It's Just a Phase!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHEMISTRY ASSIGNMENT CLASS VII CHAP 3, Part – II Elements , Compounds and Mixture ( Separation Techniques of Mixtures )
CHEMISTRY ASSIGNMENT CLASS VII CHAP 3, Part – II Elements , compounds and Mixture ( Separation Techniques of Mixtures ) Mixture can be separated into its constituent by various method. Seperation technique totally depend upon the nature of the constituent. Q1. Describe a method to separate solid to solid mixture . Ans . We can separate solid to solid mixture by using Solvent Method , when one of the component is soluble. In this method we use a appropriate solvent to dissolve one of the component of the mixture .After that we filter the solute .The soluble solute get filtered from the insoluble solid. The filtered solution can be further separated from the solvent by heating or keeping in the sun.In this way we can separate out the two mixture. Q2. Differentiate between Solute and Solvent. Ans Solute Solvent The solid that is dissolved or spread evenly in the The liquid in which solute is dissolved is called solvent is called Solute . solvent. e.g. In sugar syrup sugar is the solute. e.g. In sugar syrup water is the solvent Q3. Name the various method used to separate solid to liquid mixture. Ans. The solid to liquid mixtures can be separated by various method – i. Evaporation ii. Filtration iii. Distillation Q4. What do you mean by filtration ? Draw a well labelled diagram to show filtration. Give one example too. Ans. Filtration is the simplest method to separate mixture when it contain one insoluble solid component and a liquid component by using a filter paper. The clear liquid that passes through the filterpaper is called Filtrate . -
Experiment 2 — Distillation and Gas Chromatography
Chem 21 Fall 2009 Experiment 2 — Distillation and Gas Chromatography _____________________________________________________________________________ Pre-lab preparation (1) Read the supplemental material on distillation theory and techniques from Zubrick, The Organic Chem Lab Survival Manual, and the section on Gas Chromatography from Fessenden, Fessenden, and Feist, Organic Laboratory Techniques, then read this handout carefully. (2) In your notebook, write a short paragraph summarizing what you will be doing in this experiment and what you hope to learn about the efficiencies of the distillation techniques. (3) Sketch the apparatus for the simple and fractional distillations. Your set-up will look much like that shown on p 198 of Zubrick, except that yours will have a simple drip tip in place of the more standard vacuum adaptor. (4) Look up the structures and relevant physical data for the two compounds you will be using. What data are relevant? Read the procedure, think about the data analysis, and decide what you need. (5) Since you have the necessary data, calculate the log of the volatility factor (log α) that you will need for the theoretical plate calculation. Distillation has been used since antiquity to separate the components of mixtures. In one form or another, distillation is used in the manufacture of perfumes, flavorings, liquors, and a variety of other organic chemicals. One of its most important modern applications is in refining crude oil to make fuels, lubricants, and other petrochemicals. The first step in the refining process is separation of crude petroleum into various hydrocarbon fractions by distillation through huge fractionating columns, called distillation towers, that are hundreds of feet high. -
Dry Ice Blasting
Dry Ice Blasting The Dry Ice Blasting method can reduce the overall time spent on sanding, scraping or scrub- bing with solvents, acids and other cleaning agents. With no secondary waste generation there is no need for disposal of hazardous waste. This saves time and money while increasing worker safety. Online Cleaning of Fin Dry Ice Blasting can safely and effectively clean contaminants that plug and foul fin fan heat Fan Heat Exchangers exchangers. Dry Ice Blasting can be performed while the system is online so no costly downtime is required. Cleaning will increase airflow which will lower approach temperatures and increase efficiency. The dry nature of the process will mitigate the potential for harming motors, bearings or instrumentation. Other Applications May The demand to keep the equipment running often leads to deferred cleaning and maintenance, Also Benefit reduced efficiency and in some cases, outages caused by flashover. Dry ice blast cleaning can provide a non-conductive cleaning process that may allow equipment to be cleaned in-place without cool down or disassembly. This includes generators, turbines, stators, rotors, compressors and boilers. Industrial cleaning applications exist in markets as diverse as food & beverage equipment clean-up, pharmaceutical production, aerospace surfaces & components, and foundry core- making machinery. A Leading Supplier of Working with Linde Services offers you product reliability from an industry leader in carbon Carbon Dioxide dioxide applications. This includes: → A focus on safety -
NASA Spacecraft Observes Further Evidence of Dry Ice Gullies on Mars 11 July 2014, by Guy Webster
NASA spacecraft observes further evidence of dry ice gullies on Mars 11 July 2014, by Guy Webster "As recently as five years ago, I thought the gullies on Mars indicated activity of liquid water," said lead author Colin Dundas of the U.S. Geological Survey's Astrogeology Science Center in Flagstaff, Arizona. "We were able to get many more observations, and as we started to see more activity and pin down the timing of gully formation and change, we saw that the activity occurs in winter." Dundas and collaborators used the High Resolution Imaging Science Experiment (HiRISE) camera on MRO to examine gullies at 356 sites on Mars, beginning in 2006. Thirty-eight of the sites showed active gully formation, such as new channel segments and increased deposits at the downhill end of some gullies. Using dated before-and-after images, researchers determined the timing of this activity coincided with This pair of images covers one of the hundreds of sites seasonal carbon-dioxide frost and temperatures on Mars where researchers have repeatedly used the that would not have allowed for liquid water. High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter to study changes in gullies on slopes. Credit: NASA/JPL- Frozen carbon dioxide, commonly called dry ice, Caltech/Univ. of Arizona does not exist naturally on Earth, but is plentiful on Mars. It has been linked to active processes on Mars such as carbon dioxide gas geysers and lines on sand dunes plowed by blocks of dry ice. One Repeated high-resolution observations made by mechanism by which carbon-dioxide frost might NASA's Mars Reconnaissance Orbiter (MRO) drive gully flows is by gas that is sublimating from indicate the gullies on Mars' surface are primarily the frost providing lubrication for dry material to formed by the seasonal freezing of carbon dioxide, flow. -
Heterogeneous Azeotropic Distillation
PROSIMPLUS APPLICATION EXAMPLE HETEROGENEOUS AZEOTROPIC DISTILLATION EXAMPLE PURPOSE This example illustrates a high purity separation process of an azeotropic mixture (ethanol-water) through heterogeneous azeotropic distillation. This process includes distillation columns. Additionally these rigorous multi- stage separation modules are part of a recycling stream, demonstrating the efficiency of ProSimPlus convergence methods. Specifications are set on output streams in order to insure the required purity. This example illustrates the way to set "non-standard" specifications in the multi-stage separation modules. Three phase calculations (vapor-liquid- liquid) are done with the taken into account of possible liquid phase splitting. ACCESS Free-Internet Restricted to ProSim clients Restricted Confidential CORRESPONDING PROSIMPLUS FILE PSPS_EX_EN-Heterogeneous-Azeotropic-Distillation.pmp3 . Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example. Copyright © 2009 ProSim, Labège, France - All rights reserved www.prosim.net Heterogeneous azeotropic distillation Version: March, 2009 Page: 2 / 12 TABLE OF CONTENTS 1. PROCESS MODELING 3 1.1. Process description 3 1.2. Process flowsheet 5 1.3. Specifications 6 1.4. Components 6 1.5. Thermodynamic model 7 1.6. Operating conditions 7 1.7. "Hints and Tips" 9 2. RESULTS 9 2.1. Comments on results 9 2.2. Mass and energy balances 10 2.3. -
Drinking Water Treatment: Distillation Bruce I
® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G1493 (Revised December 2013) Drinking Water Treatment: Distillation Bruce I. Dvorak, Extension Environmental Engineering Specialist Sharon O. Skipton, Extension Water Quality Educator water as it is boiled in the distiller. Such compounds will not Homeowners are increasingly concerned about be completely removed unless another process is used prior contaminants in their water supply that may affect to condensation. See the section in this NebGuide on treat- health or cause taste, odor, or nuisance problems. Dis- ment principles for further discussion of ways distillers may tillation, one of the oldest methods of water treatment, remove VOCs. is an effective method for reducing many impurities The boiling process during distillation generally inacti- found in water. This NebGuide discusses the process vates microorganisms. However, if the distiller is idle for an and related equipment used for household drinking extended period, bacteria can be reintroduced from the outlet water treatment by distillation. spigot and may recontaminate the water. Water Testing Contaminants Removed from Water by Distillation Regardless of which water treatment system is con- Distillation can remove nearly all impurities from sidered, the water first should be tested to determine what water. Compounds removed include sodium, hardness substances are present. Public water systems routinely test compounds such as calcium and magnesium, other dis- for contaminants. Water utilities are required to publish solved solids (including iron and manganese), fluoride, Consumer Confidence Reports (CCRs), which inform con- and nitrate. Operated properly, it effectively inactivates sumers on the source of the water, contaminants present, microorganisms such as bacteria, viruses, and protozoan potential health effects of those contaminants, and methods cysts (though protozoan cysts are not likely to be found in of treatment used by the utility. -
ACIDS and BASES Unique Properties of Dry Ice
ACIDS AND BASES Unique Properties of Dry Ice OVERVIEW: Students observe properties of dry ice. For example, whether dry ice can change the color of a basic solution that contains an indicator OBJECTIVE: To review basic principles of matter and how this relates to every day objects. Develop concepts and nature of acids and bases and relate this to common household items. GRADE LEVEL: 6-7 OHIO STANDARDS: PS7 Grade 7 Physical Science: The properties of matter are determined by the arrangement of atoms. TIME: 30-45 minutes VOCABULARY: acid, base, organic, inorganic, indicator, pH, hydrogen ion, molecule, CO2, dry ice MATERIALS: (per group of 5-6 students) *Block of dry ice *8 Beakers—600 ml tall with wide mouth *1 Graduated cylinder-10ml *1 stirring rod IMPORTANT: *Gloves.—cotton and latex Read all instructions before *Safety glasses proceeding *Indicator Solutions *pH paper *Balloons *1 pint Ammonia * 1 pint Vinegar DEVELOPED BY: Bob Maloney, Analytical Chemist, BP Chemicals INDICATOR SOLUTIONS: 100-250 ml of one or more of the following: *Grape juice concentrate *Cherry Juice *Beet Juice *Red Cabbage Juice VARIATION: 10-15 ml of one of the following: Thymolphthalein solution: (To prepare 100 ml of stock solution, dissolve 0.04g of thymolphthalein in 50 ml of 95% ethyl alcohol (ethanol) and dilute the resulting solution to 100ml with water. Alternatively, “Disappearing Ink” which is sold in toy stores can be used). Phenolphthalein solution (To prepare 10ml stock solution, dissolve 0.05g phenolphthalein in 50 ml of 95% ethyl alcohol and dilute the resulting solution to 100ml with water. Alternatively, crush two or three EX-Lax tablets and cover with rubbing alcohol and mix. -
Cryocoolers and Heat Exchangers Special Feature
SPECIAL FEATURE – CRYOCOOLERS AND HEAT EXCHANGERS SPECIAL FEATURE evolve from here? Whilst Brouwers “There is more need for path cleanliness. In focus... said that the company’s plans were cryogenic cold at a certain Awe confirmed that CAS has also confidential, he did say that it sees noticed a drastic upturn in demand possibilities in the market in terms of place, at a certain moment, for heat exchanger technology in the Cryocoolers and heat exchangers systems with a higher output compared at a certain time...” LNG sector, highlighting, “Natural with the output that its technology gas processors are morphing from By Rhea Healy can provide at the moment. “That markets, as well as customer bases in the successfully generating and capturing might be a combination of increasing LNG sector. these materials to rolling them out to the hether it’s heating media up the output of our existing technology Jeffery Awe, Marketing Director at marketplace on a massive scale. As the or cooling it down, time is of and systems, but it will also be in CAS, confirmed that the LNG sector is LNG and compressed natural gas (CNG) the essence in the industrial combination with the development of currently the most ‘vibrant’ in terms of industries continue to expand, we’d like gas industry. Companies and new systems. Ultimately, our main goal demand for the company’s technology, to parallel that growth trajectory in our Wengineers need gases and liquid gases to is to be recognised by our customers as along with its traditional industrial gas CAST-X line. -
NASA Observations Point to 'Dry Ice' Snowfall on Mars 12 September 2012
NASA observations point to 'dry ice' snowfall on Mars 12 September 2012 "These are the first definitive detections of carbon- dioxide snow clouds," said the report's lead author, Paul Hayne of NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We firmly establish the clouds are composed of carbon dioxide—flakes of Martian air—and they are thick enough to result in snowfall accumulation at the surface." The snowfalls occurred from clouds around the Red Planet's south pole in winter. The presence of carbon-dioxide ice in Mars' seasonal and residual southern polar caps has been known for decades. Also, NASA's Phoenix Lander mission in 2008 observed falling water-ice snow on northern Mars. Hayne and six co-authors analyzed data gained by looking at clouds straight overhead and sideways Carbon-Dioxide Snowfall on Mars. Observations by with the Mars Climate Sounder, one of six NASA's Mars Reconnaissance Orbiter have detected instruments on the Mars Reconnaissance Orbiter. carbon-dioxide snow clouds on Mars and evidence of carbon-dioxide snow falling to the surface. Deposits of This instrument records brightness in nine small particles of carbon-dioxide ice are formed by wavebands of visible and infrared light as a way to snowfall from carbon-dioxide clouds. This map shows examine particles and gases in the Martian the distribution of small-grain carbon-dioxide ice deposits atmosphere. The analysis was conducted while formed by snowfall over the south polar cap of Mars. It is Hayne was a post-doctoral fellow at the California based on infrared measurements by the Mars Climate Institute of Technology in Pasadena. -
Distillation1
Distillation1 Distillation is a commonly used method for purifying liquids and separating mixtures of liquids into their individual components. Familiar examples include the distillation of crude fermentation broths into alcoholic spirits such as gin and vodka, and the fractionation of crude oil into useful products such as gasoline and heating oil. In the organic lab, distillation is used for purifying solvents and liquid reaction products. In analyzing a distillation, how do we know the real composition of each collected component? In this lab, we will introduce gas chromatography (GC), which will tell us how pure each fraction we collected is. After the distillation of your unknown is complete, you will analyze both components via GC. See page 11 and 12 for a light discussion on GC. To understand distillation, first consider what happens upon heating a liquid. At any temperature, some molecules of a liquid possess enough kinetic energy to escape into the vapor phase (evaporation) and some of the molecules in the vapor phase return to the liquid (condensation). An equilibrium is set up, with molecules going back and forth between liquid and vapor. At higher temperatures, more molecules possess enough kinetic energy to escape, which results in a greater number of molecules being present in the vapor phase. If the liquid is placed into a closed container with a pressure gauge attached, one can obtain a quantitative measure of the degree of vaporization. This pressure is defined as the vapor pressure of the compound, which can be measured at different temperatures. Consider heating cyclohexane, a liquid hydrocarbon, and measuring its vapor pressure at different temperatures. -
Simulation of the Open Sky Seawater Distillation
Green and Sustainable Chemistry, 2013, 3, 68-88 http://dx.doi.org/10.4236/gsc.2013.32012 Published Online May 2013 (http://www.scirp.org/journal/gsc) The Best Available Technology of Water/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation Djamel Ghernaout Chemical Engineering Department, Saad Dahlab University of Blida, Blida, Algeria Email: [email protected] Received March 16, 2013; revised April 18, 2013; accepted April 26, 2013 Copyright © 2013 Djamel Ghernaout. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT This review suggests the concept of the best available technology of water/wastewater treatment and seawater desalina- tion which is in fact a simulation of the seawater distillation at the open sky: coagulation in salty water aerated basin/ coagulation using seawater as coagulant solution with distillation using stored solar energy followed by waterfall on a natural mountain. This natural, green, and technico-economical technology is composed of three steps: the first one is coagulation which may be achieved: 1) in salty water aerated basin (air stripping, AS; dissolved air flotation, DAF) where the raw water is “diluted” in seawater; or 2) in “conventional” coagulation using seawater as coagulant solution instead of alum/ferric salts. The first option seems to be more natural as it simulates river water dilution in seawater and the second one is more practical for “rapid” water consummation. For colloids and microorganisms’ removal, double- layer compression and charge neutralisation, as main coagulation and disinfection mechanisms, would be involved in the first and second options, respectively. -
Cryogen & Dry-Ice Safety Fact Sheet
Cryogen & Dry-Ice Safety Fact Sheet Definitions Cryogen: A liquefied gas with a boiling point typically below 77 K (-196°C). The most commonly cryogens used at the Penn are liquid nitrogen and liquid helium. Dewar: an insulated container used to store and transport liquefied gases. It is insulated by a vacuum between its two walls and is equipped with pressure relief device(s). Dry Ice: Frozen carbon dioxide. Dry ice sublimates from a solid to a gas at room temperature. Pressure-relief devices: Devices on cryogenic systems in place to relieve pressure build up. These devices may be: (1) valves which open to relieve pressure, (2) bursting discs that break to relieve pressure and must be replaced or (3) loose-fitting lids on Dewar flasks. (1) (2) (3) Hazards Associated with Cryogens & Dry Ice 1. Burns: Skin contact with a cryogen, dry ice or non-insulated equipment parts can cause cold burn and frostbite. Eye contact with a cryogen or dry ice can cause permanent damage. Always wear the proper PPE when working with or around cryogens and dry-ice. 2. Asphyxiation: NMR magnet quenching (the loss of superconductivity followed by the rapid release of gaseous cryogens) can result in an oxygen deficient atmosphere. The volumetric expansion rate from the liquid to gaseous phase ranges between 690 to 750 times. The use of dry ice in cold rooms can cause increased breathing, headache, dizziness, nausea and visual disturbances due to elevated carbon dioxide concentrations in the air. Dry ice can also cause asphyxiation in confined spaces. Remember: You can not detect oxygen deficiency or over exposure to Carbon Dioxide.