CJ-3000 Turbofan Engine Design Proposal
Total Page:16
File Type:pdf, Size:1020Kb
CJ-3000 Turbofan Engine Design Proposal Team Leader: Wang Yingjun Team Member: Guo Minghao & Hu Yu Faculty Advisor: Dr. Chen Min SIGNATURE PAGE Design Team: Wang Yingjun: #921794 Guo Mingha: #921803 Hu Yu: #921800 Acknowledgements The authors would like to thank the following individuals who were instrumental in the success of this engine design: Dr. Chen Min for his tremendous help in completing this proposal. Dr. Li Lin and Dr. Fan Yu for their advice on rotor dynamics Dr. Chen Jiang for his guidance on turbomachinery aerodynamics Dr. Joachim Kurzke, Prof. Peter Jeschke, and Mr. Guo Ran for their aids on GasTurb Our colleague Zhao Jiaheng for his novel idea on cycle design Our senior Li Mingzhe for his instruction on turbine design The work site provided by our College All the teachers, students and facilities who have aided. Abstract The CJ 3000 is a triple-spool, mixed flow, middle bypass ratio turbofan engine designed as a candidate engine for the next generation supersonic transport. The performance of the CJ 3000 is shown to reach all requirements of the RFP. The CJ 3000 offers great performance gains over the requirements and baseline engine, providing required thrust levels and a significantly lower TSFC for all four main flight conditions, less total engine weight, less fuel consumption and NOx emissions, and lower exhaust noise at takeoff. The practical and advanced technologies CJ 3000 employed are presented as follows. Engine Component Technologies Employed Engine Configuration Triple-Spool Engine Inlet System Two-Dimensional Mixed Compression Inlet Transonic Fan Polyimide Composites Fan Blades with Ti-6Al-4V Leading Edges Internal-Pressure Compressor TMMC Compressor Blades High-Pressure Compressor TMMC and Nickel-Base Super-Alloy Compressor Blades Combustion Chamber Hybrid Diffuser (Flat-Wall and Dump Diffuser) Lean Direct Injection (LDI) Combustor Convective Film Cooling via SiC/CMC with EBCs Liner High-Pressure Turbine SiC/CMC with EBCs Turbine Blades Internal-Pressure Turbine SiC/CMC with EBCs Turbine Blades Low-Pressure Turbine PST-TA and SiC/CMC with EBCs Turbine Blades Mixer Force Flow Lobed Mixer Exhaust System Variable Area Convergent-Divergent Nozzle Helmholtz Resonators and Sawtooth Trailing Edge Nozzle for Noise Suppression The charts required by RFP will be shown next as parts of the content. Table RFP-1 Performance Requirements Matrix Parameter Required Value Design Value Margin Relative to Requirement Takeoff Thrust (lb) 64625 64754.3 0.20% Max Thrust at Transonic Pinch Point (lb) 14278 14287.03 0.06% TSFC at Transonic Pinch Point (lbm/lbf/hr) 0.950 0.8276 12.88% Max Thrust at Supersonic Cruise (lb) 14685 15010.70 2.22% TSFC at Supersonic Cruise (lbm/lbf/hr) 1.091 0.9874 9.50% Fan Diameter (in) 98.6 94.5 8.10% Bare Engine Weight (excl. inlet) (lb) 13000 11252 13.45% Takeoff Exhaust Jet Velocity (ft/s) 1375 1327.92 3.42% LTO NOx (g) 154 30.81 80.00% Supersonic Cruise NOx (g/kg fuel) 5 1.27 74.60% Table RFP-2 Compliance Matrix General characteristics Wing area (ft2) 3804.65 Max. take-off weight (lb) 312282 Takeoff-Thrust (lb) 2 ×56210 2 ×64754 each @ SLS; Design Thrust (lb) 2 ×56582 each @ Hot Day Performance Maximum speed (ft/s) 1742.76 Cruise speed (ft/s) 1549.11 Mission Fuel Burn (lb) 125983.18 Cruise TSFC (lbm/lbf/hr) 0.9132 Takeoff TSFC (lbm/lbf/hr) 0.4185 Engine Weight (lb) 11252 Fan Diameter (in) 94.5 Required Trade Studies Aircraft Constraint Diagram Page # 10 Engine Cycle Design Space Carpet Plots Page # 6 In-Depth Cycle Summary Page # 7 Final engine flow path (Page #) 48 Final cycle study using chosen cycle program (Page #) III & IV Detailed stage-by-stage turbomachinery design information and velocity triangles (page # for each Fan: V, IPC: VI, HPC: VIII component) HPT: X, IPT: XI, LPT: XII Detailed inlet and nozzle performance characteristics (Page #) Inlet: 16, Nozzle: 35 i Table RFP-3 Engine Summary Table Summary Data Design MN 1.6 Design Altitude (ft) 52500 Design Fan Mass Flow (lb) 661.94 Design Gross Thrust (lb) 47872.9 Design Bypass Ratio 2.75 Design Net Thrust (lb) 15010.7 Design TSFC (lbm/lbf/hr) 0.9268 Design Overall Pressure Ratio 45 Design T4.1 (°R) 3282.5 Design Engine Pressure Ratio 2.13 Design Fan / LPC Pressure Ratio 2.44 Design Chargeable Cooling Flow (%@25) 3 Design Non-Chargeable Cooling Flow (%@25) 2 Design Adiabatic Efficiency for Each Turbine HPT: 0.9200, IPT: 0.9200, LPT: 0.9200 Design Polytropic Efficiency for Each Compressor Fan:0.8939, IPC: 0.9023, HPC: 0.8984 Design HP/IP/LP Shaft RPM 12000/7800/4000 Flow Station Data (List for Each Engine Component at Design Condition) Inflow Corrected Inflow Inflow Total Pressure Inflow Total Temperature Refer to Appendix A: Simulation Validation of Engine by GasTurb 13 Inflow Fuel-air-Ratio Inflow Mach # Inflow Area Pressure Loss/Rise Across Component Additional Information Design HP/LP Shaft Off-take Power 100 hp @ HP Design Customer Bleed Flow 1% @25 Table RFP-4 Required Detailed Stage and Component Information Compressor Turbine Lieblein Diffusion Factor Zweifel Coefficient De Haller Number AN2 Stage Pressure Ratio Stage Pressure Ratio Work Coefficient Work Coefficient Flow Coefficient Flow Coefficient Hub-to-Tip Ratio Hub-to-Tip Ratio Mean radius Mean radius Number of Blades (Rotor & Refer to Section 6: Number of Blades (Rotor & Refer to Section 6: Stator) Aerodynamic Design of Stator) Aerodynamic Design of Aspect Ratio Turbomachinery System & Aspect Ratio Turbomachinery System & Taper Ratio 12.1.6 Blade Structure Taper Ratio 12.1.6 Blade Structure Tip Speed Analysis Tip Speed Analysis Stagger Angle Stagger Angle Velocity Triangles (hub, Velocity Triangles (hub, mean, mean, & tip) & tip) Blade chord Blade chord Degree of Reaction Degree of Reaction Mach Numbers (absolute & Mach Numbers (absolute & relative) relative) ii Table of Contents 1 Introduction ............................................................................................................................................................................................ 1 2 Cycle Analysis ....................................................................................................................................................................................... 1 2.1 Advanced Engine Cycle Concepts for the CJ 3000 ..................................................................................................................... 1 2.1.1 Conventional Dual-spool Turbofan Engine ....................................................................................................................... 1 2.1.2 Dual-spool Turbofan Engine with CCA System ................................................................................................................ 2 2.1.3 Triple -spool Turbofan Engine ........................................................................................................................................... 2 2.2 Engine Components and Diagrams .............................................................................................................................................. 3 2.3 On-Design Analysis and Simulation Validation of Baseline Engine ........................................................................................... 4 2.4 CJ 3000 Cycle Analysis: New Engine Optimization ................................................................................................................... 4 2.4.1 On-Design Parametric Analysis of the CJ 3000 ................................................................................................................ 4 2.4.2 Off-Design Analysis of the CJ 3000 .................................................................................................................................. 7 2.4.3 Engine Weight Analysis ..................................................................................................................................................... 9 2.5 Performance Comparison with the Baseline Engine Model and Requirements .......................................................................... 9 3 Constraint Analysis .............................................................................................................................................................................. 10 3.1 Determination of Mission Weights ............................................................................................................................................ 10 3.2 Drag Polar Estimation ................................................................................................................................................................ 11 3.3 Takeoff Distance Constraint ....................................................................................................................................................... 11 3.4 Landing Distance Constraint...................................................................................................................................................... 11 3.5 Climb Constraint ........................................................................................................................................................................ 11 3.6 Supersonic Cruise Constraint ..................................................................................................................................................... 11 3.7 Determination of Takeoff Wing Loading and Takeoff Thrust-to-Weight .................................................................................