Program of Technical Sessions

Total Page:16

File Type:pdf, Size:1020Kb

Program of Technical Sessions FORTY-FIFTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 17–21, 2014 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIR David Draper, NASA Johnson Space Center PROGRAM COMMITTEE Carl Allen, NASA Johnson Space Center Scott Messenger, NASA Johnson Space Center Doug Archer, NASA Johnson Space Center Ryan Mills, NASA Johnson Space Center Josh Bandfield, Space Science Institute Andrew Needham, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Paul Niles, NASA Johnson Space Center Roy Christoffersen, Jacobs Technology Sarah Noble, NASA Goddard Space Flight Center Shawn Domagal-Goldman, NASA Goddard Space Flight Ross Potter, Lunar and Planetary Institute Center Liz Rampe, NASA Johnson Space Center Dean Eppler, NASA Johnson Space Center Jennifer Rapp, NASA Johnson Space Center Amy Fagan, Lunar and Planetary Institute Paul Schenk, Lunar and Planetary Institute Marc Fries, NASA Johnson Space Center Andy Shaner, Lunar and Planetary Institute Juliane Gross, American Museum of Natural History Justin Simon, NASA Johnson Space Center John Gruener, NASA Johnson Space Center Yann Sonzogni, Lunar and Planetary Institute Christopher Hamilton, University of Arizona Paul Spudis, Lunar and Planetary Institute Debra Hurwitz, Lunar and Planetary Institute Brad Sutter, Jacobs Technology Walter Kiefer, Lunar and Planetary Institute Brad Thomson, Boston University Rachel Klima, Johns Hopkins University/Applied Physics Allan Treiman, Lunar and Planetary Institute Lab Danielle Wyrick, Southwest Research Institute Tom Lapen, University of Houston Ryan Zeigler, NASA Johnson Space Center Francis McCubbin, University of New Mexico Produced by the Lunar and Planetary Institute (LPI), 3600 Bay Area Boulevard, Houston TX 77058-1113, which is supported by NASA under Award No. NNX08AC28A. Logistics, administrative, and publications support for the conference were provided by USRA Houston Meeting Planning Services. ABOUT LPSC The Lunar and Planetary Science Conference brings together international specialists in petrology, geochemistry, geophysics, geology, and astronomy to present the latest results of research in planetary science. The five-day conference is organized by topical symposia and problem-oriented sessions. LOGISTICAL INFORMATION Venue Address and Phone Number The conference is being held at The Woodlands Waterway Marriott Hotel and Convention Center, which is located at 1601 Lake Robbins Dr., The Woodlands TX 77380. The phone number for the hotel is 281-367-9797. Messages may be left for conference attendees by phoning the hotel and asking for the conference registration desk. Please note that copy and printing services are not available at the conference registration desk, and must be arranged through the hotel business center. For your convenience, a minimal number of laptops and printers will be available in the Wi-Fi access rooms (see below). Registration Conference registration and check-in will be held on Sunday, March 16, from 4:00 to 8:00 p.m., and from 8:00 a.m. to 5:00 p.m. Monday through Friday, March 17 through 21. Conference badges provide access to all technical sessions, special events, and shuttle service. Internet Access Complimentary Wi-Fi service will be available throughout the duration of the conference in the Creekside Park room (open only during conference hours), and in the Town Center Exhibit Area and immediate vicinity. Wi-Fi service will NOT be available in the oral session rooms for anyone other than the selected LPSC microbloggers. This restriction is (and has been) in place to curtail activities that could be distracting to speakers during their presentations. Conference Shuttle Service Conference shuttle bus service between the venue and the approved list of hotels will be provided on Sunday evening during the registration time and throughout the duration of the conference. Shuttle service will run before and immediately following all technical sessions. Detailed shuttle schedules are available in the registration area and on the LPSC website at www.hou.usra.edu/meetings/lpsc2014/travel/shuttleInfo. Poster Printing Available AlphaGraphics will have a staffed booth at The Woodlands Waterway Marriott, just outside the Town Center Exhibit Area. Poster presenters can pick up pre-ordered posters or place orders for posters beginning on Sunday, March 16. The desk is located just outside the Town Center Exhibit Area on the first floor. For more information, visit their website at www.txagprinting.com. Personal Schedule Create your own personal meeting schedule using the Personal Schedule tool found in the USRA Meeting Portal at https://www.hou.usra.edu/meeting_portal/schedule/. Select the sessions you want to attend or talks you want to hear, then create a shareable schedule that can be viewed on your smart phone or shared with a colleague. LIST OF EXHIBITORS Cambridge University Press GSA Planetary Geology Division www.cambridge.org/us/academic http://geosociety.org/pgd/ 32 Avenue of the Americas P.O. Box 9140 New York NY 10013 Boulder CO 80301-9140 Contact: Emma Kiddle Contact: James Wray [email protected] [email protected] Cambridge’s publishing in books and journals combines The Geological Society of America is a global professional state-of-the-art content with the highest standards of society with more than 25,000 members in 107 countries. Its scholarship, writing and production. Visit our stand to Planetary Geology Division exists to bring together browse new titles, available at a 20% discount, and to pick geoscientists working in (or interested in) the various up sample issues of our journals. Visit our website to see disciplines of planetary geoscience. PGD works to stimulate everything we do: www.cambridge.org/us/academic. communication with geoscientists working in other fields, and supports and encourages planetary geoscience Centre for Planetary Science and students by sponsoring the Stephen E. Dwornik Award at LPSC and the annual Pellas-Ryder Award for best student Exploration (CPSX) paper. cpsx.uwo.ca University of Western Ontario, Dept Earth Sciences 1151 Richmond St Jacobs Technology London Ontario N6A 5B7 Canada www.jacobstechnology.com 2224 Bay Area Blvd Contact: Melissa Battler Houston TX 77058 [email protected] Contact: Sara Stanley The Centre for Planetary Science and Exploration at [email protected] Western University is the hub for planetary science and exploration research in Canada. Our mantra is excellence in Jacobs Technology is the advanced technology division of research, education, and outreach. The Centre hosts Jacobs Engineering, one of the nation’s largest engineering Canada’s only graduate program in planetary science and and technical services-only companies. With 70+ years of provides national leadership by running short courses, experience supporting government and commercial clients, workshops, and field trips, and by leading Canada’s we have earned a reputation for excellence and outstanding membership in the NASA Lunar Science Institute and the technical and managerial achievements in quality, NASA Astrobiology Institute. performance, and safety. Jacobs Technology provides comprehensive planetary science research and analysis services for the NASA Johnson Space Center. JHU/Applied Physics Laboratory LPI-JSC Center for Lunar Science and civspace.jhuapl.edu Exploration 11100 Johns Hopkins Road www.lpi.usra.edu/nlsi Laurel MD 20723 3600 Bay Area Blvd Houston TX 77058 Contact: Margaret Simon [email protected] Contact: Delia Enriquez [email protected] The Johns Hopkins University’s Applied Physics Laboratory (APL) leads several NASA missions and conducts The LPI-JSC Center for Lunar Science and Exploration is significant grant based research on planetary, space, and one of the founding members of the NASA Lunar Science Earth science interests. APL has built over 60 spacecraft Institute (NLSI) and the new Solar System Exploration and instruments, including New Horizons, MESSENGER, Research Virtual Institute (SSERVI). At LPSC, the Center STEREO, the Van Allen Probes, and an operational will help faculty find classroom resources, advise university cubesat. students about future training opportunities, and distribute educational and public outreach materials. JMARS — Mars Space Flight Facility — Arizona State University Lunar Reconnaissance Orbiter Camera jmars.mars.asu.edu SOC — Lunaserv 201 E. Orange Mall lunaserv.lroc.asu.edu Tempe AZ 85287 P.O. Box 873606 Tempe AZ 85287-3603 Contact: Scott Dickenshied [email protected] Contact: Nicholas Estes [email protected] JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free, open-source, Java-based geospatial The LROC Science Operations Center (SOC) supports information system developed by the Mars Space Flight camera instrument operations, instrument trending, Facility at Arizona State University. It is currently used for systematic data processing, and data dissemination. mission planning and scientific data analysis by several Lunaserv development by the LROC SOC supports NASA missions, including Mars Odyssey, Mars projecting data in Moon-specific spatial reference systems Reconnaissance Orbiter, the Lunar Reconnaissance (SRS) in support of those tasks,
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 34: AUGUST 16-22 Presented by The Earthrise Institute # 34 Authored by Alan Hale This week in history AUGUST 16 17 18 19 20 21 22 AUGUST 16, 1898: DeLisle Stewart at Harvard College Observatory’s Boyden Station in Arequipa, Peru, takes photographs on which Saturn’s outer moon Phoebe is discovered, although the images of Phoebe were not noticed until the following March by William Pickering. Phoebe was the first planetary moon to be discovered via photography, and it and other small planetary moons are discussed in last week’s “Special Topics” presentation. AUGUST 16, 2009: A team of scientists led by Jamie Elsila of the Goddard Space Flight Center in Maryland announces that they have detected the presence of the amino acid glycine in coma samples of Comet 81P/ Wild 2 that were returned to Earth by the Stardust mission 3½ years earlier. Glycine is utilized by life here on Earth, and the presence of it and other organic substances in the solar system’s “small bodies” is discussed in this week’s “Special Topics” presentation. AUGUST 16 17 18 19 20 21 22 AUGUST 17, 1877: Asaph Hall at the U.S. Naval Observatory in Washington, D.C. discovers Mars’ larger, inner moon, Phobos. Mars’ two moons, and the various small moons of the outer planets, are the subject of last week’s “Special Topics” presentation. AUGUST 17, 1989: In its monthly batch of Minor Planet Circulars (MPCs), the IAU’s Minor Planet Center issues MPC 14938, which formally numbers asteroid (4151), later named “Alanhale.” I have used this asteroid as an illustrative example throughout “Ice and Stone 2020” “Special Topics” presentations.
    [Show full text]
  • MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures.
    [Show full text]
  • New Major and Trace Element Data from Acapulcoite-Lodranite Clan
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1307.pdf New Major and Trace Element Data from Acapulcoite-Lodranite Clan Meteorites: Evidence for Melt-Rock Reaction Events and Early Collisional Fragmentation of the Parent Body Michael P. Lucas1, Nick Dygert1, Nathaniel R. Miller2, and Harry Y. McSween1, 1Department of Earth & Planetary Sciences, University of Tennessee, Knoxville, [email protected], 2Department of Geological Sciences, Univer- sity of Texas at Austin. Introduction: New major and trace element data illumi- patterns exhibit negative Eu anomalies. REE patterns are nate the magmatic and thermal evolution of the acapul- generally consistent among the three groups, however coite-lodranite parent body (ALPB). We observe major comparison of calculated equilibrium melts for acapulco- and trace element disequilibrium in the acapulcoite and ite and transitional cpx and opx demonstrates disequilib- transitional groups that provide evidence for melt infil- rium partitioning in those samples, especially for light- tration and melt-rock reaction processes. In lodranites, REEs in cpx. In contrast, lodranites are in apparent trace which represent sources of the infiltrating melts, we ob- element equilibrium (Fig 1b). They are depleted in serve rapid cooling from high temperatures (hereafter REE+Y relative to acapulcoite-transitional samples in temps), consistent with collisional fragmentation of the cpx (Fig. 1a), and display consistent REE abundances parent body during differentiation. except NWA 5488, which
    [Show full text]
  • Hf–W Thermochronometry: II. Accretion and Thermal History of the Acapulcoite–Lodranite Parent Body
    Earth and Planetary Science Letters 284 (2009) 168–178 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body Mathieu Touboul a,⁎, Thorsten Kleine a, Bernard Bourdon a, James A. Van Orman b, Colin Maden a, Jutta Zipfel c a Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Clausiusstrasse 25, 8092 Zurich, Switzerland b Department of Geological Sciences, Case Western Reserve University, Cleveland, OH, USA c Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main, Germany article info abstract Article history: Acapulcoites and lodranites are highly metamorphosed to partially molten meteorites with mineral and bulk Received 11 November 2008 compositions similar to those of ordinary chondrites. These properties place the acapulcoites and lodranites Received in revised form 8 April 2009 between the unmelted chondrites and the differentiated meteorites and as such acapulcoites–lodranites are Accepted 9 April 2009 of special interest for understanding the initial stages of asteroid differentiation as well as the role of 26Al Available online 3 June 2009 heating in the thermal history of asteroids. To constrain the accretion timescale and thermal history of the Editor: R.W. Carlson acapulcoite–lodranite parent body, and to compare these results to the thermal histories of other meteorite parent bodies, the Hf–W system was applied to several acapulcoites and lodranites. Acapulcoites Dhofar 125 Keywords: – Δ chronology and NWA 2775 and lodranite NWA 2627 have indistinguishable Hf W ages of tCAI =5.2±0.9 Ma and Δ isochron tCAI =5.7±1.0 Ma, corresponding to absolute ages of 4563.1±0.8 Ma and 4562.6±0.9 Ma.
    [Show full text]
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • Mineralogy and Petrology of the Angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D
    Mineralogy and petrology of the angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, C. Göpel, Marcel Bohn To cite this version: Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, et al.. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics and Planetary Science, Wiley, 2005, 40 (3), pp.361-375. hal-00113853 HAL Id: hal-00113853 https://hal.archives-ouvertes.fr/hal-00113853 Submitted on 2 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meteoritics & Planetary Science 40, Nr 3, 361–375 (2005) Abstract available online at http://meteoritics.org Mineralogy and petrology of the angrite Northwest Africa 1296 A. JAMBON,1 J. A. BARRAT,2 O. BOUDOUMA,3 M. FONTEILLES,4 D. BADIA,1 C. GÖPEL,5 and M. BOHN6 1Laboratoire Magie, Université Pierre et Marie Curie, CNRS UMR 7047, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 2UBO-IUEM, CNRS UMR 6538, Place Nicolas Copernic, F29280 Plouzané, France 3Service du MEB, UFR des Sciences de la Terre, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 4Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 5Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe, CNRS UMR 7579, 4 place Jussieu, 75252 Paris cedex 05, France 6Ifremer-Centre de Brest, CNRS-UMR 6538, BP70, 29280 Plouzané Cedex, France *Corresponding author.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 A.M
    79th Annual Meeting of the Meteoritical Society (2016) sess701.pdf Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 a.m. Room B Chairs: Gregory Brennecka Audrey Bouvier 8:30 a.m. Kruijer T. S. * Kleine T. Tungsten Isotope Dichotomy Among Iron Meteorite Parent Bodies: Implications for the Timescales of Accretion and Core Formation [#6449] We report new combined Pt and W isotope data for IC, IIC, IIF, IIIE, and IIIF iron meteorites, with the ultimate aim of better understanding the variable pre-exposure 182W/184W signatures observed among different iron meteorite groups. 8:45 a.m. Tissot F. L. H. * Dauphas N. Grove T. L. Heterogeneity in the 238U/235U Ratios of Angrites [#6104] We report the 238U/235U ratios of six angrites. We find that the angrite-parent body was heterogeneous with regards to U isotopes. We correct the Pb-Pb ages of angrites and test their concordance with ages derived from short-lived chronometers. 9:00 a.m. Brennecka G. A. * Amelin Y. Kleine T. Combined 238U/235U and Pb Isotopics of Planetary Core Material: The Absolute Age of the IVA Iron Muonionalusta [#6296] We report a measured 238U/235U for the IVA iron Muonionalusta. This measured value requires an age correction of ~7 Myr to the previously published Pb-Pb age. This has major implications for our understanding of planetary core formation and cooling. 9:15 a.m. Cartwright J. A. * Amelin Y. Koefoed P. Wadhwa M. U-Pb Age of the Ungrouped Achondrite NWA 8486 [#6231] We report the U-Pb age for ungrouped achondrite NWA 8486 (paired with NWA 7325).
    [Show full text]
  • Thickness of the Martian Crust: Improved Constraints from Geoid-To-Topography Ratios Mark A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, E01009, doi:10.1029/2003JE002153, 2004 Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios Mark A. Wieczorek De´partement de Ge´ophysique Spatiale et Plane´taire, Institut de Physique du Globe de Paris, Saint-Maur, France Maria T. Zuber Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Received 10 July 2003; revised 1 September 2003; accepted 24 November 2003; published 24 January 2004. [1] The average crustal thickness of the southern highlands of Mars was investigated by calculating geoid-to-topography ratios (GTRs) and interpreting these in terms of an Airy compensation model appropriate for a spherical planet. We show that (1) if GTRs were interpreted in terms of a Cartesian model, the recovered crustal thickness would be underestimated by a few tens of kilometers, and (2) the global geoid and topography signals associated with the loading and flexure of the Tharsis province must be removed before undertaking such a spatial analysis. Assuming a conservative range of crustal densities (2700–3100 kg mÀ3), we constrain the average thickness of the Martian crust to lie between 33 and 81 km (or 57 ± 24 km). When combined with complementary estimates based on crustal thickness modeling, gravity/topography admittance modeling, viscous relaxation considerations, and geochemical mass balance modeling, we find that a crustal thickness between 38 and 62 km (or 50 ± 12 km) is consistent with all studies. Isotopic investigations based on Hf-W and Sm-Nd systematics suggest that Mars underwent a major silicate differentiation event early in its evolution (within the first 30 Ma) that gave rise to an ‘‘enriched’’ crust that has since remained isotopically isolated from the ‘‘depleted’’ mantle.
    [Show full text]
  • Formation Mechanisms of Ringwoodite: Clues from the Martian Meteorite
    Zhang et al. Earth, Planets and Space (2021) 73:165 https://doi.org/10.1186/s40623-021-01494-1 FULL PAPER Open Access Formation mechanisms of ringwoodite: clues from the Martian meteorite Northwest Africa 8705 Ting Zhang1,2, Sen Hu1, Nian Wang1,2, Yangting Lin1* , Lixin Gu1,3, Xu Tang1,3, Xinyu Zou4 and Mingming Zhang1 Abstract Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The frst two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor- phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post- shock pressure of 14–16 GPa and a temperature of 1650–1750 °C.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]