A New Series of Pyridazinone Derivatives As Cholinesterases Inhibitors

Total Page:16

File Type:pdf, Size:1020Kb

A New Series of Pyridazinone Derivatives As Cholinesterases Inhibitors Pharmacological Reports 71 (2019) 1253–1263 Contents lists available at ScienceDirect Pharmacological Reports journal homepage: www.elsevier.com/locate/pharep Original article A new series of pyridazinone derivatives as cholinesterases inhibitors: Synthesis, in vitro activity and molecular modeling studies a, b c d a,e Azime Berna Özçelik *, Zeynep Özdemir , Suat Sari , Semra Utku , Mehtap Uysal a Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey b _ Inönü University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Malatya, Turkey c Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey d Mersin University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Mersin, Turkey e Erzincan Binali Yıldırım University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Erzincan, Turkey A R T I C L E I N F O A B S T R A C T Article history: Background: The pyridazinone nucleus has been incorporated into a wide variety of therapeutically Received 17 April 2019 interesting molecules to transform them into better drugs. Acetylcholinesterase (AChE) and Received in revised form 8 July 2019 butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis Accepted 19 July 2019 of acetylcholine (ACh). Inhibition of cholinesterases is an effective method to curb Alzheimer’s disease. Available online 22 July 2019 Here, we prepared 12 new 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(nonsubstituted/4-substituted benzenesulfonohydrazide) derivatives and evaluated their inhibitory effects on AChE/BChE in pursuit of Keywords: potent dual inhibitors for Alzheirmer’s Disease. We also tried to get insights into binding interactions of AChE inhibitor the synthesized compounds in the active site of both enzymes by using molecular docking approach. BChE inhibitor 3(2H)-Pyridazinone Method: We obtained our compounds by the reaction of various substituted/nonsubstituted Hydrazone benzenesulfonic acid derivatives with 6-substitutedphenyl-3(2H)-pyridazinone-2-yl acetohydrazide ’ Molecular modelling and determined their anticholinesterase activities according to the Ellman s method. Molecular docking studies were done using Glide and the results were evaluated on Maestro (Schrödinger, LLC, New York, NY, 2019). Results: The title compounds showed moderate inhibition at 100 mg/ml against both enzymes, yet with better activity against BChE. Compound VI2a emerged as a dual inhibitor with 25.02% and 51.70% inhibition against AChE and BChE, respectively. Conclusion: This study supports that novel pyridazinone derivates may be used for the development of new BChE inhibitory agents. It was less potent than the reference drugs, yet promising for further modifications as a lead. The ability of the compounds to adopt energetically more favourable conformations and to engage in more key interactions in the ECBChE active gorge explains their better activity profile against ECBChE. © 2019 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved. Introduction compound space due to the coordination capability of nitrogen [2]. Recent studies have found that pyridazine is one of the most Pyridazines are six-membered dinitrogen heterocycles often developable heteroaromatic rings for new drugs with eligibility to found in three different isomers, namely pyridazine (1,2-diazine), formligandstowardsdifferenttargets,itisalso found inthestructure pyrimidine (1,3-diazine) and pyrazine (1,4-diazine) [1]. Nitrogen- of natural compounds displaying various biological activities. containing heteroaromatic rings make up part of the bioactive Applications of substituted pyridazines as antidepressant, anti- hypertensive, anticonvulsant, antibacterial, diuretic, anti-HIV, anticancer, anti-inflammatory, analgesic, cardiovascular, and neuro- protective agents are available in the literature [3–13]. Some Abbreviations: AChE, acethylcholine esterase; AD, Alzheimer’s disease; BChE, examples for medical use of pyridazine derivatives are zardaverine buthyrylcholine esterase; CBS, cation-binding pocket; PAS, peripheral anionic site; and imazodane as cardiotonic PDE III inhibitors and emorfazone as SEM, standard error mean. an analgesic agent (Fig. 1) [6–8]. Xing et al. synthesized 2,6- * Corresponding author. E-mail address: [email protected] (A.B. Özçelik). disubstituted pyridazinone analogs and investigated their http://dx.doi.org/10.1016/j.pharep.2019.07.006 1734-1140/© 2019 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved. 1254 A.B. Özçelik et al. / Pharmacological Reports 71 (2019) 1253–1263 Fig. 1. Structure of the drugs bearing pyridazinone skeleton and compound 4 [14]. acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in- long time. But only ensaculin, a coumarin derivative composed of hibitor activities. Among them, compound 4 was reported to be benzopyran and a piperazine substituted moiety, has appeared to highly potent and selective against the cited enzymes (Fig. 1) [14]. prevent or slow down the progressive neurodegeneration [22–25]. Alzheimer disease (AD) is well-known for over a century, Ensaculin has been used clinically for the treatment of AD as an however, there is no concrete therapeutic treatment prevailed [15– AChEI for a long time. 17]. There is relationship between AD and changes in many Although BChE is sparsely expressed in humans, recent studies neurotransmitters, including cholinergic, noncholinergic, seroto- proved that AChE inhibition alone may not be sufficient to reduce nergic, dopaminergic, aminoacidergic, and neuropeptidergic; but cholinesterase activity and choline levels may elevate since BChE the relationship between changes in the cholinergic system and AD makes up for the lost AChE activity. Furthermore, it is known that is the most well-known. According to this relationship described as BChE expression is increased during AD [26,27]. Several studies, so cholinergic hypothesis, decrease in acetylcholine and choline far, have emphasized the importance of dual ChE inhibition in AD acetyl transferase levels is associated with AD [18]. Post-mortem and other neurological disorders with cognitive decline. Drugs brain studies and altered cholinergic symptoms such as degenera- such as rivastigmin are efficacious in AD thanks to their dual- tion of neurons controlling neocortical regions, loss of cholinergic inhibitory character [28]. terminals in the cerebral cortex, loss of choline acetyl transferase Zhou et al. designed and synthesized three different groups of activity and acetyl choline synthesis, decreased cholinergic coumarin-like compounds (A, B, C) bearing phenylpiperazine rings receptivity and increased AChE activity, which can be seen in as substitution to evaluate their potential for treating AD (Fig. 3) many Alzheimer's patients [19,20]. For this reason, in the [25]. Zhou et al. also reported three hypothesis for the AChEI treatment of AD increasing acetylcholine level by suppressing activity of their derivatives: (1) the coumarin ring, 2-(H)-chromen- AChE enzyme is one of the frequently used treatment modalities. 2-one, a heterocyclic moiety involved in ensaculin’s structure are On this basis, AChE inhibitors (AChEIs) have become the leading responsible for cognitive functions and compatible with high anti- strategy for the development of anti-AD agents. The current AChE potency, interacting with the peripheral anionic site (PAS); interest in these drugs has received considerable attention, too (2) the nitrogen atom from the phenylpiperazine group acting as [21–23]. Some AChEIs, such as tacrine, donepezil, rivastigmine, and the positive charge center presented in many potent AChE ensaculin (Fig. 2), show modest improvement in memory and inhibitors, which can interact with the catalytic center of AChE cognitive functions, and have been used to treat AD clinically for a demonstrated by the X-ray crystallographic studies of the AChE- Fig. 2. Structure of some FDA-approved AChEI in AD. A.B. Özçelik et al. / Pharmacological Reports 71 (2019) 1253–1263 1255 Fig. 3. Structural hypothesis for AChEIs and some designed compounds from the literature [25]. donepezil and AChE-galantamine complexes, and (3) the phenyl In view of the above mentioned findings, we designed and ring is connected with the piperazine ring interacting with the synthesized the title compounds (VI1a-1d, VI2a-2d, VI3a-3d) to cation-binding pocket (CBS) as shown in Fig. 3 [25]. In addition, a provide the structural requirements for AChEI and BChEI activities linker chain bearing different numbers of carbon atom at the (Fig. 4). We in vitro evaluated their AChE and BChE inhibitory second position of the pyridazinone ringmight interact with the effects using Ellman’s method, the most commonly used method residues lining the wall of the AChE gorge. to measure cholinesterase activity [29]. Fig. 4. Structural hypothesis for the title compounds [25]. 1256 A.B. Özçelik et al. / Pharmacological Reports 71 (2019) 1253–1263 The CBS moiety was designed as substituted phenyl ring and the converted to the free base form with ammonium hydroxide. The structural modifications were focused on substitutions on the precipitate was collected by filtration, washed with water until phenyl rings expected to interact with the CBS and PBS. Methoxy, neutral, dried, and crystallized from ethanol-water [38]. chloro, bromo, and fluoro groups were included as substitutions
Recommended publications
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Coumarin-Piperazine Derivatives As Biologically Active Compounds
    Saudi Pharmaceutical Journal 28 (2020) 220–232 Contents lists available at ScienceDirect Saudi Pharmaceutical Journal journal homepage: www.sciencedirect.com Review Coumarin-piperazine derivatives as biologically active compounds Kinga Ostrowska Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02 097 Warsaw, Poland article info abstract Article history: A number of psychiatric disorders, including anxiety, schizophrenia, Parkinson’s disease, depression and Received 3 May 2019 others CNS diseases are known to induce defects in the function of neural pathways sustained by the neu- Accepted 29 November 2019 rotransmitters, like dopamine and serotonin. N-arylpiperazine moiety is important for CNS-activity, par- Available online 7 December 2019 ticularly for serotonergic and dopaminergic activity. In the scientific literature there are many examples of coumarin-piperazine derivatives, particularly with arylpiperazines linked to a coumarin system via an Keywords: alkyl liner, which can modulate serotonin, dopamine and adrenergic receptors. Numerous studies have Coumarin revealed that the inclusion of a piperazine moiety could occasionally provide unexpected improvements Arylpiperazinyl moiety in the bioactivity of various biologically active compounds. The piperazine analogs have been shown to Biological activity have a potent antimicrobial activity and they can also act as BACE-1 inhibitors. On the other hand, arylpiperazines linked to coumarin derivatives have been shown to have antiproliferative activity against leukemia, lung, colon, breast, and prostate tumors. Recently, it has been reported that coumarin- piperazine derivatives exhibit a Fneuroprotective effect by their antioxidant and anti-inflammatory activ- ities and they also show activity as acetylcholinesterase inhibitors and antifilarial activity. In this work we provide a summary of the latest advances in coumarin-related chemistry relevant for biological activity.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • A Multitransmitter Approach to Dementia Treatment
    CNS Drug Reviews Vol. 8, No.2, pp. 143–158 © 2002 Neva Press, Branford, Connecticut Ensaculin (KA-672 × HCl): A Multitransmitter Approach to Dementia Treatment Robert Hoerr1 and Michael Noeldner2 1Clinical Research Department and 2Department of Pharmacology, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany Key Words: Ensaculin—Benzopyranone—Dementia—Neurotransmitters—Me- mory—Neuroprotection—5-HT1A—5HT7 —NMDA antagonists. ABSTRACT Ensaculin, a novel benzopyranone substituted with a piperazine moiety, showed memory-enhancing effects in paradigms of passive and conditioned avoidance in both normal and artificially amnesic rodents. It exhibited neuroprotective activities in an NMDA toxicity model and neurotrophic effects in primary cultured rat brain cells. The compound could be characterized as a weak NMDA receptor–operated channel blocker. In receptor-binding studies, ensaculin was found to have high affinities to serotonergic 5-HT1A and 5-HT7 receptors, adrenergic á1, and dopaminergic D2 and D3 receptors. Due to its unique pharmacodynamic profile, ensaculin may have potential as an antidementia agent acting on various transmitter systems. INTRODUCTION Alzheimer’s disease (AD) is a neurodegenerative disorder that predominantly affects aged people. It is the most frequent cause of dementia, thus gaining increasing importance as the population continues to age. Even though extensive research has been directed to- wards the understanding of this devastating illness, the formal and causal interrelation- ships of its pathogenetic determinants are still an enigma. The most distinctive morphological features of AD are amyloid deposition resulting in neuritic plaques, the formation of neurofibrillary tangles consisting of hyperphosphory- Address correspondence and reprint requests to: Dr. Robert Hoerr, Clinical Research Department, Dr. Willmar Schwabe GmbH & Co., Willmar-Schwabe-Strasse 4, 76227 Karlsruhe, Germany.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev
    Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM GADOCOLETICUM 280776-87-6 ABAFUNGIN 129639-79-8 ACIDUM LIDADRONICUM 63132-38-7 ABAMECTIN 65195-55-3 ACIDUM SALCAPROZICUM 183990-46-7 ABANOQUIL 90402-40-7 ACIDUM SALCLOBUZICUM 387825-03-8 ABAPERIDONUM 183849-43-6 ACIFRAN 72420-38-3 ABARELIX 183552-38-7 ACIPIMOX 51037-30-0 ABATACEPTUM 332348-12-6 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABETIMUSUM 167362-48-3 ACIVICIN 42228-92-2 ABIRATERONE 154229-19-3 ACLANTATE 39633-62-0 ABITESARTAN 137882-98-5 ACLARUBICIN 57576-44-0 ABLUKAST 96566-25-5 ACLATONIUM NAPADISILATE 55077-30-0 ABRINEURINUM 178535-93-8 ACODAZOLE 79152-85-5 ABUNIDAZOLE 91017-58-2 ACOLBIFENUM 182167-02-8 ACADESINE 2627-69-2 ACONIAZIDE 13410-86-1 ACAMPROSATE
    [Show full text]
  • Molecular Docking Studies of Coumarin Hybrids As Potential Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase A/B An
    Yusufzai et al. Chemistry Central Journal (2018) 12:128 https://doi.org/10.1186/s13065-018-0497-z Chemistry Central Journal REVIEW Open Access Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β‑amyloid inhibitors for Alzheimer’s disease Samina Khan Yusufzai1, Mohammad Shaheen Khan2*, Othman Sulaiman1, Hasnah Osman3 and Dalily Nabilah Lamjin2 Abstract Coumarins are the phytochemicals, which belong to the family of benzopyrone, that display interesting pharmaco- logical properties. Several natural, synthetic and semisynthetic coumarin derivatives have been discovered in decades for their applicability as lead structures as drugs. Coumarin based conjugates have been described as potential AChE, BuChE, MAO and β-amyloid inhibitors. Therefore, the objective of this review is to focus on the construction of these pharmacologically important coumarin analogues with anti-Alzheimer’s activities, highlight their docking studies and structure–activity relationships based on their substitution pattern with respect to the selected positions on the chromen ring by emphasising on the research reports conducted in between year 1968 to 2017. Keywords: Coumarin, Neurodegenerative disorder, Alzheimer’s disease, Acetylcholinesterase, Butyrylcholinesterase, Monoamine oxidase Introduction production and clearance of Aβ peptide and thus Aβ Alzheimer’s disease (AD) is the most common form forms highly insoluble and proteolysis resistant fbrils of neurodegenerative disorder and the most prevalent known as senile plaques (Fig. 1) [1]. Tese plaques will cause of dementia commonly afecting the elderly. It is a interrupt the neuron transmission at synapses and cause progressive disorder of the brain that is associated with information transfer to fail leading to the neuronal cell the loss of presynaptic markers of the cholinergic sys- death.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow Et Al
    US 20100184806A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow et al. (43) Pub. Date: Jul. 22, 2010 (54) MODULATION OF NEUROGENESIS BY PPAR (60) Provisional application No. 60/826,206, filed on Sep. AGENTS 19, 2006. (75) Inventors: Carrolee Barlow, Del Mar, CA (US); Todd Carter, San Diego, CA Publication Classification (US); Andrew Morse, San Diego, (51) Int. Cl. CA (US); Kai Treuner, San Diego, A6II 3/4433 (2006.01) CA (US); Kym Lorrain, San A6II 3/4439 (2006.01) Diego, CA (US) A6IP 25/00 (2006.01) A6IP 25/28 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) SUGHRUE MION, PLLC A6IP 25/22 (2006.01) 2100 PENNSYLVANIA AVENUE, N.W., SUITE 8OO (52) U.S. Cl. ......................................... 514/337; 514/342 WASHINGTON, DC 20037 (US) (57) ABSTRACT (73) Assignee: BrainCells, Inc., San Diego, CA (US) The instant disclosure describes methods for treating diseases and conditions of the central and peripheral nervous system (21) Appl. No.: 12/690,915 including by stimulating or increasing neurogenesis, neuro proliferation, and/or neurodifferentiation. The disclosure (22) Filed: Jan. 20, 2010 includes compositions and methods based on use of a peroxi some proliferator-activated receptor (PPAR) agent, option Related U.S. Application Data ally in combination with one or more neurogenic agents, to (63) Continuation-in-part of application No. 1 1/857,221, stimulate or increase a neurogenic response and/or to treat a filed on Sep. 18, 2007. nervous system disease or disorder. Patent Application Publication Jul. 22, 2010 Sheet 1 of 9 US 2010/O184806 A1 Figure 1: Human Neurogenesis Assay Ciprofibrate Neuronal Differentiation (TUJ1) 100 8090 Ciprofibrates 10-8.5 10-8.0 10-7.5 10-7.0 10-6.5 10-6.0 10-5.5 10-5.0 10-4.5 Conc(M) Patent Application Publication Jul.
    [Show full text]
  • Role of Pyridazine Analogs As Acetylcholinesterase Inhibitor: an Approach for Management of Alzheimer’S Disease
    Received: 16 March 2021 Revised: 05 May 2021 Accepted: 15 May 2021 DOI: 10.22034/ecc.2021.229705.1168 FULL PAPER Role of pyridazine analogs as acetylcholinesterase inhibitor: An approach for management of alzheimer’s disease Saad Alghamdia | Mohammad Asifb,* aLaboratory Medicine Department, Faculty of Alzheimer's disease (AD) is a neurodegenerative disorder causing Applied Medical Sciences, Umm Al-Qura failure of cognitive aptitude and performance irregularities, University, Makkah, 21955, Saudi Arabia resulting in degradation of cerebral and psychological activities. bGlocal School of Pharmacy, Glocal University, AD is presently a main health trouble and it is the third-major Mirzapur Pole, Saharanpur, Uttar Pradesh, India reason of casualty in the developed nations after cardiac and cancer diseases. The physiological pathway of this disorder remains almost unknown. The present curative advances to AD pursue the cholinergic theory. The acetylcholinesterase (AChE) enzyme has an essential role in the therapy of AD. The AChE- inhibitors have been developed into the leading approach for the advance of anti-ADs. Some AChE-inhibitors, like donepezil, tacrine, rivastigmine and ensaculin have shown progress in memory and cognitive actions. However, ensaculin is a coumarin analog that has prevented or lowered the progressive neurodegeneration. Several considerations support that some pyridazine analogs act as AChE and BuAChE inhibitors. *Corresponding Author: KEYWORDS Mohammad Asif Acetyl-cholinesterase; alzheimer's disease; butyryl- Tel.: +91-9897088910 cholinesterase; neurodegenerative; pyridazine derivatives. Introduction the patient death [3]. The improvement in life expectancy and the reality that occurrence of Alzheimer's disease (AD) is a AD enhances with age can contribute to neurodegenerative disorder, differentiated by handling it [4].
    [Show full text]
  • “Design, Synthesis and Biological Evaluation of Novel Coumarin Derivatives Targeting Acetylcholinesterase As Neuroprotective Against Alzheimer's Disease”
    “Design, synthesis and biological evaluation of novel coumarin derivatives targeting acetylcholinesterase as neuroprotective against Alzheimer's disease” Thesis Presented by Haidy Hany Abdel Momen Abdel Hamid El-Zoheiry B.Sc., Faculty of Pharmacy, Cairo University (2013) Submitted in Partial Fulfillment of Master Degree In Pharmaceutical Sciences (Pharmaceutical Chemistry) Under the supervision of Prof. Dr. Kamilia Mahmoud Amin Professor of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Prof. Dr. Doaa Ezzat Abdel Rahman Professor of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Dr. Heba Abdel-Rasheed Allam Lecturer of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Cairo University (2019) 1 Abstarct Design, synthesis and biological evaluation of novel coumarin derivatives targeting acetylcholinesterase as neuroprotective against Alzheimer's disease Alzheimer’s disease (AD) is a neurodegenerative disease characterized by loss of memory and cognitive abilities. According to cholinergic hypothesis, reduced levels of acetylcholine (ACh) is contributed significantly to the cognitive symptoms associated with AD and advanced age. Accordingly, the mainstream direction for AD therapy is slowing the breakdown of ACh by the use of acetylcholinesterase inhibitors (AChEIs). Primarily, AChEIs have been considered only as a symptomatic therapy for AD, however recent studies have suggested that AChEIs can act as disease- modifying agents by inhibition of the amyloid cascade. Coumarin is an interesting bioactive scaffold eliciting a wide range of biological activities including anticancer, antibacterial, anti-inflammatory and anticoagulant. A structural survey of AChEIs revealed that a number of naturally occurring and synthetic coumarin analogues exhibited potent AChE inhibitory activity. Among these inhibitors AP2238 and ensaculin which have distinct scaffold with a coumarin moiety.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0058896 A1 Dietrich Et Al
    US 200400.58896A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0058896 A1 Dietrich et al. (43) Pub. Date: Mar. 25, 2004 (54) PHARMACEUTICAL PREPARATION (30) Foreign Application Priority Data COMPRISING AN ACTIVE DISPERSED ON A MATRIX Dec. 7, 2000 (EP)........................................ OO126847.3 (76) Inventors: Rango Dietrich, Konstanz (DE); Publication Classification Rudolf Linder, Kontanz (DE); Hartmut Ney, Konstanz (DE) (51) Int. Cl." ...................... A61K 31156; A61K 31/4439 (52) U.S. Cl. ........................... 514/171; 514/179; 514/338 Correspondence Address: (57) ABSTRACT NATH & ASSOCATES PLLC 1030 FIFTEENTH STREET, N.W. The present invention relates to the field of pharmaceutical SIXTH FLOOR technology and describes a novel advantageous preparation WASHINGTON, DC 20005 (US) for an active ingredient. The novel preparation is Suitable for 9 producing a large number of pharmaceutical dosage forms. (21) Appl. No.: 10/433,398 In the new preparation an active ingredient is present essentially uniformly dispersed in an excipient matrix com (22) PCT Filed: Dec. 6, 2001 posed of one or more excipients Selected from the group of fatty alcohol, triglyceride, partial glyceride and fatty acid (86) PCT No.: PCT/EPO1/14307 eSter. US 2004/0058896 A1 Mar. 25, 2004 PHARMACEUTICAL PREPARATION 0008 Further subject matters are evident from the claims. COMPRISING AN ACTIVE DISPERSED ON A MATRIX 0009. The preparations for the purpose of the invention preferably comprise numerous individual units in which at least one active ingredient particle, preferably a large num TECHNICAL FIELD ber of active ingredient particles, is present in an excipient 0001. The present invention relates to the field of phar matrix composed of the excipients of the invention (also maceutical technology and describes a novel advantageous referred to as active ingredient units hereinafter).
    [Show full text]
  • Florencio Zaragoza Dörwald Lead Optimization for Medicinal Chemists
    Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Related Titles Smith, D. A., Allerton, C., Kalgutkar, A. S., Curry, S. H., Whelpton, R. van de Waterbeemd, H., Walker, D. K. Drug Disposition and Pharmacokinetics and Metabolism Pharmacokinetics in Drug Design From Principles to Applications 2012 2011 ISBN: 978-3-527-32954-0 ISBN: 978-0-470-68446-7 Gad, S. C. (ed.) Rankovic, Z., Morphy, R. Development of Therapeutic Lead Generation Approaches Agents Handbook in Drug Discovery 2012 2010 ISBN: 978-0-471-21385-7 ISBN: 978-0-470-25761-6 Tsaioun, K., Kates, S. A. (eds.) Han, C., Davis, C. B., Wang, B. (eds.) ADMET for Medicinal Chemists Evaluation of Drug Candidates A Practical Guide for Preclinical Development 2011 Pharmacokinetics, Metabolism, ISBN: 978-0-470-48407-4 Pharmaceutics, and Toxicology 2010 ISBN: 978-0-470-04491-9 Sotriffer, C. (ed.) Virtual Screening Principles, Challenges, and Practical Faller, B., Urban, L. (eds.) Guidelines Hit and Lead Profiling 2011 Identification and Optimization ISBN: 978-3-527-32636-5 of Drug-like Molecules 2009 ISBN: 978-3-527-32331-9 Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Pharmacokinetic Properties of Functional Groups and Organic Compounds The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Florencio Zaragoza D¨orwald editors, and publisher do not warrant the Lonza AG information contained in these books, Rottenstrasse 6 including this book, to be free of errors. 3930 Visp Readers are advised to keep in mind that Switzerland statements, data, illustrations, procedural details or other items may inadvertently be Cover illustration: inaccurate.
    [Show full text]
  • Providing for Duty-Free Treatment for Specified Pharmaceutical Active
    COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 12.02.1999 COM(1999)2 final Proposal for a COUNCIL Rl;_GULATION (EC) providing for duty-free treatment for specified pharmaceutical active ingredients bearing an international non-proprietary name (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceutical products (presented by the Commission) EXPLANATORY MEMORANDUM I. Pursuant to the conclusions r~.:ached in Uruguay Round Record of Discussions (L/4740 of 25 March 1994) on duty-free treatment for pharmaceutical products, the Commission has participated in the second review of the product coverage to include, r by consensus, additional products for duty-free treatment. 2. The outcome of the review is that 272 pharmaceutical active ingredients bearing an "international nonproprietary name" (INN) from the World Health Organisation and 363 products used for the manufacture of finished pharmaceuticals should be added to the list of products already receiving duty-free treatment and also that the list of specified prefixes and suffixes for salts and esters of INNs should be expanded by five names. 3. The Commission proposes in line with other countries granting duty-free treatment for these additional products that the duty-free treatment shall commence from 1 July 1999. 4. For these reasons the Commission proposes that the Council adopt the Regulation contained in the Annex to this Communication. · jt II I il,, i ·'1.· i. 2 Proposal for a COUNCIL REGULATION (EC) providing for duty-free
    [Show full text]