Military Jet Engine Acquisition

Total Page:16

File Type:pdf, Size:1020Kb

Military Jet Engine Acquisition Military Jet Engine Acquisition Technology Basics and Cost-Estimating Methodology Obaid Younossi, Mark V. Arena, Richard M. Moore Mark Lorell, Joanna Mason, John C. Graser Prepared for the United States Air Force Approved for Public Release; Distribution Unlimited R Project AIR FORCE The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003. Further information may be obtained from the Strategic Planning Division, Directorate of Plans, Hq USAF. Library of Congress Cataloging-in-Publication Data Military jet engine acquisition : technology basics and cost-estimating methodology / Obaid Younossi ... [et al.]. p. cm. “MR-1596.” Includes bibliographical references. ISBN 0-8330-3282-8 (pbk.) 1. United States—Armed Forces—Procurement—Costs. 2. Airplanes— Motors—Costs. 3. Jet planes, Military—United States—Costs. 4. Jet engines— Costs. I. Younossi, Obaid. UG1123 .M54 2002 355.6'212'0973—dc21 2002014646 RAND is a nonprofit institution that helps improve policy and decisionmaking through research and analysis. RAND® is a registered trademark. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. © Copyright 2002 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. Published 2002 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1200 South Hayes Street, Arlington, VA 22202-5050 201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Email: [email protected] PREFACE In recent years, the affordability of weapon systems has become increasingly important to policymakers in the Department of Defense and U.S. Congress. Aerospace industry analysts and some government officials have asserted that government cost estimates are based on outdated methods that do not account for the latest technological innovations. The authors of this report present the results of a RAND research study to update the methods for estimating military jet engine costs and development time. This report is one of a series from a RAND Project AIR FORCE re- search project called “The Cost of Future Military Aircraft: Historical Cost Estimating Relationships and Cost Reduction Initiatives.” The purpose of the project, which is part of the Resource Management Program, is to improve the tools available to the U.S. Air Force for estimating the cost of future weapon systems. The authors provide insights into military engine technology, the military aircraft acquisi- tion process, and parametric cost-estimating methodologies. This study draws from databases from various Air Force, Navy, and military engine contractors and interviews with government experts from the Air Force Research Laboratory (AFRL), Aeronautical Sys- tems Center/Engineering (ASC/EN), Naval Air Systems Command, and industry experts from General Electric, Pratt and Whitney, and Rolls-Royce (North America). This report should be of interest to the cost-analysis community, the military aircraft acquisition community, and acquisition policy pro- fessionals in general. iii iv Military Jet Engine Acquisition Lieutenant General Stephen B. Plummer, SAF/AQ, sponsored this project. The project’s technical point of contact is Jay Jordan, techni- cal director of the Air Force Cost Analysis Agency. Other RAND Project AIR FORCE reports that address military aircraft cost-estimating issues are: • Military Airframe Acquisition Costs: The Effects of Lean Manufac- turing by Cynthia R. Cook and John C. Graser (MR-1325-AF). In this report, the authors examine the package of new tools and techniques known as “lean production” to determine if it would enable aircraft manufacturers to produce new weapon systems at costs below those predicted by historical cost-estimating models. • An Overview of Acquisition Reform Cost Savings Estimates by Mark A. Lorell and John C. Graser (MR-1329-AF). For this report, the authors examined the relevant literature and conducted in- terviews to determine whether estimates on the efficacy of ac- quisition reform measures are sufficiently robust to be of predic- tive value. • Military Airframe Costs: The Effects of Advanced Materials and Manufacturing Processes by Obaid Younossi, Michael Kennedy, and John C. Graser (MR-1370-AF). In this report, the authors ex- amine cost-estimating methodologies and focus on military air- frame materials and manufacturing processes. This report pro- vides cost estimators with factors that are useful in adjusting and creating estimates that are based on parametric cost-estimating methods. PROJECT AIR FORCE Project AIR FORCE, a division of RAND, is the Air Force Federally Funded Research and Development Center (FFRDC) for studies and analyses. It provides the Air Force with independent analyses of pol- icy alternatives affecting the development, employment, combat readiness, and support of current and future aerospace forces. Re- search is performed in four programs: Aerospace Force Develop- ment; Manpower, Personnel, and Training; Resource Management; and Strategy and Doctrine. CONTENTS Preface ........................................ iii Figures ........................................ ix Tables......................................... xi Summary ..................................... xiii Acknowledgments............................... xvii Acronyms ..................................... xix Chapter One INTRODUCTION ..............................1 Study Background and Purpose ....................1 Updating of Previous Study Methods ................2 The Organization and Content of This Report .........2 Part I: Engine Basics and Performance Parameters Chapter Two JET ENGINE BASICS, METRICS, AND TECHNOLOGICAL TRENDS .....................................9 Jet Engine Basics ...............................9 Jet Engine Parameters ..........................14 Approaches to Jet Engine Development .............22 Summary ...................................23 Chapter Three TRENDS IN TECHNOLOGICAL INNOVATION ........25 Programs and Initiatives ........................25 Component and Related Technical Advancements .....28 v vi Military Jet Engine Acquisition Low Observables ............................28 Integrally Bladed Rotors .......................29 Alternatives to Engine Lubrication Systems: Air Bearings or Magnetic Bearings ................30 Thrust-Vectoring Nozzles for High-Performance Tactical Aircraft ...........................31 Fluidic Nozzles for Afterburning Thrust-Vectoring Engines .................................32 Integral Starter-Generators and Electric Actuators ...32 Prognostics and Engine Health Management .......33 Advanced Fuels .............................34 Cooled Cooling Air ...........................35 Advanced Materials ..........................35 Ceramics and Ceramic Matrix Composites .........36 Intermetallics ......................... 36 Summary ...................................37 Part II: Data Analysis and Cost-Estimating Techniques Chapter Four AN OVERVIEW OF COST-ESTIMATING METHODS ....41 Bottom-Up Method ...........................41 Estimating by Analogy ..........................42 Estimating by Parametric Method .................42 Summary ...................................45 Chapter Five ESTIMATING PARAMETERS AND GATHERING DATA ......................................47 Estimating Parameters .........................48 Performance and Physical Parameters ............48 Technical Risk and Design Maturity Parameters .....48 Additional Measures of Technical Risk and Maturity ................................52 Criteria for Including Parameters ................55 Data Gathering ...............................56 Extent of Data ..............................57 Data Verification Process ......................59 Chapter Six STATISTICAL ANALYSIS ........................63 Development Cost............................. 64 Contents vii Development Time ............................75 Production Cost ..............................76 Normalizing the Data ........................76 Production Cost CER .........................79 Applying the Results: A Notional Example ...........81 Summary ...................................84 Chapter Seven CONCLUSIONS............................... 85 Appendix A. AN EXAMINATION OF THE TIME OF ARRIVAL METRIC ....................................87 B. AN OVERVIEW OF MILITARY JET ENGINE HISTORY ...97 C. AIRCRAFT TURBINE ENGINE DEVELOPMENT ...... 121 D. MODERN TACTICAL JET ENGINES ............... 137 Bibliography ................................... 147 FIGURES 2.1. Pratt & Whitney F100-220 Afterburning Turbofan ...12 2.2. Turbojet and Turbofan Thrust-Specific Fuel Consumption Trends Since 1950 ...............16 2.3. Turbojet and Turbofan Thrust-to-Weight Trends Since 1950................................ 17 2.4. Turbojet and Turbofan Overall Pressure Ratio Trends Since 1950................................ 18 2.5. Materials and Heat Transfer Effects on a Film-Cooled Turbine Blade .............................20 2.6. Turbojet and Turbofan Rotor Inlet Temperature Trends Since 1950 ..........................21 3.1. Integrally Bladed Rotor (Blisk) .................29 5.1. State-of-the-Art Metric for Fan Engine Rotor Inlet Temperature ............................. 50 5.2.
Recommended publications
  • Aircraft Engine Performance Study Using Flight Data Recorder Archives
    Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3.
    [Show full text]
  • The Luftwaffe Wasn't Alone
    PIONEER JETS OF WORLD WAR II THE LUFTWAFFE WASN’T ALONE BY BARRETT TILLMAN he history of technology is replete with Heinkel, which absorbed some Junkers engineers. Each fac tory a concept called “multiple independent opted for axial compressors. Ohain and Whittle, however, discovery.” Examples are the incandes- independently pursued centrifugal designs, and both encoun- cent lightbulb by the American inventor tered problems, even though both were ultimately successful. Thomas Edison and the British inventor Ohain's design powered the Heinkel He 178, the world's first Joseph Swan in 1879, and the computer by jet airplane, flown in August 1939. Whittle, less successful in Briton Alan Turing and Polish-American finding industrial support, did not fly his own engine until Emil Post in 1936. May 1941, when it powered Britain's first jet airplane: the TDuring the 1930s, on opposite sides of the English Chan- Gloster E.28/39. Even so, he could not manufacture his sub- nel, two gifted aviation designers worked toward the same sequent designs, which the Air Ministry handed off to Rover, goal. Royal Air Force (RAF) Pilot Officer Frank Whittle, a a car company, and subsequently to another auto and piston 23-year-old prodigy, envisioned a gas-turbine engine that aero-engine manufacturer: Rolls-Royce. might surpass the most powerful piston designs, and patented Ohain’s work detoured in 1942 with a dead-end diagonal his idea in 1930. centrifugal compressor. As Dr. Hallion notes, however, “Whit- Slightly later, after flying gliders and tle’s designs greatly influenced American savoring their smooth, vibration-free “Axial-flow engines turbojet development—a General Electric– flight, German physicist Hans von Ohain— were more difficult built derivative of a Whittle design powered who had earned a doctorate in 1935— to perfect but America's first jet airplane, the Bell XP-59A became intrigued with a propeller-less gas- produced more Airacomet, in October 1942.
    [Show full text]
  • Propulsion Controls at NASA Lewis
    Aircraft Turbine Engine Control Research at NASA Glenn Research Center Dr. Sanjay Garg Chief, Intelligent Control and Autonomy Branch Ph: (216) 433-2685 FAX: (216) 433-8990 email: [email protected] http://www.grc.nasa.gov/WWW/cdtb Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Outline – The Engine Control Problem • Safety and Operational Limits • State-of-the-Art Engine Control Logic Architecture – Historical Glenn Research Center Contributions • Early Stages of Turbine Engine Control (1945-1960s) • Maturation of Turbine Engine Control (1970-1990) – Advanced Engine Control Research • Recent Significant Accomplishments (1990- 2004) • Current Research (2004 onwards) – Conclusion Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Basic Engine Control Concept • Objective: Provide smooth, stable, and stall free operation of the engine via single input (PLA) with no throttle restrictions • Reliable and predictable throttle movement to thrust response • Issues: • Thrust cannot be measured • Changes in ambient condition and aircraft maneuvers cause distortion into the fan/compressor • Harsh operating environment – high temperatures and large vibrations • Safe operation – avoid stall, combustor blow out etc. • Need to provide long operating life – 20,000 hours • Engine components degrade with usage – need to have reliable performance throughout the operating life Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Basic Engine Control Concept • Since Thrust (T)
    [Show full text]
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Propulsion Systems for Aircraft. Aerospace Education II
    . DOCUMENT RESUME ED 111 621 SE 017 458 AUTHOR Mackin, T. E. TITLE Propulsion Systems for Aircraft. Aerospace Education II. INSTITUTION 'Air Univ., Maxwell AFB, Ala. Junior Reserve Office Training Corps.- PUB.DATE 73 NOTE 136p.; Colored drawings may not reproduce clearly. For the accompanying Instructor Handbook, see SE 017 459. This is a revised text for ED 068 292 EDRS PRICE, -MF-$0.76 HC.I$6.97 Plus' Postage DESCRIPTORS *Aerospace 'Education; *Aerospace Technology;'Aviation technology; Energy; *Engines; *Instructional-. Materials; *Physical. Sciences; Science Education: Secondary Education; Textbooks IDENTIFIERS *Air Force Junior ROTC ABSTRACT This is a revised text used for the Air Force ROTC _:_progralit._The main part of the book centers on the discussion -of the . engines in an airplane. After describing the terms and concepts of power, jets, and4rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why theseare not used in airplanes. The discussion of the carburetor is followed byan explanation of the lubrication system. The chapter on reaction engines describes the operation of,jets, with examples of different types of jet engines.(PS) . 4,,!It********************************************************************* * Documents acquired by, ERIC include many informal unpublished * materials not available from other souxces. ERIC makes every effort * * to obtain the best copravailable. nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document" Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original.
    [Show full text]
  • Spacecraft American Aerospace Controls
    Spacecraft For More Than 50 Years, Our Experience Is Your Assurance™ AAC Manufactures high-reliability voltage and current sensors for: Satellites UAVs Commercial Aircraft Missiles Underwater Vehicles Military Aircraft Launch Systems Armored Vehicles Ships Helicopters Industrial Equipment Rail AAC is a Woman-Owned Business and all parts are manufactured at AAC’s Farmingdale, NY location. American Aerospace Controls 570 Smith Street, Farmingdale NY 11735 Phone: +1 (631) 694-5100 – Fax: +1 (631) 694-6739 http://a-a-c.com ©American Aerospace Controls 10-2016 Aircraft-UAVs Rail AAC Quality and Engineering Industrial Defense For More Than 50 Years, Our Experience is Your Assurance™ AAC Engineering and Quality Depart- Since 1965, American Aerospace Controls has been manufacturing high reliability ments are here to work with you on the AC & DC current, voltage and frequency sensors, transducers and detectors. With design and qualification of your parts. an emphasis on engineering solutions and customer support, AAC has developed Our vast experience in space flight app- long-term relationships with some of the largest aerospace, defense, transit and industrial companies around the globe. lications allows us to offer insight into the design and requirements of each unique Space Application. AAC main- AAC in Space tains the highest standards in Quality and Production. AAC sensors have been used on numerous manned and unmanned spacecraft, satellite, rocket and Unmanned Aerial Vehicle (UAV) programs. AAC has been involved with space flight applications since the mid-1960s. AAC’s extensive From the Mercury Program in the 1960’s to today’s international commercial and knowledge and decades of experience in designing and manufacturing defense satellite systems, AAC engineers have helped design current and voltage transducers and detectors capable of providing high reliability in harsh remote detectors and transducers that are the best available.
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]
  • Wankel Powered Time to Climb World Record Attempt
    Wankel powered time to climb world record attempt Presentation at Aero Expo, Friedrichshafen, Germany April 19th, 2018 by Paul Lamar Several years ago an American rotor head by the name of Russ MacFarlane living in Newcastle Australia decided to build a Mazda rotary powered world record attempt time to climb aircraft. Russ was a long time subscriber to the Rotary Engine News Letter. A used flying Harmon Rocket home built aircraft was purchased and the Lycoming engine and instruments were removed and sold. The aircraft is very similar to a Van's RV4 with longer landing gear and shorter wings. Dan Grey, owner of Aviation FX in Santa Paula California was chosen to finish the project and get it flying. I was the project engineer. Dan is a 787 captain for UAL. The Wankel rotary has a much better power to weight ratio and power to size ratio than any automotive piston engine. It is also far more robust and will withstand ungodly amounts of turbo boost with out structural failure. Up to 100 inches of Mercury manifold pressure is possible. That translates to almost 1000 HP for an all aluminum turbo two rotor weighing less than 200 pounds. That is about four HP per pound of engine weight. Most aircraft engines are about one HP per pound of weight or worse. Any piston engine operating at aircraft power levels has a limited life. That is the reason for a TBO. The moving parts are magnafluxed for cracks at TBO. The cracks are caused by reversing stress on the crankshaft, connecting rods, pistons and valve parts.
    [Show full text]
  • 2. Afterburners
    2. AFTERBURNERS 2.1 Introduction The simple gas turbine cycle can be designed to have good performance characteristics at a particular operating or design point. However, a particu­ lar engine does not have the capability of producing a good performance for large ranges of thrust, an inflexibility that can lead to problems when the flight program for a particular vehicle is considered. For example, many airplanes require a larger thrust during takeoff and acceleration than they do at a cruise condition. Thus, if the engine is sized for takeoff and has its design point at this condition, the engine will be too large at cruise. The vehicle performance will be penalized at cruise for the poor off-design point operation of the engine components and for the larger weight of the engine. Similar problems arise when supersonic cruise vehicles are considered. The afterburning gas turbine cycle was an early attempt to avoid some of these problems. Afterburners or augmentation devices were first added to aircraft gas turbine engines to increase their thrust during takeoff or brief periods of acceleration and supersonic flight. The devices make use of the fact that, in a gas turbine engine, the maximum gas temperature at the turbine inlet is limited by structural considerations to values less than half the adiabatic flame temperature at the stoichiometric fuel-air ratio. As a result, the gas leaving the turbine contains most of its original concentration of oxygen. This oxygen can be burned with additional fuel in a secondary combustion chamber located downstream of the turbine where temperature constraints are relaxed.
    [Show full text]
  • Sir Frank Whittle
    Daniel Guggenheim Medal MEDALIST FOR 1946 For pioneering the development of turbojet propulsion of aircraft. SIR FRANK WHITTLE One day in July 1942, during World War II, a slightly-built young Englishman arrived in Washington on a highly confidential mission. So important was the equipment that accompanied him, so vital its secret, that he traveled under an assumed name and many who met him knew him only as “Frank.” He was in fact Frank Whittle, then a Wing Commander in the Royal Air Force; pioneer of the turbojet engine which was destined to make one of the most pro-found changes in aircraft propulsion since the beginning of powered flight. Born in Coventry, England, on June 1, 1907, Whittle entered Leamington College at the age of 11 on a scholarship won in elementary school. At the age of 16 he entered the Royal Air Force as an aircraft apprentice in the trade of metal rigger. At the final examination he was granted a cadetship at the Royal Air Force College, Cranwell. During 1928 and 1929, as a pilot officer, he spent fifteen months in the lllth Fighter Squadron and was then assigned to a flying instructors’ course at the Central Flying School, Wittering. It was during this course that the idea of using the turbine for jet propulsion first occurred to him. His patent application was filed in January, 1930. After one year as flying instructor and eighteen months as a floatplane and catapult testpilot, he was sent to Henlow in 1932 to take the Officers Engineering Course. The summer of 1934 saw him at Cambridge University (Peterhouse).
    [Show full text]
  • Aerospace Manufacturing a Growth Leader in Georgia
    Aerospace Manufacturing A Growth Leader in Georgia In this study: 9. Research Universities 10. GTRI and GTMI 1. Industry Snapshot 11. High-Tech Talent 3. A Top Growth Leader 12. Centers of Innovation 4. Industry Mix 13. World-Class Training Programs 6. Industry Wages and Occupational 15. Strong Partnerships and Ready Workforce Employment 16. Transportation Infrastructure 7. Pro-Business State 17. Powering Your Manufacturing Facility Community and Economic Development 8. Unionization 18. Aerospace Companies Aerospace Manufacturing A Growth Leader in Georgia Aerospace is defined as Aerospace Products and Parts Manufacturing as well as Other Support Activities for Air Transportation. Aerospace Georgia is the ideal home for aerospace include Pratt & Whitney’s expansion in companies with ¨¦§75 ¨¦§575 25+ employees companies. With the world’s most traveled Columbus in both 2016 and 2017, Meggitt «¬400 ¨¦§85 ¨¦§985 airport, eight regional airports, prominent Polymers & Composites’ expansion in military bases and accessibility to the Rockmart and MSB Group’s location in ¨¦§20 ¨¦§20 country’s fastest-growing major port, Savannah. For a complete list of new major ¨¦§85 Georgia’s aerospace industry serves a locations and expansions, see page 2. ¨¦§185 global marketplace. Georgia is also home to a highly-skilled workforce and world- ¨¦§16 Why Georgia for Aerospace? class technical expertise geared toward promoting the success of the aerospace • Highly skilled workers ¨¦§75 ¨¦§95 industry. Georgia’s business climate is • World-class technical expertise consistently ranked as one of the best • Renowned workforce training program in the country, with a business-friendly tax code and incentives that encourage • Increasing number of defense manufacturing growth for existing and personnel newly arriving companies.
    [Show full text]
  • Reaction Engines and High-Speed Propulsion
    Reaction Engines and High-Speed Propulsion Future In-Space Operations Seminar – August 7, 2019 Adam F. Dissel, Ph.D. President, Reaction Engines Inc. 1 Copyright © 2019 Reaction Engines Inc. After 60 years of Space Access…. Copyright © 2019 Reaction Engines Inc. …Some amazing things have been achieved Tangible benefits to everyday life Expansion of our understanding 3 Copyright © 2019 Reaction Engines Inc. Accessing Space – The Rocket Launch Vehicle The rocket launch vehicle (LV) has carried us far…however current launchers still remain: • Expensive • Low-Operability • Low-Reliability …Which increases the cost of space assets themselves and restricts growth of space market …little change in launch vehicle technology in almost 60 years… 1957 Today 4 Copyright © 2019 Reaction Engines Inc. Why All-Rocket LV’s Could Use Help All-rocket launch vehicles (LVs) are challenged by the physics that dictate performance thresholds…little improvement in key performance metrics have been for decades Mass Fraction Propulsion Efficiency – LH2 Example Reliability 1400000 Stage 2 Propellant 500 1.000 Propellent 450 1200000 Vehicle Structure 0.950 236997 400 1000000 350 0.900 300 800000 0.850 250 Launches 0.800 600000 320863 200 906099 150 400000 Orbital Successful 0.750 100 Hydrogen Vehicle Weights (lbs) Weights Vehicle 0.700 LV Reliability 454137 (seconds)Impulse 200000 50 Rocket Engines Hydrogen Rocket Specific Specific Rocket Hydrogen 0 0.650 0 48943 Falcon 9 777-300ER 1950 1960 1970 1980 1990 2000 2010 2020 1950 1960 1970 1980 1990 2000 2010 2020 Air-breathing enables systems with increased Engine efficiency is paramount but rocket Launch vehicle reliability has reached a plateau mass margin which yields high operability, technology has not achieved a breakthrough in and is still too low to support our vision of the reusability, and affordability decades future in space 5 Copyright © 2019 Reaction Engines Inc.
    [Show full text]