This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activation of Raphe Nuclei Triggers Rapid and Distinct Effects on Parallel Olfactory Bulb Output Channels
Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kapoor, Vikrant, Allison Provost, Prateek Agarwal, and Venkatesh N. Murthy. 2015. “Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.” Nature neuroscience 19 (2): 271-282. doi:10.1038/nn.4219. http:// dx.doi.org/10.1038/nn.4219. Published Version doi:10.1038/nn.4219 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002684 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 August 01. Published in final edited form as: Nat Neurosci. 2016 February ; 19(2): 271–282. doi:10.1038/nn.4219. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels Vikrant Kapoor1,2,†, Allison Provost1,2, Prateek Agarwal1,2, and Venkatesh N. Murthy1,2,† 1Center for Brain Science, Harvard University, Cambridge, MA 02138 2Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 Abstract The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. -
Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry
HYPOTHESIS AND THEORY published: 20 December 2018 doi: 10.3389/fncel.2018.00506 Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry Philipp Stratmann 1,2*, Alin Albu-Schäffer 1,2 and Henrik Jörntell 3 1 Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany, 2 German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany, 3 Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient -
Context-Dependent Modulation of Auditory Processing by Serotonin
Hearing Research 279 (2011) 74e84 Contents lists available at ScienceDirect Hearing Research journal homepage: www.elsevier.com/locate/heares Context-dependent modulation of auditory processing by serotonin L.M. Hurley a,*, I.C. Hall b a Indiana University, Jordan Hall/Biology, 1001 E. Third St, Bloomington, IN 47405, USA b Columbia University, 901 Fairchild Center, M.C. 2430, New York, NY 10027, USA article info abstract Article history: Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that Received 3 October 2010 link behavioral state to neural responses to sound. The neuromodulator serotonin has many character- Received in revised form istics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send 13 December 2010 projections to most auditory regions. These projections release serotonin during particular behavioral Accepted 20 December 2010 contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or Available online 25 December 2010 social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. -
Overview of the Reticular Formation (RF)
TeachSheet Reticular Formation & Diffuse modulatory system Overview of the Reticular Formation (RF) The term reticular formation refers to the neuronal network within the brainstem, although it continues rostrally into the thalamus and hypothalamus and caudally into the propriospinal network of the spinal cord. A “coordinating system” (like the Limbic system) with “connections” to sensory, somatic motor and visceral motor systems Organization can be subdivided into two neuronal cell “columns” (medial to lateral) as well as on the basis of their neurotransmitter release Neuronal columns (many nuclei and names, but these are some of the major ones): o “Medial tegmental field” (large-celled nuclei) . Origin of the reticulospinal pathway . Role in coordinating posture, eye and head movements. o “Lateral tegmental field” (smaller and fewer cells, shorter local projections) . Extends from the medulla to the pons . Coordinate autonomic and limbic functions (e.g. micturition, swallowing, mastication and vocalization) The functions of the reticular formation include their ability to coordinate motor and sensory brainstem nuclei: o Pattern generator . Eye movements; horizontal (PPRF) and vertical (riMLF) . Rhythmical chewing movements (pons) . Posture and locomotion (midbrain and pons) . Swallowing, vomiting, coughing and sneezing (medulla) . Micturition (pons) o Respiratory control (medulla); expiratory, inspiratory, apneustic and pneumotaxic o Cardiovascular control (medulla); vasomotor pressor/depressor, cardioacceleratory and inhibitory. Afferents arise from baroreceptors (carotid sinus and aortic arch), chemoreceptors (carotid sinus, lateral reticular formation chemosensitive area in the medulla) and stretch receptors (lung and respiratory muscles) . Efferents arise from reticular formation neurons within the pons and medulla o Sensory modulation or “gate” control . The term “gating” refers to “modulation” of synaptic transmission from one set of neurons to the next. -
Sclocco Brainstim2019.Pdf
Brain Stimulation xxx (xxxx) xxx Contents lists available at ScienceDirect Brain Stimulation journal homepage: http://www.journals.elsevier.com/brain-stimulation The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study * Roberta Sclocco a, b, , Ronald G. Garcia a, c, Norman W. Kettner b, Kylie Isenburg a, Harrison P. Fisher a, Catherine S. Hubbard a, Ilknur Ay a, Jonathan R. Polimeni a, Jill Goldstein a, c, d, Nikos Makris a, c, Nicola Toschi a, e, Riccardo Barbieri f, g, Vitaly Napadow a, b a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA b Department of Radiology, Logan University, Chesterfield, MO, USA c Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA d Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA e Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy f Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy g Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA article info abstract Article history: Background: Brainstem-focused mechanisms supporting transcutaneous auricular VNS (taVNS) effects Received 12 September 2018 are not well understood, particularly in humans. We employed ultrahigh field (7T) fMRI and evaluated Received in revised form the influence of respiratory phase for optimal targeting, applying our respiratory-gated auricular vagal 2 January 2019 afferent nerve stimulation (RAVANS) technique. Accepted 6 February 2019 Hypothesis: We proposed that targeting of nucleus tractus solitarii (NTS) and cardiovagal modulation in Available online xxx response to taVNS stimuli would be enhanced when stimulation is delivered during a more receptive state, i.e. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Analysis of Pacemaker Activity in a Two-Component Model of Some
Analysis of pacemaker activity in a two-component model of some brainstem neurons Henry C. Tuckwell1,2∗, Ying Zhou3,, Nicholas J. Penington 4,5 1 School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia 2 School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia 3 Department of Mathematics, Lafayette College, 1 Pardee Drive, Easton, PA 18042, USA 4 Department of Physiology and Pharmacology, 5 Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA ∗ Corresponding author: Henry C. Tuckwell, School of Electrical and Electronic Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; Tel: 61-481192816; Fax: 61-8-83134360: email: [email protected] September 11, 2018 arXiv:1704.03941v2 [q-bio.NC] 15 Apr 2017 1 Abstract Serotonergic, noradrenergic and dopaminergic brainstem (including midbrain) neu- rons, often exhibit spontaneous and fairly regular spiking with frequencies of order a few Hz, though dopaminergic and noradrenergic neurons only exhibit such pacemaker- type activity in vitro or in vivo under special conditions. A large number of ion channel types contribute to such spiking so that detailed modeling of spike generation leads to the requirement of solving very large systems of differential equations. It is use- ful to have simplified mathematical models of spiking in such neurons so that, for example, features of inputs and output spike trains can be incorporated including stochastic effects for possible use in network models. -
Reidun Ursin Changing Concepts on the Role of Serotonin in the Regulation of Sleep and Waking
Reidun Ursin Changing concepts on the role of serotonin in the regulation of sleep and waking The story of serotonin and sleep has been developing for more than 50 years, from the discovery in the 1950s that it had a role in brain function and in EEG synchronization. In parallel, the areas of sleep research and neurochemistry have seen enormous developments. The concept of serotonin as a sleep neurotransmitter was based on the effects of lesions of the brainstem raphe nuclei and the effects of serotonin depleting drugs in cats. The description of the firing pattern of the dorsal raphe nuclei changed this concept, initially to the entirely opposite view of serotonin as a waking transmitter. More recently, there has emerged a more complex view on the role of serotonin as a modulator of both waking and sleep. The effects of serotonin on sleep and waking may depend on which neurons are firing, their projection site, which postsynaptic receptors are present at this site, and, not the least, on the functional state of the system and the organism at a particular moment. Christopher A. Lowry, Andrew K. Evans, Paul J. Gasser, Matthew W. Hale, Daniel R. Staub and Anantha Shekhar Topographic organization and chemoarchitecture of the dorsal raphe nucleus and the median raphe nucleus The role of serotonergic systems in regulation of behavioral arousal and sleep-wake cycles is complex and may depend on both the receptor subtype and brain region involved. Increasing evidence points toward the existence of multiple topographically organized subpopulations of serotonergic neurons that receive unique afferent connections, give rise to unique patterns of projections to forebrain systems, and have unique functional properties. -
Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis
From the Department of Clinical Neuroscience Karolinska Institutet, Stockholm, Sweden Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis Katarina Varnäs Stockholm 2005 © Katarina Varnäs, 2005 ISBN 91-7140-280-2 Though this be madness, yet there is method in it. William Shakespeare ABSTRACT The serotonin (5-HT) system is thought to be involved in different psychiatric disorders, includ- ing depression and anxiety disorders, and is a major target for the pharmacological treatment of these conditions. The involvement of the 5-HT system in psychosis has been suggested, as 5- HT receptor agonism is a common mechanism of different classes of hallucinogenic drugs and several antipsychotics are 5-HT receptor antagonists. In this study, the distribution of 5-HT transporters and G-protein-coupled 5-HT recep- tors in the human brain was characterized using whole hemisphere autoradiographic tech- niques. In addition, a pilot investigation was performed to compare the densities of 5-HT bind- ing sites in brain tissue from patients who suffered from schizophrenia-like psychosis and con- trol subjects. We found higher levels of 5-HT transporters in several regions of the greater limbic lobe (subcallosal area, anterior cingulate gyrus, posterior uncus, insular and entorhinal cortices, and the temporal pole) as compared to the isocortex. Higher levels of 5-HT 1A receptors were also found in limbic cortices (subcallosal area, temporal pole, hippocampus, and entorhinal cortex) compared to isocortical structures. Dense binding to 5-HT 1B receptors was found in the ventral striato-pallidal system of the human brain. 5-HT 1B receptor mRNA expression was detected in the striatum with the highest levels in ventral striatal regions. -
Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing
The Journal of Comparative Neurology 514:145–160 (2009) Research in Systems Neuroscience Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing 1 2 1 JOA˜ O M. BRAZ, * LYNN W. ENQUIST, AND ALLAN I. BASBAUM 1Departments of Anatomy and Physiology and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94158 2Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 ABSTRACT the dorsal raphe (DR) and the nucleus raphe magnus of the Descending projections arising from brainstem serotoner- rostroventral medulla (RVM). Among these are several cat- gic (5HT) neurons contribute to both facilitatory and inhibi- echolaminergic and cholinergic cell groups, the periaque- tory controls of spinal cord “pain” transmission neurons. ductal gray, several brainstem reticular nuclei, and the nu- Unclear, however, are the brainstem networks that influ- cleus of the solitary tract. We conclude that a brainstem 5HT ence the output of these 5HT neurons. To address this network integrates somatic and visceral inputs arising from question, here we used a novel neuroanatomical tracing various areas of the body. We also identified a circuit that method in a transgenic line of mice in which Cre recombi- arises from projection neurons of deep spinal cord laminae nase is selectively expressed in 5HT neurons (ePet-Cre V–VIII and targets the 5HT neurons of the NRM, but not of mice). Specifically, we injected the conditional pseudora- the DR. This spinoreticular pathway constitutes an anatom- bies virus recombinant (BA2001) that can replicate only in ical substrate through which a noxious stimulus can acti- Cre-expressing neurons. -
Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus As Revealed by Single-Neuron Reconstructions
Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus as Revealed by Single-Neuron Reconstructions Dave Gagnon, Martin Parent* Centre de recherche de l’Institut universitaire en sante´ mentale de Que´bec, Department of Psychiatry and Neuroscience, Faculty of medicine, Universite´ Laval, Quebec City, QC, Canada Abstract This study aimed at providing the first detailed morphological description, at the single-cell level, of the rat dorsal raphe nucleus neurons, including the distribution of the VGLUT3 protein within their axons. Electrophysiological guidance procedures were used to label dorsal raphe nucleus neurons with biotinylated dextran amine. The somatodendritic and axonal arborization domains of labeled neurons were reconstructed entirely from serial sagittal sections using a computerized image analysis system. Under anaesthesia, dorsal raphe nucleus neurons display highly regular (1.7260.50 Hz) spontaneous firing patterns. They have a medium size cell body (9.861.7 mm) with 2–4 primary dendrites mainly oriented anteroposteriorly. The ascending axons of dorsal raphe nucleus are all highly collateralized and widely distributed (total axonal length up to 18.7 cm), so that they can contact, in various combinations, forebrain structures as diverse as the striatum, the prefrontal cortex and the amygdala. Their morphological features and VGLUT3 content vary significantly according to their target sites. For example, high-resolution confocal analysis of the distribution of VGLUT3 within individually labeled-axons reveals that serotonin axon varicosities displaying VGLUT3 are larger (0.7460.03 mm) than those devoid of this protein (0.5560.03 mm). Furthermore, the percentage of axon varicosities that contain VGLUT3 is higher in the striatum (93%) than in the motor cortex (75%), suggesting that a complex trafficking mechanism of the VGLUT3 protein is at play within highly collateralized axons of the dorsal raphe nucleus neurons. -
Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone
International Journal of Molecular Sciences Review Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone Tiago Chaves 1,2, Csilla Lea Fazekas 1,2, Krisztina Horváth 1,2, Pedro Correia 1,2, Adrienn Szabó 1,2, Bibiána Török 1,2, Krisztina Bánrévi 1 and Dóra Zelena 1,3,* 1 Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; [email protected] (T.C.); [email protected] (C.L.F.); [email protected] (K.H.); [email protected] (P.C.); [email protected] (A.S.); [email protected] (B.T.); [email protected] (K.B.) 2 Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary 3 Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary * Correspondence: [email protected] Abstract: Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic– pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, Citation: Chaves, T.; Fazekas, C.L.; we aimed to summarize the present knowledge on the role of classical neurotransmitters of the Horváth, K.; Correia, P.; Szabó, A.; brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress Török, B.; Bánrévi, K.; Zelena, D.