blades
    August 2000 • NREL/SR-500-28473 NREL Advanced Research Turbine (ART) Aerodynamic Design of ART-2B Rotor Blades Dayton A. Griffin Global Energy Concepts, LLC Kirkland, Washington National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 August 2000 • NREL/SR-500-28473 NREL Advanced Research Turbine (ART) Aerodynamic Design of ART-2B Rotor Blades Dayton A. Griffin Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. VAM-8-18208-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Spacecraft American Aerospace Controls
    Spacecraft For More Than 50 Years, Our Experience Is Your Assurance™ AAC Manufactures high-reliability voltage and current sensors for: Satellites UAVs Commercial Aircraft Missiles Underwater Vehicles Military Aircraft Launch Systems Armored Vehicles Ships Helicopters Industrial Equipment Rail AAC is a Woman-Owned Business and all parts are manufactured at AAC’s Farmingdale, NY location. American Aerospace Controls 570 Smith Street, Farmingdale NY 11735 Phone: +1 (631) 694-5100 – Fax: +1 (631) 694-6739 http://a-a-c.com ©American Aerospace Controls 10-2016 Aircraft-UAVs Rail AAC Quality and Engineering Industrial Defense For More Than 50 Years, Our Experience is Your Assurance™ AAC Engineering and Quality Depart- Since 1965, American Aerospace Controls has been manufacturing high reliability ments are here to work with you on the AC & DC current, voltage and frequency sensors, transducers and detectors. With design and qualification of your parts. an emphasis on engineering solutions and customer support, AAC has developed Our vast experience in space flight app- long-term relationships with some of the largest aerospace, defense, transit and industrial companies around the globe. lications allows us to offer insight into the design and requirements of each unique Space Application. AAC main- AAC in Space tains the highest standards in Quality and Production. AAC sensors have been used on numerous manned and unmanned spacecraft, satellite, rocket and Unmanned Aerial Vehicle (UAV) programs. AAC has been involved with space flight applications since the mid-1960s. AAC’s extensive From the Mercury Program in the 1960’s to today’s international commercial and knowledge and decades of experience in designing and manufacturing defense satellite systems, AAC engineers have helped design current and voltage transducers and detectors capable of providing high reliability in harsh remote detectors and transducers that are the best available.
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]
  • Wankel Powered Time to Climb World Record Attempt
    Wankel powered time to climb world record attempt Presentation at Aero Expo, Friedrichshafen, Germany April 19th, 2018 by Paul Lamar Several years ago an American rotor head by the name of Russ MacFarlane living in Newcastle Australia decided to build a Mazda rotary powered world record attempt time to climb aircraft. Russ was a long time subscriber to the Rotary Engine News Letter. A used flying Harmon Rocket home built aircraft was purchased and the Lycoming engine and instruments were removed and sold. The aircraft is very similar to a Van's RV4 with longer landing gear and shorter wings. Dan Grey, owner of Aviation FX in Santa Paula California was chosen to finish the project and get it flying. I was the project engineer. Dan is a 787 captain for UAL. The Wankel rotary has a much better power to weight ratio and power to size ratio than any automotive piston engine. It is also far more robust and will withstand ungodly amounts of turbo boost with out structural failure. Up to 100 inches of Mercury manifold pressure is possible. That translates to almost 1000 HP for an all aluminum turbo two rotor weighing less than 200 pounds. That is about four HP per pound of engine weight. Most aircraft engines are about one HP per pound of weight or worse. Any piston engine operating at aircraft power levels has a limited life. That is the reason for a TBO. The moving parts are magnafluxed for cracks at TBO. The cracks are caused by reversing stress on the crankshaft, connecting rods, pistons and valve parts.
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • 19730021074.Pdf
    NASA TECHNICAL NOTE NASA TN D-7328 CO LE CORY STEADY-STATE AND DYNAMIC PRESSURE PHENOMENA IN THE PROPULSION SYSTEM OF AN F-111A AIRPLANE by Frank W. Burcbam, Jr., Donald L. Hughes, and Jon K. Holzman Flight Research Center Edwards, Calif. 93523 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1973 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-7328 4. Title and Subtitle 5. Report Date STEADY-STATE AND DYNAMIC PRESSURE PHENOMENA IN THE July 1973 PROPULSION SYSTEM OF AN F-111A AIRPLANE 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Frank W. Burcham, Jr., Donald L. Hughes, and Jon K. Holzman H-741 10. Work Unit No. 9. Performing Organization Name and Address 136-13-08-00-24 NASA Flight Research Center P. O. Box 273 11. Contract or Grant No. Edwards, California 93523 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Flight tests were conducted with two F-111A airplanes to study the effects of steady-state and dynamic pressure phenomena on the propulsion system. Analysis of over 100 engine compressor stalls revealed that the stalls were caused by high levels of instantaneous distortion. In 73 per- cent of these stalls, the instantaneous circumferential distortion parameter, Kg, exhibited a peak just prior to stall higher than any previous peak. The Kg parameter was a better indicator of stall than the distortion factor, K_, and the maximum-minus-minimum distortion parameter, D, was a poor indicator of stall.
    [Show full text]