A Single-Label Phenylpyrrolocytidine Provides a Molecular Beacon-Like Response Reporting HIV-1 RT Rnase H Activity Alexander S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Citicoline in the Management of Traumatic Brain Injury
pharmaceuticals Review Role of Citicoline in the Management of Traumatic Brain Injury Julio J. Secades Medical Department, Ferrer, 08029 Barcelona, Spain; [email protected] Abstract: Head injury is among the most devastating types of injury, specifically called Traumatic Brain Injury (TBI). There is a need to diminish the morbidity related with TBI and to improve the outcome of patients suffering TBI. Among the improvements in the treatment of TBI, neuroprotection is one of the upcoming improvements. Citicoline has been used in the management of brain ischemia related disorders, such as TBI. Citicoline has biochemical, pharmacological, and pharmacokinetic characteristics that make it a potentially useful neuroprotective drug for the management of TBI. A short review of these characteristics is included in this paper. Moreover, a narrative review of almost all the published or communicated studies performed with this drug in the management of patients with head injury is included. Based on the results obtained in these clinical studies, it is possible to conclude that citicoline is able to accelerate the recovery of consciousness and to improve the outcome of this kind of patient, with an excellent safety profile. Thus, citicoline could have a potential role in the management of TBI. Keywords: CDP-choline; citicoline; pharmacological neuroprotection; brain ischemia; traumatic brain injury; head injury Citation: Secades, J.J. Role of 1. Introduction Citicoline in the Management of Traumatic brain injury (TBI) is among the most devastating types of injury and can Traumatic Brain Injury. result in a different profile of neurological and cognitive deficits, and even death in the most Pharmaceuticals 2021, 14, 410. -
Drug-Excipient Interaction and Its Importance in Dosage Form
Journal of Applied Pharmaceutical Science 01 (06); 2011: 66-71 ISSN: 2231-3354 Drug-excipient interacti on and its importance in Received: 29-07-2011 Revised on: 02-08-2011 Accepted: 04-08-2011 dosage form development Nishath Fathima, Tirunagari Mamatha, Husna Kanwal Qureshi, Nandagopal Anitha and Jangala Venkateswara Rao ABSTRACT Excipients are included in dosage forms to aid manufacture, administration or absorption. Although considered pharmacologically inert, excipients can initiate, propagate or participate in Nishath Fathima, Tirunagari chemical or physical interactions with drug compounds, which may compromise the effectiveness Mamatha, Husna Kanwal Qureshi, of a medication. Exicipients are not exquisitely pure. Even for the most commonly used excipients, Nandagopal Anitha and Jangala it is necessary to understand the context of their manufacture in order to identify potential active pharmaceutical ingredients interactions with trace components. Chemical interactions can lead to Venkateswara Rao Sultan-Ul-Uloom College of Pharmacy, degradation of the active ingredient, thereby reducing the amount available for therapeutic effect. Physical interactions can affect rate of dissolution, uniformity of dose or ease of administration. Banjara Hills, Hyderabad - 500034, A.P., India. Key words: Excipient, Drug, Interaction, Physical, Chemical. INTRODUCTION Pharmaceutical dosage form is a combination of active pharmaceutical ingredients (API) and excipients. Excipients are included in dosage forms to aid manufacture, administration or absorption (Crowley and Martini).The ideal excipients must be able to fulfill the important functions i.e. dose, stability and release of API from the formulation. Although considered pharmacologically inert, excipients can initiate, propagate or participate in chemical or physical interactions with drug compounds, which may compromise the effectiveness of a medication. -
DNA Modifications in Models of Alcohol Use Disorders
Alcohol 60 (2017) 19e30 Contents lists available at ScienceDirect Alcohol journal homepage: http://www.alcoholjournal.org/ DNA modifications in models of alcohol use disorders * Christopher T. Tulisiak a, R. Adron Harris a, b, Igor Ponomarev a, b, a Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA b The College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1900, Austin, TX 78712, USA article info abstract Article history: Chronic alcohol use and abuse result in widespread changes to gene expression, some of which Received 2 September 2016 contribute to the development of alcohol-use disorders (AUD). Gene expression is controlled, in part, by a Received in revised form group of regulatory systems often referred to as epigenetic factors, which includes, among other 3 November 2016 mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to Accepted 5 November 2016 form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of Keywords: AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research Alcohol fi Epigenetics in the context of alcohol use and abuse. To date, studies of DNA modi cations in AUD have primarily fi fi fi DNA methylation looked at global methylation pro les in human brain and blood, gene-speci c methylation pro les in DNMT animal models, methylation changes associated with prenatal ethanol exposure, and the potential DNA hydroxymethylation therapeutic abilities of DNA methyltransferase inhibitors. -
Mechanism of Mrna Transport in the Nucleus
Mechanism of mRNA transport in the nucleus Diana Y. Vargas*, Arjun Raj*†, Salvatore A. E. Marras*, Fred Russell Kramer*, and Sanjay Tyagi*‡ *Department of Molecular Genetics, Public Health Research Institute, 225 Warren Street, Newark, NJ 07103; and †Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 Edited by Joseph G. Gall, Carnegie Institution of Washington, Baltimore, MD, and approved October 4, 2005 (received for review July 5, 2005) The mechanism of transport of mRNA–protein (mRNP) complexes fluorophore whose fluorescence is restored upon hybridization to from transcription sites to nuclear pores has been the subject of a specific nucleic acid sequence. To obtain single-molecule sensi- many studies. Using molecular beacons to track single mRNA tivity, we engineered a host cell line to express an mRNA possessing molecules in living cells, we have characterized the diffusion of multiple molecular beacon binding sites. The binding of many mRNP complexes in the nucleus. The mRNP complexes move freely molecular beacons to each mRNA molecule renders them so by Brownian diffusion at a rate that assures their dispersion intensely fluorescent that individual mRNA molecules can be throughout the nucleus before they exit into the cytoplasm, even detected and tracked. We found that the rate of mRNP diffusion when the transcription site is located near the nuclear periphery. is so fast that mRNP complexes are dispersed throughout the The diffusion of mRNP complexes is restricted to the extranucleo- nucleus soon after their synthesis and well before the onset of lar, interchromatin spaces. When mRNP complexes wander into significant export into the cytoplasm. -
Polymeric Derivative of Cytidine Metabolic Antagonist Polymer-Derivat Von Cytidin Metabolit Antagonist Derive Polymere D’Un Antagoniste Metabolique De La Cytidine
(19) & (11) EP 1 881 020 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 65/08 (2006.01) A61K 38/00 (2006.01) 11.08.2010 Bulletin 2010/32 C08G 65/333 (2006.01) C08G 69/48 (2006.01) (21) Application number: 06745754.9 (86) International application number: PCT/JP2006/308826 (22) Date of filing: 27.04.2006 (87) International publication number: WO 2006/120914 (16.11.2006 Gazette 2006/46) (54) POLYMERIC DERIVATIVE OF CYTIDINE METABOLIC ANTAGONIST POLYMER-DERIVAT VON CYTIDIN METABOLIT ANTAGONIST DERIVE POLYMERE D’UN ANTAGONISTE METABOLIQUE DE LA CYTIDINE (84) Designated Contracting States: • MASHIBA, Hiroko, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR NIPPON KAYAKU KABUSHIKI KAISHA HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Tokyo 1150042 (JP) SK TR • YAMAMOTO, Keiichirou, Designated Extension States: c/o NIPPON KAYAKU K.K. AL BA HR MK YU Tokyo 1150042 (JP) • TAKASHIO, Kazutoshi, (30) Priority: 11.05.2005 JP 2005138249 NIPPON KAYAKU K.K. Tokyo 1150042 (JP) (43) Date of publication of application: 23.01.2008 Bulletin 2008/04 (74) Representative: Wablat, Wolfgang Patentanwalt (73) Proprietor: NIPPON KAYAKU KABUSHIKI KAISHA Dr. Dr. W. Wablat Tokyo 102-8172 (JP) Potsdamer Chaussee 48 14129 Berlin (DE) (72) Inventors: • MASUDA, Akira, (56) References cited: c/o NIPPON KAYAKU KABUSHIKI KAISHA EP-A- 0 097 307 EP-A- 0 685 504 Tokyo 1150042 (JP) WO-A-01/21135 WO-A-02/065988 • ONDA, Takeshi, JP-A- 6 206 832 JP-A- 02 300 133 c/o NIPPON KAYAKU KABUSHIKI KAISHA JP-A- 06 206 832 JP-A- 08 048 766 Tokyo 1150042 (JP) JP-A- 2003 524 028 JP-A- 2004 532 289 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Research Progress on Rolling Circle Amplification (RCA)
pharmaceuticals Review Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing Lide Gu 1 ID , Wanli Yan 1, Le Liu 1, Shujun Wang 2,3, Xu Zhang 3,4 and Mingsheng Lyu 1,2,3,* 1 College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China; [email protected] (L.G.); [email protected] (W.Y.); [email protected] (L.L.) 2 Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China; [email protected] 3 Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China; [email protected] 4 Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada * Correspondence: [email protected] Received: 8 March 2018; Accepted: 10 April 2018; Published: 21 April 2018 Abstract: Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. -
Non-Enzymatic Synthesis of the Coenzymes, Uridine Diphosphate
N O N - E N Z Y M A T I C S Y N T H E S I S OF THE C O E N Z Y M E S , U R I D I N E D I P H O S P H A T E G L U C O S E A N D C Y T I D I N E D I P H O S P H A T E C H O L I N E , A N D O T H E R P H O S P H O R Y L A T E D M E T A B O L I C I N T E R M E D I A T E S A. M A R , J. D W O R K I N , and J. ORO* Department of Biochemical and Biophysical Sciences, University of Houston, Houston, TX 77004, U.S.A. (Received 3 November, 1986) Abstract. The synthesis of uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP- choline), glucose-l-phosphate (G1P) and glucose-6-phosphate (G6P) has been accomplished under simulated prebiotic conditions using urea and cyanamide, two condensing agents considered to have been present on the primitive Earth. The synthesis of UDPG was carried out by reacting G1P and UTP at 70 °C for 24 hours in the presence of the condensing agents in an aqueous medium. CDP-choline was obtained under the same conditions by reacting choline phosphate and CTP. G1P and G6P were synthesized from glucose and inorganic phosphate at 70°C for 16 hours. -
Minocycline As a Candidate Treatment
Behavioural Brain Research 235 (2012) 302–317 Contents lists available at SciVerse ScienceDirect Behavioural Brain Research j ournal homepage: www.elsevier.com/locate/bbr Review Novel therapeutic targets in depression: Minocycline as a candidate treatment a,b c,d c,d f,g Joanna K. Soczynska , Rodrigo B. Mansur , Elisa Brietzke , Walter Swardfager , a,b,e b b Sidney H. Kennedy , Hanna O. Woldeyohannes , Alissa M. Powell , b a,b,e,f,∗ Marena S. Manierka , Roger S. McIntyre a Institute of Medical Science, University of Toronto, Toronto, Canada b Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada c Program of Recognition and Intervention in Individuals in at Risk Mental States (PRISMA), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil d Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil e Department of Psychiatry, University of Toronto, Toronto, Canada f Departments of Pharmacology and Toxicology, University of Toronto, Toronto, Canada g Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Canada h i g h l i g h t s Regional cell loss and brain atrophy in mood disorders may be a consequence of impaired neuroplasticity. Neuroplasticity is regulated by neurotrophic, inflammatory, oxidative, glutamatergic pathways. Abnormalities in these systems are implicated in the pathophysiology of mood disorders. Minocycline exerts effects on neuroplasticity and targets these interacting systems. Evidence indicates that minocycline may be a viable treatment option for mood disorders. a r t i c l e i n f o a b s t r a c t Article history: Mood disorders are marked by high rates of non-recovery, recurrence, and chronicity, which are insuf- Received 1 December 2011 ficiently addressed by current therapies. -
Customs Tariff - Schedule
CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels. -
A Fluorescent Probe for Real-Time Isothermal DNA Amplification Jizu Yi, Wandi Zhang and David Y
Nucleic Acids Research, 2006, Vol. 34, No. 11 e81 doi:10.1093/nar/gkl261 Molecular Zipper: a fluorescent probe for real-time isothermal DNA amplification Jizu Yi, Wandi Zhang and David Y. Zhang* Department of Pathology, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA Received October 17, 2005; Revised November 21, 2005; Accepted March 31, 2006 ABSTRACT acid amplification technologies that are based on rolling- circle DNA replication used by bacterial phages and plamids Rolling-circle amplification (RCA) and ramification (6). Hybridization of a specially designed single-stranded amplification (RAM, also known as hyperbranched DNA (ssDNA) probe to a target DNA brings the two ends RCA) are isothermal nucleic acid amplification tech- of the probe close to each other. Ligation of these two ends nologies that have gained a great application in in situ by a DNA ligase (7,8) forms a circularized probe (C-probe) signal amplification, DNA and protein microarray that subsequently can be amplified either by RCA with one assays, single nucleotide polymorphism detection, primer (9–11) or by RAM with a pair of primers (one forward as well as clinical diagnosis. Real-time detection of and one reverse primer) (2,4). These technologies are prom- RCA or RAM products has been a challenge because ising for target DNA and protein detections in various assay of most real-time detection systems, including platforms, such as microplate, DNA and protein microarray Taqman and Molecular Beacon, are designed for and in situ signal amplification (12), and may provide a sim- ple, cost-effective, fully automated high-throughput method thermal cycling-based DNA amplification technology. -
Ep 0882734 A2
Patentamt Europaisches |||| ||| 1 1|| ||| ||| || || || ||| || ||| || || || (19) J European Patent Office Office europeen des brevets (11) EP 0 882 734 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:ation: (51) |nt. ci.6: C07H 19/167, A61 K 31/70 09.12.1998 Bulletin 1998/50 (21) Application number: 98109318.0 (22) Date of filing: 22.05.1998 (84) Designated Contracting States: • Ishikawa, Tohru AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Kanagawa-ken (JP) MC NL PT SE • Ishitsuka, Hideo Designated Extension States: Yokohama-shi, Kanagawa-ken (JP) AL LT LV MK RO SI • Kohchi, Yasunori Fujisawa-shi, Kanagawa-ken (JP) (30) Priority: 02.06.1997 EP 97108791 • Oikawa, Nobuhiro Yokohama-shi, Kanagawa-ken (JP) (71) Applicant: . Shimma, Nobuo F. HOFFMANN-LA ROCHE AG Chigasaki-shi, Kanagawa-ken (JP) 4070 Basel (CH) . Sudaj Hjtomi Fujisawa-shi, Kanagawa-ken 252 (JP) (72) Inventors: • Hattori, Kazuo Kanagawa-ken (JP) (54) 5'-Deoxy-cytidine derivatives (57) Novel 5'-deoxy-cytidine derivatives repre- group which may be substituted for use in medical ther- sented by the general formula (I) apy, especially tumor therapy. (I) wherein R1 is a hydrogen atom or a group easily hydro- lyzable under physiological conditions; R2 is a hydrogen atom, or -CO-OR4 group [wherein R4 is a saturated or branched CM unsaturated, straight or hydrocarbon group < consisting of one to fifteen carbon atoms, or a group of the formula -(CH2)n-Y (in which Y is cyclohexyl or phe- CO nyl; n is an integer from 0 to 4)]; R3 is a hydrogen atom, r»- bromo, iodo, cyano, a -
Rolling Circle Transcription on Smallest Size Double Stranded DNA Minicircles
Rolling circle transcription on smallest size double stranded DNA minicircles Anders Kristoffersson Populärvetenskaplig sammanfattning Nanoteknik är ett snabbt växande forskningsfält med tillämpningar i vår vardag. Exempel på användningsområden nära oss inbegriper målarfärg, självrengörande fönster och solceller men kanske främst de integrerade kretsar som gör våra datorer och mobiltelefoner möjliga. I detta arbete utreder jag en möjlig komponent till en nanomotor, små DNA cirklar längs vilka ett enzym, ett RNA polymeras rör sig och ger rotationskraft. En sådan motor skulle fungera genom att RNA polymeraset vid transkriptionen rör sig längs med och läser av DNA molekylen. En kopia av DNA koden bildas i form av en RNA molekyl genom hopsättning, eller polymerisering, av fria RNA komponenter. Vid polymeriseringen frigörs energi som driver enzymets rörelse längs den kopierade DNA molekylen. Enzymets rörelse relativt DNA molekylen kan då utnyttjas i en nanomotor. Medan det finns exempel på tidigare användning av RNA polymeras som molekylär motor för att dra last längst DNA molekyler har detta varit för linjära DNA, ingen har hittills tittat på transkription från DNA-cirklar i nanostorlek. I detta arbete har jag konstruerat en storleksserie av små DNA cirklar och genom att studera storleken av de bildade transkriptionsprodukterna visat att stabil transkription från dessa små cirklar är möjligt. Genom att mäta hastigheten för bildandet av RNA-produkten vid transkription från de olika cirklarna relativt ett linjärt DNA konstateras att påverkan av cirkelarisering på transkriptionseffektiviteten är måttlig. Dessa fynd visar att stabil transkription är möjlig även för mycket små cirkulära DNA molekyler och pekar ut vägen mot framtida DNA-nanomotorer. Examensarbete 30 HP Civilingenjörprogrammet Molekylär Bioteknik Uppsala Universitet november 2010 Table of Contents Populärvetenskaplig sammanfattning ...................................................................................................