Increased Corticotropin-Releasing Hormone Immunoreactivity in Monoamine-Containing Pontine Nuclei of Depressed Suicide

Total Page:16

File Type:pdf, Size:1020Kb

Increased Corticotropin-Releasing Hormone Immunoreactivity in Monoamine-Containing Pontine Nuclei of Depressed Suicide Molecular Psychiatry (2003) 8, 324–332 & 2003 Nature Publishing Group All rights reserved 1359-4184/03 $25.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men MC Austin1, JE Janosky2 and HA Murphy1 1Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; 2Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA A number of clinical investigations and postmortem brain studies have provided evidence that excessive corticotropin-releasing hormone (CRH) secretion and neurotransmission is involved in the pathophysiology of depressive illness, and several studies have suggested that the hyperactivity in CRH neurotransmission extends beyond the hypothalamus involving several extra-hypothalamic brain regions. The present study was designed to test the hypothesis that CRH levels are increased in specific brainstem regions of suicide victims with a diagnosis of major depression. Frozen tissue sections of the pons containing the locus coeruleus and caudal raphe nuclei from 11 matched pairs of depressed suicide and control male subjects were processed for radioimmunocytochemistry using a primary antiserum to CRH and a [125]I-IgG secondary antibody. The optical density corresponding to the level of CRH- immunoreactivity (IR) was quantified in specific pontine regions from the film autoradio- graphic images. The level of CRH-IR was increased by 30% in the locus coeruleus, 39% in the median raphe and 45% in the caudal dorsal raphe in the depressed suicide subjects compared to controls. No difference in CRH-IR was found in the dorsal tegmentum or medial parabrachial nucleus between the subject groups. These findings reveal that CRH-IR levels are specifically increased in norepinephrine- and serotonin-containing pontine nuclei of depressed suicide men, and thus they are consistent with the hypothesis that CRH neurotransmission is elevated in extra-hypothalamic brain regions of depressed subjects. Molecular Psychiatry (2003) 8, 324–332. doi:10.1038/sj.mp.4001250 Keywords: axons; corticotropin-releasing factor; locus coeruleus; mood disorders; norepine- phrine; postmortem; raphe; serotonin Introduction fluid (CSF) levels,9–11 increased numbers of CRH- immunoreactive12 and CRH mRNA-containing para- Corticotropin-releasing hormone (CRH) is the primary ventricular hypothalamic neurons13 and decreased chemical regulator mediating the stress-induced binding sites of CRH receptors in the frontal cortex of activation of the hypothalamic–pituitary–adrenal depressed subjects14 represent some of the biochem- (HPA) axis stimulating the secretion of adrenocortico- ical changes that support the hypothesis of hyper- tropin hormone (ACTH) from the anterior pituitary activity of CRH function in depression. However, which in turn stimulates cortisol release from the other studies have failed to document changes in CSF adrenal gland. Hyperactivity of the HPA axis resulting CRH levels,15–17 brain tissue levels of CRH18,19 or CRH in increased circulating cortisol levels is one of the receptor binding sites in the cortex of depressed most consistent biological alterations reported in subjects19,20 and thus do not support the CRH depressed patients.1–5 Several lines of evidence hyperactivity hypothesis of depression. With the support the theory that excessive secretion of CRH exception of the reports documenting alterations in is involved in the hypercortisolism in depressed CRH substrates in the paraventricular nucleus of the patients, and that the anatomical sites of CRH hypothalamus and in the frontal cortex, there has hypersecretion include the hypothalamus and possi- been no additional direct evidence for CRH hyper- bly other extra-hypothalamic brain regions. For activity in other brain regions of depressed subjects. example, a blunted ACTH response to exogenous In addition to the hormonal role of CRH, a variety of CRH administration,6–8 increased CRH cerebrospinal rodent studies have provided evidence supporting a neurotransmitter role for CRH in the central nervous Correspondence: Dr MC Austin, PhD, Department of Psychiatry, system. In particular, both electrophysiological and Western Psychiatric Institute and Clinic, University of Pittsburgh biochemical studies have shown that CRH is involved Medical Center, W1645 Biomedical Science Tower, Pittsburgh, PA in mediating the effects of stress on norepinephrine 15213, USA. E-mail: [email protected] Received 20 January 2002; revised 31 January 2002; accepted 7 neurotransmission specifically at the level of the July 2002 noradrenergic neurons in the locus coeruleus Increased CRH in pons of depressed subjects MC Austin et al 325 (LC).21–23 Furthermore, recent electrophysiological revealed a few senile plaques in subjects 598, 600, studies have found that CRH has both excitatory 685, 699 and 795 but clinical and neuropathological and inhibitory effects on serotonin neurons in the criteria to establish a diagnosis of Alzheimer’s disease dorsal raphe nucleus.24–26 Given the evidence from were not met. Toxicological screens were positive animal studies supporting a functional role of CRH on for chlordiazepoxide for one depressed subject (598) LC and raphe neurons, it is interesting that both and CO for two other depressed subjects (614, 628). clinical and postmortem brain studies have docu- Also, three depressed subjects (598, 689, 698) were mented alterations in various noradrenergic27–29 and receiving antidepressants at the time of death and two serotonergic30–32 parameters in depressed subjects. of these depressed subjects (689, 698) were treated Perhaps CRH has a similar functional role in the with antipsychotics at the time of death. Three human brain and may contribute to the alterations in depressed subjects (614, 596, 613) had been off the monoamine systems in depressed patients? antidepressant medication for 0.6, 1.8 and 7.1 years, Indeed, recent immunocytochemical studies have respectively, and one subject (613) off antipsychotic shown that several monoaminergic nuclei in the medication for 7.6 years. The other five depressed human brainstem are innervated by CRH-containing subjects had no documented history of antidepressant axons including the locus coeruleus and raphe medication. nuclei.33,34 Given the evidence for alterations in CRH, norepinephrine and serotonin neurotransmis- Tissue preparation and radioimmunocytochemistry sion in depressive illness together with the anatomi- Upon removal of the brain from the cranium, the cal data suggesting an interaction of CRH on LC and cerebellum was removed and the brainstem was raphe neurons in the human brainstem, we sought to separated by a transverse cut at the rostral border of test the hypothesis that the concentration of CRH the superior colliculi. The brainstems were then cut immunoreactivity is increased in specific pontine into midbrain/pons and caudal medulla blocks, nuclei in subjects with major depression who com- immediately frozen in isopentane and then stored at mitted suicide. À801C. The frozen midbrain/pontine blocks were sectioned transversely at 20 mm, sections were thaw- mounted onto gelatin-coated microscope slides and Materials and methods every 10th tissue section stained for Nissl substance Tissue collection with cresyl violet. The slides were stored at À801C All procedures in our study were approved by the until processed. University of Pittsburgh’s Institutional Review Board Slide-mounted tissue sections of the pons were for Biomedical Research. Human brain specimens selected for assay based on the anatomical distribu- were obtained in the course of routine autopsies tion of CRH-immunoreactive (IR) axons previously conducted at the Allegheny County Coroner’s Office, reported in the human brainstem.33 The radioimmu- Pittsburgh, PA, after obtaining consent from a surviv- nocytochemical assay was performed as previously ing family member. A total of 11 subjects who died by described35 with some modifications. Four tissue suicide and had a diagnosis of depression were each sections were selected at 200 mm intervals from each matched with one control subject for sex and as case and placed into 4% paraformaldehyde for closely as possible for age and postmortem interval approximately 17 h. The sections were then rinsed (Table 1). Of the pairs, 10 were also matched for race. twice for 15 min in PBS containing 0.4% Triton X-100 For each subject, a consensus DSM-IV diagnosis was and then incubated for 60 min in PBS with 1.5% made by an independent panel of experienced normal goat, 0.5% normal human serum and 0.4% clinicians after reviewing medical records and the Triton X-100 to reduce background. results of structured interviews conducted with The CRH primary antiserum (rabbit anti-CRH family members of the deceased. Of the suicide (human, rat), Pennisula Laboratories, San Carlos, subjects, 10 had a diagnosis of major depression, CA, USA) was preadsorbed with natural melanin as and one had a depressive disorder NOS. Three of the previously described.33 The concentration of the CRH depressed subjects also had an Axis II diagnosis of primary antiserum used on the tissue sections from obsessive–compulsive personality disorder and one the subject pairs was determined from a dilution depressed subject had an Axis II diagnosis of curve constructed from control brainstem tissue paranoid personality disorder. Three
Recommended publications
  • Activation of Raphe Nuclei Triggers Rapid and Distinct Effects on Parallel Olfactory Bulb Output Channels
    Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kapoor, Vikrant, Allison Provost, Prateek Agarwal, and Venkatesh N. Murthy. 2015. “Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.” Nature neuroscience 19 (2): 271-282. doi:10.1038/nn.4219. http:// dx.doi.org/10.1038/nn.4219. Published Version doi:10.1038/nn.4219 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002684 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 August 01. Published in final edited form as: Nat Neurosci. 2016 February ; 19(2): 271–282. doi:10.1038/nn.4219. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels Vikrant Kapoor1,2,†, Allison Provost1,2, Prateek Agarwal1,2, and Venkatesh N. Murthy1,2,† 1Center for Brain Science, Harvard University, Cambridge, MA 02138 2Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 Abstract The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets.
    [Show full text]
  • Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry
    HYPOTHESIS AND THEORY published: 20 December 2018 doi: 10.3389/fncel.2018.00506 Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry Philipp Stratmann 1,2*, Alin Albu-Schäffer 1,2 and Henrik Jörntell 3 1 Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany, 2 German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany, 3 Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient
    [Show full text]
  • Overview of the Reticular Formation (RF)
    TeachSheet Reticular Formation & Diffuse modulatory system Overview of the Reticular Formation (RF) The term reticular formation refers to the neuronal network within the brainstem, although it continues rostrally into the thalamus and hypothalamus and caudally into the propriospinal network of the spinal cord. A “coordinating system” (like the Limbic system) with “connections” to sensory, somatic motor and visceral motor systems Organization can be subdivided into two neuronal cell “columns” (medial to lateral) as well as on the basis of their neurotransmitter release Neuronal columns (many nuclei and names, but these are some of the major ones): o “Medial tegmental field” (large-celled nuclei) . Origin of the reticulospinal pathway . Role in coordinating posture, eye and head movements. o “Lateral tegmental field” (smaller and fewer cells, shorter local projections) . Extends from the medulla to the pons . Coordinate autonomic and limbic functions (e.g. micturition, swallowing, mastication and vocalization) The functions of the reticular formation include their ability to coordinate motor and sensory brainstem nuclei: o Pattern generator . Eye movements; horizontal (PPRF) and vertical (riMLF) . Rhythmical chewing movements (pons) . Posture and locomotion (midbrain and pons) . Swallowing, vomiting, coughing and sneezing (medulla) . Micturition (pons) o Respiratory control (medulla); expiratory, inspiratory, apneustic and pneumotaxic o Cardiovascular control (medulla); vasomotor pressor/depressor, cardioacceleratory and inhibitory. Afferents arise from baroreceptors (carotid sinus and aortic arch), chemoreceptors (carotid sinus, lateral reticular formation chemosensitive area in the medulla) and stretch receptors (lung and respiratory muscles) . Efferents arise from reticular formation neurons within the pons and medulla o Sensory modulation or “gate” control . The term “gating” refers to “modulation” of synaptic transmission from one set of neurons to the next.
    [Show full text]
  • Brain Structure and Function Related to Headache
    Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms
    [Show full text]
  • Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis
    From the Department of Clinical Neuroscience Karolinska Institutet, Stockholm, Sweden Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis Katarina Varnäs Stockholm 2005 © Katarina Varnäs, 2005 ISBN 91-7140-280-2 Though this be madness, yet there is method in it. William Shakespeare ABSTRACT The serotonin (5-HT) system is thought to be involved in different psychiatric disorders, includ- ing depression and anxiety disorders, and is a major target for the pharmacological treatment of these conditions. The involvement of the 5-HT system in psychosis has been suggested, as 5- HT receptor agonism is a common mechanism of different classes of hallucinogenic drugs and several antipsychotics are 5-HT receptor antagonists. In this study, the distribution of 5-HT transporters and G-protein-coupled 5-HT recep- tors in the human brain was characterized using whole hemisphere autoradiographic tech- niques. In addition, a pilot investigation was performed to compare the densities of 5-HT bind- ing sites in brain tissue from patients who suffered from schizophrenia-like psychosis and con- trol subjects. We found higher levels of 5-HT transporters in several regions of the greater limbic lobe (subcallosal area, anterior cingulate gyrus, posterior uncus, insular and entorhinal cortices, and the temporal pole) as compared to the isocortex. Higher levels of 5-HT 1A receptors were also found in limbic cortices (subcallosal area, temporal pole, hippocampus, and entorhinal cortex) compared to isocortical structures. Dense binding to 5-HT 1B receptors was found in the ventral striato-pallidal system of the human brain. 5-HT 1B receptor mRNA expression was detected in the striatum with the highest levels in ventral striatal regions.
    [Show full text]
  • Exploring Prefrontal Cortical Memory Mechanisms with Eyeblink Conditioning
    Behavioral Neuroscience © 2011 American Psychological Association 2011, Vol. 125, No. 3, 318–326 0735-7044/11/$12.00 DOI: 10.1037/a0023520 Exploring Prefrontal Cortical Memory Mechanisms With Eyeblink Conditioning Craig Weiss and John F. Disterhoft Northwestern University Feinberg School of Medicine Several studies in nonhuman primates have shown that neurons in the dorsolateral prefrontal cortex have activity that persists throughout the delay period in delayed matching to sample tasks, and age-related changes in the microcolumnar organization of the prefrontal cortex are significantly correlated with age-related declines in cognition. Activity that persists beyond the presentation of a stimulus could mediate working memory processes, and disruption of those processes could account for memory deficits that often accompany the aging process. These potential memory and aging mechanisms are being systematically examined with eyeblink conditioning paradigms in nonprimate mammalian animal models including the rabbit. The trace version of the conditioning paradigm is a particularly good system to explore declarative memory since humans do not acquire trace conditioning if they are unable to become cognitively aware of the association between a conditioning tone and an airpuff to the eye. This conditioning paradigm has been used to show that the hippocampus and cerebellum interact functionally since both conditioned responses and conditioned hippocampal pyramidal neuron activity are abolished following lesions of the cerebellar nuclei and since hippocampal lesions prevent or abolish trace conditioned blinks. However, because there are no direct connections between the hippocampal forma- tion and the cerebellum, and because the hippocampus is not necessary for trace conditioning after a period of consolidation has elapsed, we and others have been examining the prefrontal cortex for its role in forebrain-dependent trace eyeblink conditioning.
    [Show full text]
  • Focal Projections of Cat Auditory Cortex to the Pontine Nuclei
    THE JOURNAL OF COMPARATIVE NEUROLOGY 497:959–980 (2006) Focal Projections of Cat Auditory Cortex to the Pontine Nuclei 1 2 1 MERCEDES PERALES, JEFFERY A. WINER, AND JORGE J. PRIETO * 1Department of Histology and Anatomy, University Miguel Hernandez, 03550 — Sant Joan d’Alacant, Spain 2Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200 ABSTRACT The pontine nuclei (PN) receive projections from the auditory cortex (AC) and they are a major source of mossy fibers to the cerebellum. However, they have not been studied in detail using sensitive neuroanatomical tracers, and whether all AC areas contribute to the corti- copontine (CP) system is unknown. We characterized the projection patterns of 11 AC areas with WGA-HRP. We also compared them with their corticothalamic and corticocollicular counterparts. A third objective was to analyze the structure of the CP axons and their terminals with BDA. Both tracers confirm that all AC areas projected to lateral, central, and medial ipsilateral pontine divisions. The strongest CP projections were from nontonotopic and polymodal association areas. Preterminal fibers formed single terminal fields having many boutons en passant as well as terminal endings, and there was a specific morphological pattern for each pontine target, irrespective of their areal origin. Thus, axons in the medial division had a simpler terminal architecture (type 1 terminal plexus); both the central and lateral pons received more complex endings (type 2 terminal plexus). Auditory CP topograph- ical distribution resembled visual and somatosensory CP projections, which preserve retino- topy and somatotopy in the pons, respectively.
    [Show full text]
  • Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing
    The Journal of Comparative Neurology 514:145–160 (2009) Research in Systems Neuroscience Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing 1 2 1 JOA˜ O M. BRAZ, * LYNN W. ENQUIST, AND ALLAN I. BASBAUM 1Departments of Anatomy and Physiology and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94158 2Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 ABSTRACT the dorsal raphe (DR) and the nucleus raphe magnus of the Descending projections arising from brainstem serotoner- rostroventral medulla (RVM). Among these are several cat- gic (5HT) neurons contribute to both facilitatory and inhibi- echolaminergic and cholinergic cell groups, the periaque- tory controls of spinal cord “pain” transmission neurons. ductal gray, several brainstem reticular nuclei, and the nu- Unclear, however, are the brainstem networks that influ- cleus of the solitary tract. We conclude that a brainstem 5HT ence the output of these 5HT neurons. To address this network integrates somatic and visceral inputs arising from question, here we used a novel neuroanatomical tracing various areas of the body. We also identified a circuit that method in a transgenic line of mice in which Cre recombi- arises from projection neurons of deep spinal cord laminae nase is selectively expressed in 5HT neurons (ePet-Cre V–VIII and targets the 5HT neurons of the NRM, but not of mice). Specifically, we injected the conditional pseudora- the DR. This spinoreticular pathway constitutes an anatom- bies virus recombinant (BA2001) that can replicate only in ical substrate through which a noxious stimulus can acti- Cre-expressing neurons.
    [Show full text]
  • Chapter 128: Basic Mechanisms of Sleep: New Evidence On
    128 BASIC MECHANISMS OF SLEEP: NEW EVIDENCE ON THE NEUROANATOMY AND NEUROMODULATION OF THE NREM-REM CYCLE EDWARD F. PACE-SCHOTT J. ALLAN HOBSON The 1990s brought a wealth of new detail to our knowledge NREM sleep (noradrenergic, serotonergic, and cholinergic of the brain structures involved in the control of sleep and systems damped), and REM sleep (noradrenergic and sero- waking and in the cellular level mechanisms that orchestrate tonergic systems off, cholinergic system undamped) (1–4). the sleep cycle through neuromodulation. This chapter pre- sents these new findings in the context of the general history Original Reciprocal Interaction Model: An of research on the brainstem neuromodulatory systems and Aminergic-Cholinergic Interplay the more specific organization of those systems in the con- trol of the alternation of wake, non–rapid eye movement The model of reciprocal interaction (5) provided a theoretic (NREM), and REM sleep. framework for experimental interventions at the cellular and Although the main focus of the chapter is on the our molecular level that has vindicated the notion that waking own model of reciprocal aminergic-cholinergic interaction, and REM sleep are at opposite ends of an aminergically we review new data suggesting the involvement of many dominant to cholinergically dominant neuromodulatory more chemically specific neuronal groups than can be ac- continuum, with NREM sleep holding an intermediate po- commodated by that model. We also extend our purview to sition (Fig. 128.1). The reciprocal interaction hypothesis the way in which the brainstem interacts with the forebrain. (5) provided a description of the aminergic-cholinergic in- These considerations inform not only sleep-cycle control terplay at the synaptic level and a mathematic analysis of per se, but also the way that circadian and ultradian rhythms the dynamics of the neurobiological control system.
    [Show full text]
  • Consensus Paper: Experimental Neurostimulation of the Cerebellum
    The Cerebellum https://doi.org/10.1007/s12311-019-01041-5 CONSENSUS PAPER Consensus Paper: Experimental Neurostimulation of the Cerebellum Lauren N. Miterko1 & Kenneth B. Baker2 & Jaclyn Beckinghausen1 & Lynley V. Bradnam3 & Michelle Y. Cheng4 & Jessica Cooperrider2 & Mahlon R. DeLong5 & Simona V. Gornati6 & Mark Hallett7 & Detlef H. Heck8 & Freek E. Hoebeek6,9 & Abbas Z. Kouzani10 & Sheng-Han Kuo11 & Elan D. Louis12 & Andre Machado2 & Mario Manto13,14 & Alana B. McCambridge15 & Michael A. Nitsche16,17 & Nordeyn Oulad Ben Taib 18 & Traian Popa7,19 & Masaki Tanaka20 & Dagmar Timmann21 & Gary K. Steinberg4,22 & Eric H. Wang4 & Thomas Wichmann5,23 & Tao Xie24 & Roy V. Sillitoe1 # The Author(s) 2019 Abstract The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson’s disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimula- tion is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
    [Show full text]
  • Glucocorticoid Modulation of Tryptophan Hydroxylase-2 Protein In
    Molecular Psychiatry (2008) 13, 498–506 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp ORIGINAL ARTICLE Glucocorticoid modulation of tryptophan hydroxylase-2 protein in raphe nuclei and 5-hydroxytryptophan concentrations in frontal cortex of C57/Bl6 mice JA Clark1, RB Flick1, L-Y Pai2, I Szalayova3, S Key3, RK Conley4,7, AY Deutch5,6, PH Hutson4 and E Mezey3 1Stroke and Neurodegeneration, Merck Research Laboratories, West Point, PA, USA; 2Cardiovascular Diseases, Merck Research Laboratories, Rahway, NJ, USA; 3Craniofacial & Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA; 4Sleep and Schizophrenia, Merck Research Laboratories, West Point, PA, USA; 5Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA and 6Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA Considerable attention has focused on regulation of central tryptophan hydroxylase (TPH) activity and protein expression. At the time of these earlier studies, it was thought that there was a single central TPH isoform. However, with the recent identification of TPH2, it becomes important to distinguish between regulatory effects on the protein expression and activity of the two isoforms. We have generated a TPH2-specific polyclonal antiserum (TPH2-6361) to study regulation of TPH2 at the protein level and to examine the distribution of TPH2 expression in rodent and human brain. TPH2 immunoreactivity (IR) was detected throughout the raphe nuclei, in lateral hypothalamic nuclei and in the pineal body of rodent and human brain. In addition, a prominent TPH2-IR fiber network was found in the human median eminence.
    [Show full text]
  • Sprouting of Brainstem–Spinal Tracts in Response to Unilateral Motor Cortex Stroke in Mice
    3378 • The Journal of Neuroscience, February 26, 2014 • 34(9):3378–3389 Development/Plasticity/Repair Sprouting of Brainstem–Spinal Tracts in Response to Unilateral Motor Cortex Stroke in Mice Lukas C. Bachmann,1,2* Nicolas T. Lindau,1,2* Petra Felder,1,2 and Martin E. Schwab1,2 1Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland, and 2Department Health Sciences and Technology, ETH Zu¨rich, 8057 Zurich, Switzerland After a stroke to the motor cortex, sprouting of spared contralateral corticospinal fibers into the affected hemicord is one mechanism thought to mediate functional recovery. Little is known, however, about the role of the phylogenetically old, functionally very important brainstem–spinalsystems.Adultmiceweresubjectedtoaunilateralphotothromboticstrokeoftherightmotorcortexablating90%ofthe cross-projecting corticospinal cells. Unilateral retrograde tracing from the left cervical spinal hemicord devoid of its corticospinal input revealed widespread plastic responses in different brainstem nuclei 4 weeks after stroke. Whereas some nuclei showed no change or a decrease of their spinal projections, several parts of the medullary reticular formation as well as the spinally projecting raphe nuclei increased their projections to the cortically denervated cervical hemicord by 1.2- to 1.6-fold. The terminal density of corticobulbar fibers from the intact, contralesional cortex, which itself formed a fivefold expanded connection to the ipsilateral spinal cord, increased up to 1.6-fold specifically in these plastic, caudal medullary nuclei. A second stroke, ablating the originally spared motor cortex, resulted in the reappearance of the deficits that had partially recovered after the initial right-sided stroke, suggesting dependence of recovered function on the spared cortical hemisphere and its direct corticospinal and indirect corticobulbospinal connections.
    [Show full text]