IUCN SSC Guidelines for Assessing Species' Vulnerability to Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

IUCN SSC Guidelines for Assessing Species' Vulnerability to Climate Change I s u CN s IsuCN s C Guidelines C Gu idelines for for assessing species’ Vulnerability to Climate Change a ss essing editors: Wendy B. Foden and Bruce e. Young s pe cies’ Vulnerability Climate Change to INTERNATIONAL UNION FOR CONSERVATION OF NATURE World Headquarters rue Mauverney 28 1196 Gland, switzerland tel: +41 22 999 0000 Fax: +41 22 999 0002 www.iucn.org Occasional Paper of the IUCN Species Survival Commission No. 59 IUCN Produced with support from About IUCN IUCN is a membership Union uniquely composed of both government and civil society organizations. It provides public, private and non-governmental organizations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together. Created in 1948, IUCN is now the world’s largest and most diverse environmental network, harnessing the knowledge, resources and reach of 1,300 member organizations and some 15,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards. IUCN provides a neutral space in which diverse stakeholders including governments, NGOs, scientists, businesses, local communities, indigenous peoples organizations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development. Working with many partners and supporters, IUCN implements a large and diverse portfolio of conservation projects worldwide. Combining the latest science with the traditional knowledge of local communities, these projects work to reverse habitat loss, restore ecosystems and improve people’s well-being. www.iucn.org IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change Occasional Paper of the IUCN Species Survival Commission No. 59 IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change Editors: Wendy B. Foden and Bruce E. Young Produced with support from The designation of geographical entities in this document, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the organisations of the authors and editors of the document concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN, Cambridge, UK and Gland, Switzerland Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Foden, W.B. and Young, B.E. (eds.) (2016). IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No. 59. Cambridge, UK and Gland, Switzerland: IUCN Species Survival Commission. x+114pp. Suggested chapter citation (example) Huntley, B., Foden, W.B., Smith, A., Platts, P., Watson, J. and Garcia, R.A. (2016). Chapter 5. Using CCVAs and interpreting their results. In W.B. Foden and B.E. Young, editors. IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No. 59. Gland, Switzerland and Cambridge, UK. pp 33–48. Available online at: http://www.iucn.org/theme/species/publications/guidelines and www.iucn-ccsg.org ISBN: 978-2-8317-1802-6 DOI: http://dx.doi.org/10.2305/IUCN.CH.2016.SSC-OP.59.en Cover photo: Polar Bear near Svalbard, Norway. © Josef Friedhuber, Getty Images. All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should not be reproduced or used in other contexts without written permission from the copyright holder. Layout by: NatureBureau Printed by: Langham Press Available from: IUCN (International Union for Conservation of Nature), Global Species Programme, 28 Rue Mauverney, 1196 Gland, Switzerland. Tel: + 41 22 999 0000, Fax: + 44 22 999 0002, www.iucn.org/resources/publications iv Contents Working group ........................................................................................................................................................................... viii Editors and authors ....................................................................................................................................................................... ix Acknowledgements ........................................................................................................................................................................ x 1. Introduction ...........................................................................................................................................................................1 2. Setting the scene ....................................................................................................................................................................5 2.1 Definitions of commonly used terms ................................................................................................................................ 5 2.2 Climate change vulnerability assessment approaches ......................................................................................................... 8 2.2.1 Correlative approaches ............................................................................................................................................. 8 2.2.2 Trait-based approaches ............................................................................................................................................. 9 2.2.3 Mechanistic approaches ........................................................................................................................................... 9 2.2.4 Combined approaches ........................................................................................................................................... 10 2.3 Metrics for estimating climate change vulnerability .......................................................................................................... 11 2.3.1 Vulnerability indices and other relative scoring systems ........................................................................................ 11 2.3.2 Range changes ....................................................................................................................................................... 11 2.3.4 Population changes ................................................................................................................................................ 11 2.3.5 Extinction probabilities .......................................................................................................................................... 11 3. Setting climate change vulnerability assessment goals and objectives ............................................................................13 3.1 Defining your goal .......................................................................................................................................................... 13 3.1.1 Why are you carrying out this CCVA? ................................................................................................................... 13 3.1.2 Who is your audience? ........................................................................................................................................... 13 3.1.3 Which decisions do you hope to influence using the results? ................................................................................. 13 3.2 Defining your objectives ................................................................................................................................................. 14 3.2.1 Selecting a taxonomic focus ................................................................................................................................... 14 3.2.2 Selecting a spatial focus ......................................................................................................................................... 14 3.2.3 Selecting a timeframe ............................................................................................................................................ 14 4. Selecting and evaluating CCVA approaches and methods ............................................................................................... 17 4.1 Steps for selecting your CCVA approach and methods ................................................................................................... 17 Step 1. Identify and evaluate existing CCVAs ................................................................................................................ 17 Step 2. Identify CCVA approaches that meet your objectives ......................................................................................... 18 Step 3. Identify the CCVA approaches for which you have sufficient resources .............................................................. 19 Step
Recommended publications
  • 1- Checklist of New Mexico
    CHECKLIST OF NEW MEXICO BIRD SPECIES Sartor O. Williams III Secretary, New Mexico Bird Records Committee [email protected] 1 January 2021 This checklist contains all the species of birds that have been verified by specimen, photograph, or audio recording in New Mexico and have been accepted as valid by the New Mexico Bird Records Committee. Nomenclature, taxonomy, sequence, and spelling follow the seventh edition of the American Ornithological Society’s [formerly American Ornithologists’ Union, or AOU] Check-list of North American Birds (1998) as amended through the 61st Supplement (Auk 2020, Vol. 137; 24 pp.). Included are all families and species of birds known to occur (or have occurred) in New Mexico in the historical period (1540 to present). Through 1 January 2021, 549 species representing 68 families have been verified in New Mexico, including five established non-native species (identified as “Introduced”) and three species now extirpated (identified as “Extirpated”). Family ANATIDAE: Ducks, Geese, Swans Black-bellied Whistling-Duck, Dendrocygna autumnalis Fulvous Whistling-Duck, Dendrocygna bicolor Snow Goose, Anser caerulescens Ross’s Goose, Anser rossii Greater White-fronted Goose, Anser albifrons Brant, Branta bernicla Cackling Goose, Branta hutchinsii Canada Goose, Branta canadensis Trumpeter Swan, Cygnus buccinator Tundra Swan, Cygnus columbianus Wood Duck, Aix sponsa Garganey, Spatula querquedula Blue-winged Teal, Spatula discors Cinnamon Teal, Spatula cyanoptera Northern Shoveler, Spatula clypeata Gadwall, Mareca
    [Show full text]
  • Production and Survival of the Verdin
    PRODUCTION AND SURVIVAL OF THE VERDIN GEORGE T. AUSTIN A review of avian demography (Ricklefs 1973) demonstrates the dearth of knowledge on this subject. Although certain demographic parameters are relatively well known for a wide variety of species, data are generally lacking for their seasonal, annual, and geographic variability. These, including population densities, nesting season, clutch size, and nesting success, are straight forward and can be obtained with relative ease. Survival and annual recruitment are also of interest, but are difficult to determine under field conditions. If first year individuals (I) can be distinguished from adults (A), the ratio of the 2 can be used to calculate annual mortality and recruitment of first year birds into the breeding population given the assumptions of constant population size and no collecting bias. In many species, the first prebasic molt is incomplete (e.g., Dwight 1900)) providing a basis of distinguishing first year birds from adults. Although it has long been recognized that I/A ratios can be used to determine annual survival (Emlen 1940, Snow 1956)) this method has not been widely used. The Verdin (Auriparus fhiceps) is an ideal species for a demographic study as first year birds can be distinguished from adults through at least March (Austin and Rea 1971), the species is nonmigratory and relatively sedentary, and general aspects of its life history are known (Moore 1965, Taylor 1967, 1971, Austin 1976). In this paper, I will analyze the demo- graphic data available for the Verdin from the literature and my own studies in Arizona and Nevada. Geographical and/or seasonal trends will be exam- ined and estimates of mortality and annual recruitment will be presented.
    [Show full text]
  • Comparative Life History of the South Temperate Cape Penduline Tit (Anthoscopus Minutus) and North Temperate Remizidae Species
    J Ornithol DOI 10.1007/s10336-016-1417-4 ORIGINAL ARTICLE Comparative life history of the south temperate Cape Penduline Tit (Anthoscopus minutus) and north temperate Remizidae species 1,2 1 1 Penn Lloyd • Bernhard D. Frauenknecht • Morne´ A. du Plessis • Thomas E. Martin3 Received: 19 June 2016 / Revised: 22 October 2016 / Accepted: 14 November 2016 Ó Dt. Ornithologen-Gesellschaft e.V. 2016 Abstract We studied the breeding biology of the south parental nestling care. Consequently, in comparison to the temperate Cape Penduline Tit (Anthoscopus minutus)in other two species, the Cape Penduline Tit exhibits greater order to compare its life history traits with those of related nest attentiveness during incubation, a similar per-nestling north temperate members of the family Remizidae, namely feeding rate and greater post-fledging survival. Its rela- the Eurasian Penduline Tit (Remiz pendulinus) and the tively large clutch size, high parental investment and Verdin (Auriparus flaviceps). We used this comparison to associated high adult mortality in a less seasonal environ- test key predictions of three hypotheses thought to explain ment are consistent with key predictions of the adult latitudinal variation in life histories among bird species— mortality hypothesis but not with key predictions of the the seasonality and food limitation hypothesis, nest pre- seasonality and food limitation hypothesis in explaining dation hypothesis and adult mortality hypothesis. Contrary life history variation among Remizidae species. These to the general pattern of smaller clutch size and lower adult results add to a growing body of evidence of the impor- mortality among south-temperate birds living in less sea- tance of age-specific mortality in shaping life history sonal environments, the Cape Penduline Tit has a clutch evolution.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA Mark N. Hutchinson & Stephen C. Donnellan 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA This review summarises the current hypotheses of the origin, antiquity and history of the order Squamata, the dominant living reptile group which comprises the lizards, snakes and worm-lizards. The primary concern here is with the broad relationships and origins of the major taxa rather than with local distributional or phylogenetic patterns within Australia. In our review of the phylogenetic hypotheses, where possible we refer principally to data sets that have been analysed by cladistic methods. Analyses based on anatomical morphological data sets are integrated with the results of karyotypic and biochemical data sets. A persistent theme of this chapter is that for most families there are few cladistically analysed morphological data, and karyotypic or biochemical data sets are limited or unavailable. Biogeographic study, especially historical biogeography, cannot proceed unless both phylogenetic data are available for the taxa and geological data are available for the physical environment. Again, the reader will find that geological data are very uncertain regarding the degree and timing of the isolation of the Australian continent from Asia and Antarctica. In most cases, therefore, conclusions should be regarded very cautiously. The number of squamate families in Australia is low. Five of approximately fifteen lizard families and five or six of eleven snake families occur in the region; amphisbaenians are absent. Opinions vary concerning the actual number of families recognised in the Australian fauna, depending on whether the Pygopodidae are regarded as distinct from the Gekkonidae, and whether sea snakes, Hydrophiidae and Laticaudidae, are recognised as separate from the Elapidae.
    [Show full text]
  • Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
    Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M.
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]
  • PRELIMINARY STUDY on the DISTRIBUTION and CONSERVATION STATUS of the EAST SUMATRAN BANDED LANGUR Presbytis Femoralis Percura in RIAU PROVINCE, SUMATRA, INDONESIA
    25 Asian Primates Journal 8(1), 2019 PRELIMINARY STUDY ON THE DISTRIBUTION AND CONSERVATION STATUS OF THE EAST SUMATRAN BANDED LANGUR Presbytis femoralis percura IN RIAU PROVINCE, SUMATRA, INDONESIA Rizaldi1, Kurnia Ilham1, Irvan Prasetio1, Zan Hui Lee2, Sabrina Jabbar3, Andie Ang3* 1 Department of Biology, Andalas University, Padang, West Sumatra 25163, Indonesia. E-mail: [email protected], E-mail: [email protected], E-mail: [email protected] 2 Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia. Email: [email protected] 3 Raffles’ Banded Langur Working Group, Wildlife Reserves Singapore Conservation Fund, Singapore 729826. E-mail: [email protected], E-mail: [email protected] * Corresponding author ABSTRACT The East Sumatran Banded Langur Presbytis femoralis percura is a very little known colobine primate, endemic to Riau Province in Sumatra. Nothing much is known of its population size and distribution, except that it was confined in the area between Rokan and Siak rivers. We carried out an eight-day reconnaissance field trip and determined the presence of P. f. percura in seven locations in Riau Province, which extends south of the Siak River, beyond its previously reported range. We also obtained probably the first publicly available full-frontal coloured photos of the taxon in the wild, and photos of the Riau Pale-thighed Langur P. siamensis cana. Considering that the known populations of P. f. percura are restricted to small and isolated forest remnants, and that the remaining forests are rapidly being converted into oil palm plantations, we propose to change the listing of P.
    [Show full text]
  • Integrating Pedestrian Needs and Bird Habitat in Trail Design Along Secondary Watercourses in Tucson, Az
    Integrating Pedestrian Needs and Bird Habitat in Trial Design Along Secondary Watercourses in Tucson, AZ Item Type text; Electronic Thesis Authors Patton, Jennifer Louise Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 10:17:47 Link to Item http://hdl.handle.net/10150/190198 INTEGRATING PEDESTRIAN NEEDS AND BIRD HABITAT IN TRAIL DESIGN ALONG SECONDARY WATERCOURSES IN TUCSON, AZ by Jennifer Patton A Thesis Submitted to the Faculty of the COLLEGE OF ARCHITECTURE AND LANDSCAPE ARCHITECTURE In Partial Fulfillment of the Requirements For the Degree of MASTER OF LANDSCAPE ARCHITECTURE In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 6 2 ACKNOWLEDGEMENTS Many thanks to Dr. Margaret Livingston, my thesis advisor, for her direction, encouragement, and inspiration. This thesis evolved from a Game and Fish Grant awarded to Margaret, and I am pleased to have been asked to work towards its fulfillment. Thanks to Oscar Blazquez for his interest and help along the way. And much gratitude to Rachel McCaffrey for her time, suggestions, and willingness to share Tucson Bird Count data. I also thank Dr. Mintai Kim for his help with GIS and suggesting ways to best evaluate data. 3 DEDICATION To my husband, Ben, who has been a constant companion and inspiration throughout this process. Thank you for making time slow down, and drawing my eye to things I would otherwise not notice.
    [Show full text]
  • Verdin and Penduline Tits — Family Remizidae 401
    Verdin and Penduline Tits — Family Remizidae 401 Verdin and Penduline Tits — Family Remizidae Verdin Auriparus flaviceps Perhaps no bird is more characteristic of the Anza– Borrego Desert than the Verdin. Wherever thorny trees are common so is this little gray bird with a yellow head. It is a permanent resident, the birds maintaining their unique globular nests for roost- ing year round. The nests, placed conspicuously in the outer branches of spiny shrubs or trees, are sometimes more easily found than the birds them- selves. If suitable nest sites are sparse, the Verdin is rare, and in desert scrub consisting of only creosote bushes or low halophytes it is absent. Breeding distribution: The Verdin’s breeding distri- bution in San Diego County is coextensive with the Anza–Borrego Desert. The birds occur on the desert slope wherever one finds the thorny shrubs in which they nest. The range extends west to Alder Canyon (C21; two juveniles 19–20 June 2001, P. D. Jorgensen), just north Photo by Anthony Mercieca 402 Verdin and Penduline Tits — Family Remizidae building the nest in spiny plants. The smoketree was the most fre- quent site of Verdin nests atlas observers reported; other sites noted were catclaw, desert iron- wood, mesquite, desert lavender, desert apricot, and teddy bear cholla. In the Imperial Valley, where native desert shrubs are now rare, Verdins nest common- ly in the exotic saltcedar, but in the Anza–Borrego Desert they preserve their primitive prefer- ence for spiny native species. Verdins build and maintain nests for roosting year round, so the nests alone are no clue to the species’ breeding cycle.
    [Show full text]
  • Status of the World's Sea Snakes IUCN Red List Assessment
    Status of the World’s Sea Snakes IUCN Red List Assessment Final Report August 2009 IUCN Global Red List Assessment of Sea Snakes Workshop: 11‐14th February 2009 Brisbane, Australia Contact: Suzanne R Livingstone, PhD, Global Marine Species Assessment Email: [email protected] OR [email protected] Website: http://www.sci.odu.edu/gmsa/ 1. Contents Page 1. Contents 2 2. Acknowledgments 3 3. Project Rationale 3 4. Background 4 4.1. The Red List of Threatened Species 4 4.2. Global Marine Species Assessment 5 5. Methods 5 5.1. Data collection and IUCN Red List assessment process 5 5.2 IUCN Red List Categories 6 6. Results and Discussion 7 6.1. Sea snakes 7 6.2. Homalopsids 8 7. Conclusions 9 8. Reporting and outcomes 10 8.1. Results on the IUCN Red List of Threatened Species 10 8.2. Peer‐reviewed publications 10 8.3. Nominations for Australia’s EPBC Act 11 8.4. Creation of the IUCN Sea Snake Specialist Group 12 9. References 13 10. Appendices Appendix 1 ‐ workshop participants 14 Appendix 2 ‐ IUCN staff and project partners 15 Appendix 3 ‐ Sea snake species list and Red List Category 16 Appendix 4 ‐ Homalopsid snake species and Red List Category 18 2 2. Acknowledgements We would like to thank Dr Colin Limpus (Australian Government Environmental Protection Agency) and the International Sea Turtle Symposium committee for logistical and organizational support for the workshop. Special thanks to Jenny Chapman (EPA) and Chloe Schauble (ISTS). Thank you also to Dr Gordon Guymer (Chief Botanist – Director of Herbarium) for accommodating us at the Herbarium in the Brisbane Botanical Gardens.
    [Show full text]