Reconfigurable Computing

Total Page:16

File Type:pdf, Size:1020Kb

Reconfigurable Computing Recon®gurable Computing: What, Why, and Implications for Design Automation Andre DeHon and John Wawrzynek Berkeley Recon®gurable, Architectures, Software, and Systems Computer Science Division University of California at Berkeley Berkeley, CA 94720-1776 contact: <[email protected]> ¢¡¤£¦¥¦§©¨ ¥ single-chip silicon die capacity grows, this class of architectures be- comes increasingly viable, since more tasks can be pro®tably imple- Recon®gurable Computing is emerging as an important new orga- mented spatially, and increasingly important, since post-fabrication nizational structure for implementing computations. It combines customization is necessary to differentiate products, adapt to stan- the post-fabrication programmability of processors with the spatial dards, and provide broad applicability for monolithic IC designs. computational style most commonly employed in hardware de- In this tutorial we introduce the organizational aspects of re- signs. The result changes traditional ªhardwareº and ªsoftwareº con®gurable computing architectures, and we relate these recon- boundaries, providing an opportunity for greater computational ca- ®gurable architectures to more traditional alternatives (Section 2). pacity and density within a programmable media. Recon®gurable Section 3 distinguishes these different approaches in terms of in- Computing must leverage traditional CAD technology for building struction binding timing. We emphasize an intuitive appreciation spatial designs. Beyond that, however, reprogrammablility intro- for the bene®ts and tradeoffs implied by recon®gurable design duces new challenges and opportunities for automation, including (Section 4), and comment on its relevance to the design of future binding-time and specialization optimizations, regularity extraction computing systems (Section 6). We end with a roundup of CAD and exploitation, and temporal partitioning and scheduling. opportunities arising in the exploitation of recon®gurable systems (Section 7). ¤¥¦§¤ ¥ ¨ §©"!#¨ §$&%'£)(+*, -.¥/!#¨ §©$102*43¤¨ ¥¨"5 %6£ (78$ 9:3;"§¨"5 Traditionally, we either implemented computations in hardware (e.g. custom VLSI, ASICs, gate-arrays) or we implemented them When implementing a computation, we have traditionally decided in software running on processors (e.g. DSPs, microcontrollers, between custom hardware implementations and software imple- embedded or general-purpose microprocessors). More recently, mentations. In some systems, we make this decision on a subtask by however, Field-Programmable Gate Arrays (FPGAs) introduced a subtask basis, placing some subtasks in custom hardware and some new alternative which mixes and matches properties of the tradi- in software on more general-purpose processing engines. Hardware tional hardware and software alternatives. Machines based on these designs offer high performance because they are: FPGAs have achieved impressive performance [1] [11] [4]Ðoften customized to the problemÐno extra overhead for inter- achieving 100 the performance of processor alternatives and 10- pretation or extra circuitry capable of solving a more general 100 the performance per unit of silicon area. Using FPGAs for computing led the way to a general class problem of computer organizations which we now call recon®gurable com- relatively fastÐdue to highly parallel, spatial execution puting architectures. The key characteristics distinguishing these machines is that they both: Software implementations exploit a ªgeneral-purposeº execution engine which interprets a designated data stream as instructions can be customized to solve any problem after device fabrica- telling the engine what operations to perform. As a result, software tion is: exploit a large degree of spatially customized computation in ¯exibleÐtask can be changed simply by changing the in- order to perform their computation struction stream in rewriteable memory This class of architectures is important because it allows the com- relatively slowÐdue to mostly temporal execution putational capacity of the machine to be highly customized to the instantaneous needs of an application while also allowing the com- relatively inef®cient±since operators can be poorly matched putational capacity to be reused intime at a variety of time scales. As to computational task Figure 1 depicts the distinction between spatial and temporal computing. In spatial implementations, each operator exists at a different point in space, allowing the computation to exploit paral- lelism to achieve high throughput and low computational latencies. In temporal implementations, a small number of more general com- pute resources are reused in time, allowing the computation to be implemented compactly. Figure 3 shows that when we have only Spatial Computation Temporal Computation B B < 1 =?> t1 < X X < 2 = A 1 t2 D < C < @ 2 = 2 B < < A 2 = t2 1 A X A B = + @ t2 C C + D ALU C A1E 2 @ >1@ Figure 1: Spatial versus Temporal Computation for the expression A > B C X mul in in mul O1 A mul in B add O3 C add O2 O4 res=O5 ALU ALU ALU ALU ALU Y A&E 2 @ >F@ Figure 2: Spatially Con®gurable Implementation of expression A > B C When computation defined? G HI "¤JK7#9&$ pre−fabrication post−fabrication (hardware) (software) Instruction binding time is an important distinction amongst these three broad classes of computing media which helps us understand Space ASIC reconfigurable gate−array their relative merits. That is, in every case we must tell the compu- tational media how to behave, what operation to perform and how to connect operators. In the pre-fabrication hardware case, we do Time processors distributed in? Computation this by patterning the devices and interconnect, or programming, the device during the fabrication process. In the ªsoftwareº case, after fabrication we select the proper function from those supported Figure 3: Coarse Design Space for Computing Implementations by the silicon. This is done with a set of con®guration bits, an instruction, which tells each operator how to perform and where to get its input. In purely spatial software architectures, the bits these two options, we implicitly connect spatial processing with for each operator can be de®ned once and will then be used for hardware computation and temporal processing with software. a long processing epoch (Figure 2). This allows the operators to The key bene®t of FPGAs, and more broadly recon®gurable store only a single instruction local to the compute and interconnect devices, is that they introduce a class of post-fabrication con®g- operators. In temporal software architectures, the operator must urable devices which support spatial computations, thus giving us change with each cycle amongst a large number of instructions in a new organizational point in this space (Figure 3). Figure 2 shows order to implement the computation as a sequence of operations on a spatially con®gurable computation for comparison with Figure 1. a small number of active compute operators. As a result, the spatial Recon®gurable devices have the obvious bene®t of spatial paral- designs must have high bandwidth to a large amount of instruc- lelism, allowing them to perform more operations per cycle. As we tion memory for each operator (as shown in Figures 1). Figure 4 will see in Section 4, the organization has inherent density advan- shows this continuum from pre-fabrication operation binding time tages over traditionalprocessor designs. As a result, recon®gurables to cycle-by-cycle operation binding. can often pack this greater parallelism into the same die area as a Early operation binding time generally corresponds to less im- modern processor. plementation overhead. A fully custom design can implement only the circuits and gates needed for the task; it requires no extra mem- ‘‘Hardware’’ ‘‘Software’’ Datapath Width (w) M L One Media: Custom Gate FPGA Processors 1 4 16 64 256 1024 VLSI Array Time Prog. Binding N first metal fuse load every 1 FPGA Time: mask masks program config. cycle N fabrication 4 Reconfigurable time Figure 4: Binding Time Continuum \ Instruction Depth (c) ory for instructions or circuitry to perform operations not needed 2048 SIMD/Vector by a particular task. A gate-array implementation must use only Processors pre-patterned gates; it need only see the wire segments needed for a task, but must make do with the existing transistors and transistor arrangement regardless of task needs. In the spatial extreme, an Processors FPGA or recon®gurable design needs to hold a single instruction; this adds overhead for that instruction and for the more general Figure 5: Datapath Width Instruction Depth Architectural Design structures which handle all possible instructions. The processor Space needs to rebind its operation on every cycle, so it must pay a large price in instruction distribution mechanism, instruction storage, and limited instruction semantics in order to support this rebinding. operation on each cycle and are routed in the same manner to and On the ¯ip side, late operation binding implies an opportunity from memory or register ®les. For FPGAs, the datapath width is Y to more closely specialize the design to the instantaneous needs of a one ( E 1) since routing is controlled at the bit level and each given application. That is, if part of the data set used by an operator FPGA operator, typically a single-output Lookup-Table (LUT), can is bound later than the operation is bound, the design may have to be controlled independently. be much more general than the actual application requires. For
Recommended publications
  • Reconfigurable Computing
    Reconfigurable Computing: A Survey of Systems and Software KATHERINE COMPTON Northwestern University AND SCOTT HAUCK University of Washington Due to its potential to greatly accelerate a wide variety of applications, reconfigurable computing has become a subject of a great deal of research. Its key feature is the ability to perform computations in hardware to increase performance, while retaining much of the flexibility of a software solution. In this survey, we explore the hardware aspects of reconfigurable computing machines, from single chip architectures to multi-chip systems, including internal structures and external coupling. We also focus on the software that targets these machines, such as compilation tools that map high-level algorithms directly to the reconfigurable substrate. Finally, we consider the issues involved in run-time reconfigurable systems, which reuse the configurable hardware during program execution. Categories and Subject Descriptors: A.1 [Introductory and Survey]; B.6.1 [Logic Design]: Design Style—logic arrays; B.6.3 [Logic Design]: Design Aids; B.7.1 [Integrated Circuits]: Types and Design Styles—gate arrays General Terms: Design, Performance Additional Key Words and Phrases: Automatic design, field-programmable, FPGA, manual design, reconfigurable architectures, reconfigurable computing, reconfigurable systems 1. INTRODUCTION of algorithms. The first is to use hard- wired technology, either an Application There are two primary methods in con- Specific Integrated Circuit (ASIC) or a ventional computing for the execution group of individual components forming a This research was supported in part by Motorola, Inc., DARPA, and NSF. K. Compton was supported by an NSF fellowship. S. Hauck was supported in part by an NSF CAREER award and a Sloan Research Fellowship.
    [Show full text]
  • Syllabus: EEL4930/5934 Reconfigurable Computing
    EEL4720/5721 Reconfigurable Computing (dual-listed course) Department of Electrical and Computer Engineering University of Florida Spring Semester 2019 Catalog Description: Prereq: EEL4712C or EEL5764 or consent of instructor. Fundamental concepts at advanced undergraduate level (EEL4720) and introductory graduate level (EEL5721) in reconfigurable computing (RC) based upon advanced technologies in field-programmable logic devices. Topics include general RC concepts, device architectures, design tools, metrics and kernels, system architectures, and application case studies. Credit Hours: 3 Prerequisites by Topic: Fundamentals of digital design including device technologies, design methodology and techniques, and design environments and tools; fundamentals of computer organization and architecture, including datapath and control structures, data formats, instruction-set principles, pipelining, instruction-level parallelism, memory hierarchy, and interconnects and interfacing. Instructor: Dr. Herman Lam Office: Benton Hall, Room 313 Office hours: TBA Telephone: (352) 392-2689 Email: [email protected] Teaching Assistant: Seyed Hashemi Office hours: TBA Email: [email protected] Class lectures: MWF 4th period, Larsen Hall 239 Required textbook: none References: . Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation, edited by Scott Hauck and Andre DeHon, Elsevier, Inc. (Morgan Kaufmann Publishers), Amsterdam, 2008. ISBN: 978-0-12-370522-8 . C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004, ISBN: 978-0750676045.
    [Show full text]
  • A MATLAB Compiler for Distributed, Heterogeneous, Reconfigurable
    A MATLAB Compiler For Distributed, Heterogeneous, Reconfigurable Computing Systems P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha, A. Jones, A. Kanhare A. Nayak, S. Periyacheri, M. Walkden, D. Zaretsky Electrical and Computer Engineering Northwestern University 2145 Sheridan Road Evanston, IL-60208 [email protected] Abstract capabilities and are coordinated to perform an application whose subtasks have diverse execution requirements. One Recently, high-level languages such as MATLAB have can visualize such systems to consist of embedded proces- become popular in prototyping algorithms in domains such sors, digital signal processors, specialized chips, and field- as signal and image processing. Many of these applications programmable gate arrays (FPGA) interconnected through whose subtasks have diverse execution requirements, often a high-speed interconnection network; several such systems employ distributed, heterogeneous, reconfigurable systems. have been described in [9]. These systems consist of an interconnected set of heteroge- A key question that needs to be addressed is how to map neous processing resources that provide a variety of archi- a given computation on such a heterogeneous architecture tectural capabilities. The objective of the MATCH (MATlab without expecting the application programmer to get into Compiler for Heterogeneous computing systems) compiler the low level details of the architecture or forcing him/her to project at Northwestern University is to make it easier for understand
    [Show full text]
  • Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems »
    THESE DE DOCTORAT DE L’UNIVERSITÉ BRETAGNE SUD COMUE UNIVERSITE BRETAGNE LOIRE ÉCOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Électronique Par « Satyajit DAS » « Architecture and Programming Model Support For Reconfigurable Accelerators in Multi-Core Embedded Systems » Thèse présentée et soutenue à Lorient, le 4 juin 2018 Unité de recherche : Lab-STICC Thèse N° : 491 Rapporteurs avant soutenance : Composition du Jury : Michael HÜBNER Professeur, Ruhr-Universität François PÊCHEUX Professeur, Sorbonne Université Bochum Président (à préciser après la soutenance) Jari NURMI Professeur, Tampere University of Angeliki KRITIKAKOU Maître de conférences, Université Technology Rennes 1 Davide ROSSI Assistant professor, Université de Bologna Kevin MARTIN Maître de conférences, Université Bretagne Sud Directeur de thèse Philippe COUSSY Professeur, Université Bretagne Sud Co-directeur de thèse Luca BENINI Professeur, Université de Bologna Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems Satyajit Das 2018 iii ABSTRACT Emerging trends in embedded systems and applications need high throughput and low power consumption. Due to the increasing demand for low power computing, and diminishing returns from technology scaling, industry and academia are turning with renewed interest toward energy efficient hardware accelerators. The main drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function and increasing the number of the accelerators in a system onchip (SoC) causes scalability issues. Programmable accelerators provide flexibility and solve the scalability issues. Coarse-Grained Reconfigurable Array (CGRA) architecture consisting several processing elements with word level granularity is a promising choice for programmable accelerator.
    [Show full text]
  • Hardware Platforms for Embedded Computing Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 Universität Dortmund Importance of Energy Efficiency
    Universität Dortmund Hardware Platforms for Embedded Computing Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 Universität Dortmund Importance of Energy Efficiency Efficient software design needed, otherwise, the price for software flexibility cannot be paid. © Hugo De Man (IMEC) Philips, 2007 Universität Dortmund Embedded vs. general-purpose processors • Embedded processors may be optimized for a category of applications. – Customization may be narrow or broad. • We may judge embedded processors using different metrics: – Code size. – Memory system performance. – Preditability. • Disappearing distinction: embedded processors everywhere Universität Dortmund Microcontroller Architectures Memory 0 Address Bus Program + CPU Data Bus Data Von Neumann 2n Architecture Memory 0 Address Bus Program CPU Fetch Bus Harvard Address Bus 0 Architecture Data Bus Data Universität Dortmund RISC processors • RISC generally means highly-pipelinable, one instruction per cycle. • Pipelines of embedded RISC processors have grown over time: – ARM7 has 3-stage pipeline. – ARM9 has 5-stage pipeline. – ARM11 has eight-stage pipeline. ARM11 pipeline [ARM05]. Universität Dortmund ARM Cortex Based on ARMv7 Architecture & Thumb®-2 ISA – ARM Cortex A Series - Applications CPUs focused on the execution of complex OS and user applications • First Product: Cortex-A8 • Executes ARM, Thumb-2 instructions – ARM Cortex R Series - Deeply embedded processors focused on Real-time environments • First Product: Cortex-R4(F) • Executes ARM, Thumb-2 instructions – ARM Cortex M
    [Show full text]
  • Reconfigurable Computing
    Reconfigurable Computing David Boland1, Chung-Kuan Cheng2, Andrew B. Kahng2, Philip H.W. Leong1 1School of Electrical and Information Engineering, The University of Sydney, Australia 2006 2Dept. of Computer Science and Engineering, University of California, La Jolla, California Abstract: Reconfigurable computing is the application of adaptable fabrics to solve computational problems, often taking advantage of the flexibility available to produce problem-specific architectures that achieve high performance because of customization. Reconfigurable computing has been successfully applied to fields as diverse as digital signal processing, cryptography, bioinformatics, logic emulation, CAD tool acceleration, scientific computing, and rapid prototyping. Although Estrin-first proposed the idea of a reconfigurable system in the form of a fixed plus variable structure computer in 1960 [1] it has only been in recent years that reconfigurable fabrics, in the form of field-programmable gate arrays (FPGAs), have reached sufficient density to make them a compelling implementation platform for high performance applications and embedded systems. In this article, intended for the non-specialist, we describe some of the basic concepts, tools and architectures associated with reconfigurable computing. Keywords: reconfigurable computing; adaptable fabrics; application integrated circuits; field programmable gate arrays (FPGAs); system architecture; runtime 1 Introduction Although reconfigurable fabrics can in principle be constructed from any type of technology, in practice, most contemporary designs are made using commercial field programmable gate arrays (FPGAs). An FPGA is an integrated circuit containing an array of logic gates in which the connections can be configured by downloading a bitstream to its memory. FPGAs can also be embedded in integrated circuits as intellectual property cores.
    [Show full text]
  • A Reconfigurable Convolutional Neural Network-Accelerated
    electronics Article A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on RISC-V Instruction Set Ning Wu *, Tao Jiang, Lei Zhang, Fang Zhou and Fen Ge College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; [email protected] (T.J.); [email protected] (L.Z.); [email protected] (F.Z.); [email protected] (F.G.) * Correspondence: [email protected]; Tel.: +86-139-5189-3307 Received: 5 May 2020; Accepted: 8 June 2020; Published: 16 June 2020 Abstract: As a typical artificial intelligence algorithm, the convolutional neural network (CNN) is widely used in the Internet of Things (IoT) system. In order to improve the computing ability of an IoT CPU, this paper designs a reconfigurable CNN-accelerated coprocessor based on the RISC-V instruction set. The interconnection structure of the acceleration chain designed by the predecessors is optimized, and the accelerator is connected to the RISC-V CPU core in the form of a coprocessor. The corresponding instruction of the coprocessor is designed and the instruction compiling environment is established. Through the inline assembly in the C language, the coprocessor instructions are called, coprocessor acceleration library functions are established, and common algorithms in the IoT system are implemented on the coprocessor. Finally, resource consumption evaluation and performance analysis of the coprocessor are completed on a Xilinx FPGA. The evaluation results show that the reconfigurable CNN-accelerated coprocessor only consumes 8534 LUTS, accounting for 47.6% of the total SoC system. The number of instruction cycles required to implement functions such as convolution and pooling based on the designed coprocessor instructions is better than using the standard instruction set, and the acceleration ratio of convolution is 6.27 times that of the standard instruction set.
    [Show full text]
  • Reconfigurable Computing Brittany Ransbottom Benjamin Wheeler What Is Reconfigurable Computing?
    Reconfigurable Computing Brittany Ransbottom Benjamin Wheeler What is Reconfigurable Computing? A computer architecture style which tries to find a happy medium of general purpose processors and ASICs through the use of the flexibility of software, and the speed of hardware. Reconfigurable Computing von Neumann vs. Reconfigurable Fixed resources Variable resources The architecture is While the designed prior to architecture is use as a processor designed prior to use, it can be adjusted or reconfigured to use different resources Execution in SW Execution in HW Spatial vs. Temporal Hardware Software Software The Reconfigurable Computing Paradox • Migration from software to configware o speed-up factors and electricity consumption reduction of about four orders of magnitude o Clock frequency and other specifications of FPGAs are behind microprocessors by about four orders of magnitude Current State No designs merge GPP and ASIC enough to be marketable Too specialized (a glorified asic), or priced too high to benefit replacing GPPs Coarse-Grained doesn't have SW support necessary What is an FPGA? Reprogrammable Hardware Generally configured in VHDL or Verilog Can execute processes spatially as opposed to temporally The FPGA Coprocessor Option +Reprogrammable Logic -Requires pre-existing HW design -Needs to be specific processing, or have an intensive controller/compiler What is Coarse-grained computing Functional units (add, subtraction, multiplication - word-level operations) interconnected in a mesh style Coarse-Grained +Short Reconfiguration
    [Show full text]
  • Elements of High-Performance Reconfigurable Computing*
    Author's ppersonalersonal copcopyy Elements of High-Performance Reconfigurable Computing* TOM VANCOURT† Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 MARTIN C. HERBORDT Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 Abstract Numerous application areas, including bioinformatics and computational biology (BCB), demand increasing amounts of processing capability. In many cases, the computation cores and data types are suited to field-programmable gate arrays (FPGAs). The challenge is identifying those design techniques that can extract high performance from the FPGA fabric while allowing efficient development of production-worthy program codes. After brief introductions to high-performance reconfigurable computing (HPRC) systems and some appli- cations for which they are well suited, we present a dozen such techniques together with examples of their use in our own research in BCB. Each technique, if ignored in a naive implementation, would have cost at least a factor 2 in performance, with most saving a factor of 10 or more. We follow this by comparing HPRC with an alternative accelerator technology, the use of graphics processors for general-purpose computing (GPGPU). We conclude with a discussion of some implications for future HPRC development tools. * This chapter is based on two articles previously published by the IEEE: ‘‘Achieving High Performance with FPGA-Based Computing’’ which appeared in IEEE Computer in March 2007, and ‘‘Computing Models for FPGA-Based Accelerators’’ which appeared in IEEE Computing in Science and Engineering in November/December 2008. { Currently with Altera, Inc. ADVANCES IN COMPUTERS, VOL. 75 113 Copyright © 2009 Elsevier Inc. ISSN: 0065-2458/DOI: 10.1016/S0065-2458(08)00802-4 All rights reserved.
    [Show full text]
  • Coarse-Grained Reconfigurable Computing with the Versat
    electronics Article Coarse-Grained Reconfigurable Computing with the Versat Architecture João D. Lopes 1 , Mário P. Véstias 2,* , Rui Policarpo Duarte 1 , Horácio C. Neto 1 and José T. de Sousa 1 1 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; [email protected] (J.D.L.); [email protected] (R.P.D.); [email protected] (H.C.N.); [email protected] (J.T.d.S.) 2 INESC-ID, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal * Correspondence: [email protected]; Tel.: +351-218-317-000 Abstract: Reconfigurable computing architectures allow the adaptation of the underlying datapath to the algorithm. The granularity of the datapath elements and data width determines the granularity of the architecture and its programming flexibility. Coarse-grained architectures have shown the right balance between programmability and performance. This paper provides an overview of coarse-grained reconfigurable architectures and describes Versat, a Coarse-Grained Reconfigurable Array (CGRA) with self-generated partial reconfiguration, presented as a case study for better under- standing these architectures. Unlike most of the existing approaches, which mainly use pre-compiled configurations, a Versat program can generate and apply myriads of on-the-fly configurations. Partial reconfiguration plays a central role in this approach, as it speeds up the generation of incrementally different configurations. The reconfigurable array has a complete graph topology, which yields un- precedented programmability, including assembly programming. Besides being useful for optimising programs, assembly programming is invaluable for working around post-silicon hardware, software, Citation: Lopes, J.D.; Véstias, M.P.; Duarte, R.P.; Neto, H.C.; de Sousa, J.T.
    [Show full text]
  • Reconfigurable Computing: Architectures and Design Methods
    1 Reconfigurable Computing: Architectures and Design Methods ∗ ∗∗ ∗∗∗ ∗ ∗ ∗∗ ∗ T.J. Todman , G.A. Constantinides , S.J.E. Wilton , O. Mencer , W. Luk and P.Y.K. Cheung Department of Computing, Imperial College London, UK ∗∗ Department of Electrical and Electronic Engineering, Imperial College London, UK ∗∗∗ Department of Electrical and Computer Engineering, University of British Columbia, Canada Abstract Reconfigurable computing is becoming increasingly attractive for many applications. This survey covers two aspects of reconfigurable computing: architectures and design methods. Our chapter includes recent advances in reconfigurable architectures, such as the Altera Stratix II and Xilinx Virtex 4 FPGA devices. We identify major trends in general-purpose and special-purpose design methods. I. INTRODUCTION Reconfigurable computing is rapidly establishing itself as a major discipline that covers various subjects of learning, including both computing science and electronic engineering. Reconfigurable computing involves the use of reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), for computing purposes. Reconfigurable computing is also known as configurable computing or custom computing, since many of the design techniques can be seen as customising a computational fabric for specific applications [102]. Reconfigurable computing systems often have impressive performance. Consider, as an example, the point multiplication operation in Elliptic Curve cryptography. For a key size of 270 bits, it has been reported [172] that a point multiplication can be computed in 0.36 ms with a reconfigurable computing design implemented in an XC2V6000 FPGA at 66 MHz. In contrast, an optimised software implementation requires 196.71 ms on a dual-Xeon computer at 2.6 GHz; so the reconfigurable computing design is more than 540 times faster, while its clock speed is almost 40 times slower than the Xeon processors.
    [Show full text]
  • Dionysios Diamantopoulos
    Dionysios Diamantopoulos PHD · RESEARCH ASSOCIATE · R&D COMPUTER ENGINEER Thalwil, 8800, Zurich Canton, Switzerland (+41)-0-793339529 | [email protected] | diamantopoulos.github.io | dionysiosdiamantopoulos | dionisis.diamantopoulos | diamantopoulos Cover note: Developing innovative digital systems and design tools as well, by following a multi-facet approach is my core belief in the last years of my work experience. A strong research background gives me the analytical framework for simplifying complexity. In the past years I have actively participated in several leading multi-national projects delivering world-class digital systems with highly acknowledged contribution in the realization of reconfigurable and application specific computing. Being passionate about all things to do with silicon bring-up, I am constantly looking to deploy my expertise in world-class R&D computer engineering challenges. Education NTUA (Electrical & Computer Engineering - National Technical Univ. of Athens) Athens, Greece PH.D. IN COMPUTER SCIENCE & ENGINEERING November 2009 - July 2015 • Dissertation title: “Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Plat- forms”. Available in Greek (280 pages) & English (237 pages). • Advisor: Assoc. Prof. NTUA Dimitrios Soudris. • Promotion Committee: Assoc. Prof. NTUA D. Soudris, Prof. NTUA K. Pekmestzi, Assis. Prof. NTUA G. Economakos, Assis. Prof. U. Patras G. Theodoridis, Assoc. Prof. NKUA D. Reisis, Prof. RUB M. Hübner and Professor
    [Show full text]