Single-Molecule Detection of Molecular Beacons Generated From
Total Page:16
File Type:pdf, Size:1020Kb
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2012 Single-molecule detection of molecular beacons generated from LDR on thermoplastic microfluidic device for bioanalysis Zhiyong Peng Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Peng, Zhiyong, "Single-molecule detection of molecular beacons generated from LDR on thermoplastic microfluidic device for bioanalysis" (2012). LSU Doctoral Dissertations. 843. https://digitalcommons.lsu.edu/gradschool_dissertations/843 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SINGLE-MOLECULE DETECTION OF MOLECULAR BEACONS GENERATED FROM LDR ON THERMOPLASTIC MICROFLUIDIC DEVICE FOR BIOANALYSIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Zhiyong Peng B.S., Tianjin University, Tianjin, China, 1995 M.S., Louisiana State University, 2003 May, 2012 ACKNOWLEDGEMENTS The author would like to thank his collaborators first. This work is finished through a multidisciplinary approach that leads to the final completion of the project. The Soper group members are always willing and ready to provide help anytime when needed. Hong Wang imparted me valuable knowledge and skills on PCR, LDR, and other molecular biology techniques. Jason Emory and Wonbae Lee shared with me thoughts in single-molecule detection techniques. In addition, Jason Guy was always enthusiastic and helpful in fabricating my mold insert. George Gascon did a terrific job in processing my machining submissions and made any effort to have my job done as soon as he can. Proyag Datta helped me making the COC microfluidic device using the hot-embossing facility in CAMD. Moreover, my collaborator, Maneesh Pingle in Medical College of Cornell University, provided me insights on designing the primers for pathogen detection work. Lloyd Davis provided the software for counting the photon burst events in single-molecule detection. Most importantly I would like to express my deep gratitude to my advisor Dr. Soper. You spent a tremendous amount of time and energy mentoring me and helping me grow from a student to a professional and scientist. Thank you! ii TABLE OF CONTENTS ACKNOWLEDGMENTS……………………………………………………………………..…ii ABSTRACT……………………………………………………………………………….…….vii CHAPTER 1 INTRODUCTION………………………………………………………………...1 1.1 Background……………………………………………………………………………...1 1.1.1 Human Genomics…………………………………………………….…………..2 1.1.2 Bacteria Genomics……………………………………………………………….3 1.1.3 Human Microbiomics …………………………………………………………….4 1.1.4 Detection of Bacterial Pathogens……………………………………………….5 1.1.5 Gene Expression Analysis of mRNA…………………………………………...6 1.2 Research Goals………………………………………………………………………...9 1.3 Hybridization Based Genotyping Techniques………………………….…………..10 1.3.1 PCR……………………………………………………………………………....10 1.3.2 LCR and LDR…………………………………………………………………....12 1.4 FRET…………………………………………………………………………………...16 1.4.1 Principle of FRET……………………………………………………………….16 1.4.2 Measurement of FRET Efficiency………………………………………….….19 1.4.3 Applications of FRET…………………………………………………………...20 1.5 Molecular Beacon…………………………………………………………………..…22 1.5.1 Principle of Molecular Beacon…………………………………………………22 1.5.2 Different Forms of Molecular Beacon………………………………….……..23 1.5.3 Advantages of Molecular Beacon...............................................................25 1.5.4 Applications of Molecular Beacon…………………………………….……....27 1.5.5 Limitations of Molecular Beacon…………………………………………..…..30 1.6 Single-Molecule Detection and Its Biological Applications…………………..…...30 1.6.1 Overview of Single-Molecule Fluorescence Spectroscopy…………..…….30 1.6.2 Single-molecule Detection and FRET………………………………..……....33 1.6.3 Single-molecule Absorption Detection at Room Temperature………..…...36 1.6.4 Applications of Single-molecule Detection……………………………..…....37 1.6.4.1 DNA Fragment Sizing………………………………………………..…..37 1.6.4.2 Protein Folding……………………………………………………..…..…38 1.6.4.3 Single-molecule DNA Sequencing……………...……………………....39 1.6.4.4 Other Applications of SMD……………………………………………....42 1.6.5 Perspective of SMD…………………………………………………………….42 1.7 Microfluidic Device for Bioanalytical Applications………………………………....42 1.7.1 Advantages of Microfluidics……………………………………………………43 1.7.2 Fabrication Techniques of Microfluidic Devices on Various Substrates…..43 1.7.3 Fluid Transportation in Microfluidic Device…………………………………..46 1.7.4 Single-molecule Detection on Microfluidic Device…………………………..47 1.8 Integrated Microfluidic System for Micro-Total-Analysis………………………….48 1.9 References……………………………………………………………………………..51 CHAPTER 2 SINGLE MOLECULE DETECTION TECHNIQUES…………………....….60 2.1 Introduction…………………………………………………………………………….60 2.2 Principles of Laser-induced Fluorescence……………………………….………...61 iii 2.3 Theory of Single-Molecule Detection………………………………………………..63 2.4 Detectability of Single Molecules…………………………………………………….66 2.5 Signal and Background in SMD……………………………………………………..67 2.5.1 Photon Burst Signal…………………………………………………………….67 2.5.2 Fluorescence Background……………………………………………………..69 2.5.2.1 Sources of Background………………………………………………….70 2.5.2.2 Approaches to Reduce Background……………………………..….….70 2.5.2.2.1 Minimizing Probe Volume and Confocal Setup……………….…70 2.5.2.2.2 Time-Gated Detection………………………………………...……72 2.5.2.2.3 Two-Photon Excitation…………………………………………..…73 2.6 Signal-to-Noise Ratio and Signal-to-Background Ratio…………………….…….74 2.7 Photophysics and Photochemistry of Fluorephores………………………….…...75 2.7.1 Antibunching………………………………………………………………..…...75 2.7.2 Photobleaching…………………………………………………………….…...76 2.7.3 Fluorescence Intermittence…………………………………………….……...76 2.8 Near-IR Fluorescence Dyes for SMD……………………………………………….77 2.9 Excitation Modes and Optical Layout for SMD…………………………………….78 2.9.1 Wide-Field Epi-fluorescence…………………………………………………..78 2.9.2 Far-Field Confocal Microscopy………………………………………………..79 2.9.3 Total Internal Reflection………………………………………………………..80 2.9.4 Breakthrough of Diffraction Limit……………………………………………...82 2.9.4.1 NOSM……………………………………………………………………...83 2.9.4.2 Zero-mode Waveguide…………………………………………………...84 2.10 Detectors for Single-molecule Detection………………………………………….86 2.10.1 Point Detector………………………………………………………………….86 2.10.1.1 PMT……………………………………………………………………….86 2.10.1.2 SPAD……………………………………………………………………..87 2.10.2 Two-Dimensional Array Detectors………………………………………….87 2.10.3 Comparison of Point Detectors and Array Detectors……………………...89 2.11 References………………………………………….………………………………..90 CHAPTER 3 CONSTRUCTION OF A CONFOCAL LASER-INDUCED FLUORESCENCE SYSTEM FOR DETECTION OF SINGLE DNA MOLECULES IN A THERMOPLASTIC MICROCHIP……………………………………………………..94 3.1 Single-molecule Detection in Microfluidic Chip……………..………………….94 3.2 Experimental………………………………………………………………………….96 3.2.1 Reagents and Materials……………………………………………………....96 3.2.2 Confocal Setup of the LIF Instrument……………………………………….97 3.2.3 Hydrodynamic Pumping of Single DNA Molecules………………………..98 3.3 Results and Discussion……………………………………………………………..99 3.3.1 Selection of Substrate Material for Microchip……..………………………..99 3.3.2 Optimization of Excitation Laser Power……………………………………..101 3.3.3 Autocorrelation Analysis and Transit Time of Single Molecules………..105 3.3.4 Single-molecule Detection for Digital Molecule Counting……………….108 3.3.5 Photon Burst Amplitude Distribution……………………………………....110 3.3.6 Single-molecule Detector for Analog Fluorescence Measurement….....112 3.4 Conclusions………………………...………………………………………………...114 3.5 References………………………………………………………………………..…114 iv CHAPTER 4 LDR GENERATION OF REVERSE MOLECULAR BEACONS FOR NEAR REAL-TIME ANALYSIS OF BACTERIAL PATHOGENS USING spFRET AND COC MICROFLUIDIC CHIP……………………………………………………………………….116 4.1 Introduction…………………………………………………………………………...116 4.2 Experimental Section………………………………………………………………..121 4.2.1 Materials and Reagents………………………………………………….…...121 4.2.2 Bacterial Samples………………………………………………………….….121 4.2.3 PCR and LDR……………………………………………………………....….121 4.2.4 Primer and rMB Design for the LDRs……………………………………….122 4.2.5 Analysis of PCR and LDR Products………………………………………...126 4.2.6 Measurement of Energy Transfer…………………………………………...127 4.2.7 Fabrication of the COC Microfluidic Device…………………………….….127 4.2.8 Operation of the Microchip…………………………………………………...128 4.2.9 Instrumentation for LIF Single-molecule Detection………………………..129 4.3 Results and Discussions…………………………………………………………....130 4.3.1 Generating LDR Targets Using PCR Amplified gDNA for Assay Validation……………………………………………………………………………..130 4.3.2 LDR for Determining Gram(+/-) or Bacterial Strain………………………..131 4.3.3 Fluorescence Resonance Energy Transfer………………………………..134 4.3.4 Effects of Linker Structure on FRET Efficiency…………………………....138 4.3.5 Selection of Appropriate Polymer Substrate for the Microfluidic Chip.….139 4.3.6 Single-molecule Measurements of LDR-Generated rMBs Directly from Genomic DNA…………………………………………………………………….…140 4.4 Conclusions……………………………………………………………………….…146 4.5 References……………………………………………………………………………147 CHAPTER 5 QUANTIFICATION OF MRNA TRANSCRIPTS FOR EXPRESSION ANALYSIS OF MMP-7 GENE WITH RT-PCR AND RT-qPCR……………………..…152