Diaphorina Citri) in Southern California

Total Page:16

File Type:pdf, Size:1020Kb

Diaphorina Citri) in Southern California UNIVERSITY OF CALIFORNIA RIVERSIDE Predators of Asian Citrus Psyllid (Diaphorina citri) in Southern California A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Aviva Goldmann December 2017 Dissertation Committee: Dr. Richard Stouthamer, Chairperson Dr. Matt Daugherty Dr. Jocelyn Millar Dr. Erin Rankin Copyright by Aviva Goldmann 2017 The Dissertation of Aviva Goldmann is approved: Committee Chairperson University of California, Riverside Acknowledgements I would like to thank my graduate advisor, Dr. Richard Stouthamer, without whom this work would not have been possible. I am more grateful than I can express for his support and for the confidence he placed in my research. I am very grateful to many members of the Stouthamer lab for their help and contributions. Dr. Paul Rugman-Jones gave essential support and guidance during all phases of this project, and contributed substantially to the design and troubleshooting of molecular analyses. The success of the field experiment described in Chapter 2 is entirely due to the efforts of Dr. Anna Soper. Fallon Fowler, Mariana Romo, and Sarah Smith provided excellent field and lab assistance that was instrumental in completing this research. I could not have done it alone, especially at 4:00 AM. Janet Hare and Daniel Manzo reared all the ACP used for the experiments described in Chapter 5. Their good nature, accommodation, and reliability were key in the success of these studies. This manuscript was much improved by help and feedback from my dissertation committee members: Dr. Matt Daugherty, Dr. Jocelyn Millar, and Dr. Erin Rankin. Sincere thanks to Dr. Anupama Dahanukar, Dr. Joseph Morse, Dr. Leonard Nunney, and Dr. William Walton for serving on my guidance committee. Many members of the UCR Entomology and campus community were very generous with their time and resources. Dr. Douglas Yanega helped many times with identifications, museum resources, and taxonomic literature. Dr. Steve McElfresh provided key guidance in early stages of my research. Dr. Roger iv Burks worked with me to produce professional-quality photographs of my study organisms. The smooth functioning of the I&Q and other facilities is owed to Imad Bayoun’s constant work. Melissa Gomez and Kathy Redd went to extra trouble to help me clear every administrative hurdle. The entire Entomology administrative office unfailingly took care of essentials that made this work possible: funding, facilities, supplies, scheduling, and more. The UCR Graduate Writing Center, GradQuant, and Graduate Academic Affairs were extremely helpful. The Institute for Integrative Genome Biology staff often went above and beyond. Sincere thanks go to experts who graciously provided identifications of key predator species: Dr. Robert Gordon, Dr. Catherine Tauber, Dr. Natalia Vandenberg, and Dr. Richard Vetter. The Entomology department works hard to connect graduate students with financial support throughout their degree programs, for which I am very grateful. The Citrus Research Board provided three years of funding, important guidance, feedback, and opportunities to present my work. The Robert and Peggy van den Bosch Scholarship for Graduate Student Research in Biological Control and the Harry Scott Smith Biological Control Scholarship enabled me to hire technicians, obtain training in spider identification, travel to conferences, and enhanced my research and professional development in many ways. My first year was funded by the Dean’s Distinguished Fellowship Award. I am also indebted to the Charles W. Coggins, Jr. Endowed Scholarship Fund, the Homer v & Daisy Chapman Endowed Scholarship Fund for Citrus Research, UCR GradSlam, and the Adam Repán Petko Memorial Book Collection contest. Huge thanks to the members of my graduate cohort and many other Entomology graduate students for being such great classmates, colleagues, and friends. You are too many to list, but if you weren’t an MVP you wouldn’t be reading this—so thank you, sincerely. Thank you to all the incarnations of the Three Sentence Club, including Dr. Ariane Helou, Dr. Andrea Lankin, Vivien Lee, MS, Dr. Eve Levavi Feinstein, soon-to-be Dr. Carlotta Falzone Robinson (who is an ace at Word formatting), and Dr. Bridget Sousa. Thank you to my pomodoro buddies, soon-to-be Dr.’s Diane Gonzalez and Kelsi Perttula. Thank you to Dr. Nicholas Mills for starting me on this journey, and to my colleagues from the Mills lab for being outstanding co-workers and role models. To the faculty, staff, and students of California Ecology and Conservation, Sp. 2017 for the best quarter ever. Special thanks to Yuhan Pan for translation. To my wonderful family, for constant love and support throughout my entire life, for being exemplary human beings and role models, for all they have done to help me and each other, and for always seeing a bright future for me. To my spouse, Andrew Moll, my favorite person and fellow traveler, whose love, support, and faith in my abilities has made all the difference. vi ABSTRACT OF THE DISSERTATION Predators of Asian Citrus Psyllid (Diaphorina citri) in southern California by Aviva Goldmann Doctor of Philosophy, Graduate Program in Entomology University of California, Riverside, December 2017 Dr. Richard Stouthamer, Chairperson Asian citrus psyllid (ACP) threatens the viability of California citriculture because it spreads a bacterium, Candidatus Liberibacter asiaticus, that kills citrus trees. Preliminary observations suggested that predatory arthropods in southern California reduce the ACP population, but it was not known which predator species were important. The goal of this PhD project was to identify potentially effective natural enemies of ACP among southern California predatory arthropods for use as biological control agents. To accomplish this, we first measured the natural mortality of ACP in a southern California orange orchard by conducting a predator exclusion experiment monthly for seven months. Overall, ACP survival was nearly four times higher in cohorts protected from predators than in control cohorts. To detect which predator species contribute to ACP mortality, we conducted a year-long survey of predatory arthropods in two orange orchards. Among the predators collected, ten were abundant. We designed a vii molecular assay to detect ACP DNA in predator gut contents and used it to test field-collected specimens of these predators for recent predation of ACP. Three insects and all five spiders were positive for ACP predation in over 10% of specimens tested. Older C. comanche larvae and afternoon-collected adult D. pumilio were significantly more likely to test positive for ACP predation than conspecifics which were younger (C. comanche) and collected before dawn (D. pumilio). The two insects that tested positive most frequently, Diomus pumilio (Coleoptera: Coccinellidae) and Chrysoperla comanche (Neuroptera: Chrysopidae) were investigated further because of their potential for use in augmentative and/or conservation biological control. For each species, we conducted timed feeding trials to calculate a half-life for the detectability of ACP remains following predation, and conducted prey choice assays with all life stages of ACP to determine which were most likely to be consumed after being probed by the predator. D. pumilio adults preferentially preyed upon ACP eggs and first-third instar nymphs, while C. comanche larvae most frequently consumed eggs and third-fourth instar nymphs. We recommend development of these insects as biological control agents of ACP, and suggest developing spider conservation tactics compatible with citrus IPM. viii TABLE OF CONTENTS Introduction ......................................................................................... 1 Dissertation objectives .................................................................................... 10 References ...................................................................................................... 12 Natural mortality of ACP in Southern California ................................ 17 Abstract ........................................................................................................... 18 Introduction ..................................................................................................... 18 Materials and methods .................................................................................... 25 Results ............................................................................................................ 30 Discussion ....................................................................................................... 34 Conclusion ...................................................................................................... 41 References ...................................................................................................... 43 Survey of predatory arthropods in southern California commercial citrus ................................................................................................................... 51 Abstract ........................................................................................................... 52 Introduction ..................................................................................................... 52 Materials and methods .................................................................................... 59 Results ...........................................................................................................
Recommended publications
  • Asian Citrus Psyllid, Diaphorina Citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F
    EENY-033 Asian Citrus Psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae)1 F. W. Mead and T. R. Fasulo2 Introduction In June 1998, the insect was detected on the east coast of Florida, from Broward to St. Lucie counties, and was The Asian citrus psyllid, Diaphorina citri Kuwayama, is apparently limited to dooryard host plantings at the time of widely distributed in southern Asia. It is an important pest its discovery. By September 2000, this pest had spread to 31 of citrus in several countries as it is a vector of a serious Florida counties (Halbert 2001). citrus disease called greening disease or Huanglongbing. This disease is responsible for the destruction of several Diaphorina citri is often referred to as citrus psylla, but this citrus industries in Asia and Africa (Manjunath 2008). is the same common name sometimes applied to Trioza Until recently, the Asian citrus psyllid did not occur in erytreae (Del Guercio), the psyllid pest of citrus in Africa. North America or Hawaii, but was reported in Brazil, by To avoid confusion, T. erytreae should be referred to as the Costa Lima (1942) and Catling (1970). African citrus psyllid or the two-spotted citrus psyllid (the latter name is in reference to a pair of spots on the base of the abdomen in late stage nymphs). These two psyllids are the only known vectors of the etiologic agent of citrus greening disease (Huanglongbing), and are the only eco- nomically important psyllid species on citrus in the world. Six other species of Diaphorina are reported on citrus, but these are non-vector species of relatively little importance (Halbert and Manjunath 2004).
    [Show full text]
  • 4 January 2021 Susan Jennings Immediate Office (7506P) Office Of
    4 January 2021 Susan Jennings Immediate Office (7506P) Office of Pesticide Programs U.S. Environmental Protection Agency 1200 Pennsylvania Ave., NW Washington, DC 20460-001 Via email and electronic submission to www.regulations.gov Re: National Pest Management Association comments regarding Draft Guidance for Pesticide Registrants on the List of Pests of Significant Public Health Importance; EPA–HQ– OPP–2020–0260 Dear Ms. Jennings: The National Pest Management Association (NPMA), the only national trade group representing the structural pest management industry, appreciates the opportunity to comment on Draft Guidance for Pesticide Registrants on the List of Pests of Significant Public Health Importance; EPA–HQ–OPP–2020–0260. NPMA, a non-profit organization with more than 5,500 member-companies from around the world, including 5,000 U.S. based pest management companies, which account for about 90% of the $9.4 billion U.S. structural pest control market, was established in 1933 to support the pest management industry. More than 80% of the industry is made up of small businesses, many of them with 5 employees or less. NPMA acknowledges the important role that pest management professionals play in controlling pests that are threats to public health. Our member companies take their role of protectors of public health, food, and property extremely seriously and welcome further dialogue on the topic. Below we outline specific recommendations that we believe will help miprove the guidance document. Recommendations for Section II NPMA agrees that arthropod, vertebrate, and microbial pests all play significant roles in impacting public health. With this in mind, we recommend that in addition to the potential for direct human injury, potential to spread disease causing pathogens, and contamination of human food, the description of the impacts of vertebrate pests in Section II should also include allergy and asthma triggers.
    [Show full text]
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Feeding Behaviour of the Asiatic Citrus Psyllid, Diaphorina Citri, on Healthy and Huanglongbing-Infected Citrus
    DOI: 10.1111/j.1570-7458.2012.01222.x Feeding behaviour of the Asiatic citrus psyllid, Diaphorina citri, on healthy and huanglongbing-infected citrus Yijing Cen1, Chengliang Yang1, Paul Holford2*, G. Andrew C. Beattie2, Robert N. Spooner-Hart2, Guangwen Liang1 &XiaolingDeng3 1Laboratory of Insect Ecology, Faculty of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, Guangdong 510642, China, 2School of Health and Science, University of Western Sydney, Locked Bag 1797, Pen- rith, NSW 2751, Australia, and 3Laboratory of Citrus Huanglongbing, Faculty of Natural Resources and Environment, South China Agricultural University, Wushan, Guangzhou, Guangdong 510642, China Accepted: 19 December 2011 Key words: electrical penetration graph, phloem ingestion, salivation, xylem ingestion, Hemiptera, Sternorrhyncha, Psyllidae, ‘Candidatus Liberibacter asiaticus’, Rutaceae, a-Proteobacteria, EPG Abstract Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Psyllidae) is a vector of huanglongbing, a diseaseofcitrusthatinAsiaiscausedby‘Candidatus Liberibacter asiaticus’ (a-Proteobacteria) (Las). Acquisition of Las by D. citri appears to be variable, and this variability may be due to the suitability of the host plants and their tissues for acquisition. Therefore, this study aimed to determine the effect of symptom severity of the disease on the feeding behaviour of D. citri. Use of an electrical penetration graph showed that the pathway phase of D. citri consisted of four waveforms, A, B, C, and D; wave- forms A and B have not been reported for D. citri before. The remaining waveforms, E1, E2, and G, conform to those described before for D. citri. The duration of the non-penetration period did not differ between healthy or infected plants. However, in moderately and severely symptomatic plants, the duration of the pathway phase increased, whereas the phloem phase was shorter.
    [Show full text]
  • Annotation and Analysis of Yellow Genes in Diaphorina Citri, Vector for the Huanglongbing Disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.422960; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Annotation and analysis of yellow genes in Diaphorina citri, vector for the Huanglongbing disease Crissy Massimino1, Chad Vosburg1, Teresa Shippy2, Prashant S. Hosmani3, Mirella Flores- Gonzalez3, Lukas A. Mueller3, Wayne B. Hunter4, Joshua B. Benoit5, Susan J. Brown2, Tom D’Elia1 and Surya Saha3,6 1 Indian River State College, Fort Pierce, FL 34981 2 Division of Biology, Kansas State University, Manhattan, KS 66506 3 Boyce Thompson Institute, Ithaca, NY 14853 4 USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945 5 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221 6 Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 ABSTRACT Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas) and represents a serious threat to global citrus production. This bacteria is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera) and there are no effective in-planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could serve as novel targets for psyllid control. The yellow gene family represents an excellent target as yellow genes are linked to development and immunity due to their roles in melanization.
    [Show full text]
  • Reaction of the Ladybird Chilocorus Nigritus (F.) (Col., Coccinellidae) To
    J. Appl. Ent. 112 (1991), 493-498 0 1991 Verlag Paul Parey, Hamburg und Berlin ISSN 093 1-2048 Department of Zoology and Entomology, University of Natal, Pietermaritzburg, South Africa Reaction of the ladybird Chi’locorus nigritus (F.) (Col., Coccinellidae) to a doomed food resource By C. ERICHSEN,M. J. SAMWAYSand V. HATTINGH Abstract The coccinellid Chilocorus nigritus (F.), a predator of many scale insects, has become an economically important natural enemy of red scale (Aonidzella aurantii [Maskell]) in the subtropical citrus-growing areas of southern Africa. Although relatively easy to mass rear and distribute, there has been speculation that C. nigritus does not exploit fruit with very hi h scale infestations. Experimentation using an alternative prey scale Aspidiotus nerii Bouchi showefi that a ran e of low to medium-high scale population levels supported increasin ly high ladybird densities. At aigh scale densities, where the host vegetable was imminently doomefi, there was a significant drop in beetle densities. At even higher scale densities, where the fruit was already beginnin to rot, there was a return in beetle densities to a level equivalent to that on medium-high scale fiensities. At low to medium-high prey densities, male and female beetles were present in fairly constant proportions. At high prey levels there was an increase in female dominance, yet a strong decrease in dominance at even higher scale levels where the vegetable was already beginning to rot. There appears to be an avoidance of imminent1 doomed vegetable hosts, yet, in contrast, rotting vegetables have some attraction but more so &r males.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘I
    Biological Inventory and Assessment Report, Fall 2018 Caltech Submillimeter Observatory, Maunakea, Hawai‘i Action BoardApril 2019 Prepared for: Sustainable Resources Group Intn’l, Inc. Prepared by: Matthew J Medeiros, PhD [email protected] mattjmedeiros.comFor All photographs in this report are copyrighted by Matthew J Medeiros. TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................................................ 1 1.1 Caltech Submillimeter Observatory Decommissioning ................................................................ 1 1.2 Physical Setting ............................................................................................................................. 1 2 METHODS ........................................................................................................................................... 3 2.1 Permit and Personnel .................................................................................................................... 3 2.2 Schedule ........................................................................................................................................ 3 2.3 Nomenclature ................................................................................................................................ 3 2.4 Methodology for Inventorying Plants, Lichens, Non-arthropod Animals, and Abiotic Features . 3 2.4.1 Transects: Floral and Abiotic Features ................................................................................
    [Show full text]
  • The Jumping Plant-Lice (Hemiptera: Psylloidea) of the Maltese Islands
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2020) Vol. 11 : 103–117 DOI: 10.17387/BULLENTSOCMALTA.2020.18 The jumping plant-lice (Hemiptera: Psylloidea) of the Maltese Islands David MIFSUD* ABSTRACT. Twenty-one species of jumping plant-lice accommodated in five different families are here recorded from the Maltese Islands in an annotated checklist. The Aphalaridae is represented by four species (Agonoscena targionii (Lichtenstein), Blastopsylla occidentalis Taylor, Colposcenia aliena (Löw) and Glycaspis brimblecombei Moore), of which two (B. occidentalis and G. brimblecombei) are alien species originating from Australia. The Homotomidae is represented by Homotoma ficus (Linnaeus) and Macrohomotoma gladiata Kuwayama, the latter being an alien species originating from the Far East. The Liviidae is represented by Euphyllura olivina (Costa), Diaphorina lycii Loginova and Psyllopsis fraxinicola (Foerster). The Psyllidae is represented by Acizzia uncatoides (Ferris & Klyver), Cacopsylla myrthi (Puton) and C. pyri (Linnaeus), of which Acizzia uncatoides is an alien species originating from Australia. Finally, the most species-rich family is the Triozidae, represented by nine species (Bactericera albiventris (Foerster), B. crithmi (Löw), B. trigonica Hodkinson, Heterotrioza chenopodii (Reuter), Lauritrioza alacris (Flor), Trioza centranthi (Vallot), T. galii Foerster, T. kiefferi Giard and T. urticae (Linnaeus)). For each of the above species, collection data, distribution, host- plant data and other relevant information is provided. Lycium intricatum Boiss. is a new host-plant record for Diaphorina lycii, and Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire is a new host-plant record for Cacopsylla myrthi. A host- plant shift is documented for Bactericera crithmi, which alternates between Ferula melitensis Brullo et al. in winter and Crithmum maritimum L.
    [Show full text]
  • Morphological Caste Differences in Three Species of the Neotropical Genus Clypearia (Hymenoptera: Polistinae: Epiponini)
    Hindawi Publishing Corporation Psyche Volume 2010, Article ID 410280, 8 pages doi:10.1155/2010/410280 Research Article Morphological Caste Differences in Three Species of the Neotropical Genus Clypearia (Hymenoptera: Polistinae: Epiponini) Giovanna Tocchini Felippotti,1 Lucas Mateus,1 Sidnei Mateus,1 Fernando Barbosa Noll,2 and Ronaldo Zucchi1 1 Departamento de Biologia, Faculdade de Filosofia, CiˆenciaseLetrasdeRibeirao˜ Preto, Universidade de Sao˜ Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao˜ Preto, SP, Brazil 2 Departamento de Botanicaˆ e Zoologia, Instituto de Biociˆencias, Letras e Ciˆencias Exatas, UNESP, Rua Cristovao˜ Colombo, 2265, 15054-000 Sao˜ Jos´e do Rio Preto, SP, Brazil Correspondence should be addressed to Giovanna Tocchini Felippotti, gio [email protected] Received 12 February 2010; Accepted 29 April 2010 Academic Editor: James Traniello Copyright © 2010 Giovanna Tocchini Felippotti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Clypearia is a rare genus of swarm-founding Neotropical wasp whose biology is very little known. Morphological castes differences, condition of ovaries, relative age, and color pattern differences were analyzed in three species of Clypearia. Physiological differences and low morphometric differentiation between queens and workers were present in all species studied, indicating that these species are characterized by “physiological
    [Show full text]
  • Contrasting Ladybird Beetle Responses to Urban Environments Across Two US Regions
    sustainability Article Context Matters: Contrasting Ladybird Beetle Responses to Urban Environments across Two US Regions Monika Egerer 1,* ID , Kevin Li 2 and Theresa Wei Ying Ong 3,4 ID 1 Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 2 Department of Plant Sciences, University of Göttingen, Göttingen NI 37077, Germany; [email protected] 3 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA * Correspondence: [email protected]; Tel.: +1-734-775-8950 Received: 8 April 2018; Accepted: 30 May 2018; Published: 1 June 2018 Abstract: Urban agroecosystems offer an opportunity to investigate the diversity and distribution of organisms that are conserved in city landscapes. This information is not only important for conservation efforts, but also has important implications for sustainable agricultural practices. Associated biodiversity can provide ecosystem services like pollination and pest control, but because organisms may respond differently to the unique environmental filters of specific urban landscapes, it is valuable to compare regions that have different abiotic conditions and urbanization histories. In this study, we compared the abundance and diversity of ladybird beetles within urban gardens in California and Michigan, USA. We asked what species are shared, and what species are unique to urban regions. Moreover, we asked how beetle diversity is influenced by the amount and rate of urbanization surrounding sampled urban gardens. We found that the abundance and diversity of beetles, particularly of unique species, respond in opposite directions to urbanization: ladybirds increased with urbanization in California, but decreased with urbanization in Michigan.
    [Show full text]
  • Description of the Male of Brachygastra Moebiana Saussure 1867 (Hymenoptera: Vespidae; Epiponini)
    ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Description of the male of Brachygastra moebiana Saussure 1867 (Hymenoptera: Vespidae; Epiponini) Sergio Ricardo Andena¹ & Sidnei Mateus² 1. Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas, Laboratória de Sistemática de Inseto, e-mail: [email protected] (Autor para correspondência). 2. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo - Departamento de Biologia, Setor de Ecologia e Evolução, e-mail: [email protected]. _____________________________________ EntomoBrasilis 4 (2): 75-77 (2011) Abstract. The male of Brachygastra moebiana (de Saussure) is described, including figures of male genitalia and notes about the Richards’s description of what he supposed to be the same species. Keywords: Brachygastra moebiana; Epiponini; male genitalia. Descrição do macho de Brachygastra moebiana (de Saussure) (Hymenoptera: Vespidae; Epiponini) Resumo. O macho de Brachygastra moebiana (de Saussure) é descrito, incluindo figuras da genitália e notas sobre a descrição contida em Richards (1978), da espécie, que supostamente é a mesma. Palavras-Chave: Brachygastra moebiana; Epiponini; Genitália de macho. _____________________________________ rachygastra is a Neotropical genus of social wasps (AN DE N A et al. 2007; 2009a; 2009b; PICKETT & WE N ZEL 2007). with sixteen species described and distributed from NAUMA nn (1968) analyzed 4754 specimens, but only 99 were BSouthwestern of the United States to Argentina (NAUMA nn males and most of them belonged to two species. Still, he depicted 1968; RICHA R DS 1978; CA R PE N TE R A N D MA R QUES 2001). The genus and described the male genitalia of Brachygastra lecheguana is easily recognized by the prominent, projecting scutellum (Latreille), Brachygastra mellifica (Say), Brachygastra azteca which, together with the metanotum and propodeum, forms (de Saussure), Brachygastra augusti (de Saussure), B.
    [Show full text]