<<

2 O O 2MNRAS.333. .1213 2 12 1 With nonuclearreserves,theirevolutionwillbedominatedby binary isapairofwhitedwarfswithmasses~0.6Mqorbelow. This paperaddressesthequestion ofwhathappenswhenapair increasingly commonasthestellar populationofagalaxyages. the mergeroftwowhitedwarfs; aprocessthatshouldbecome magnetic-wind braking.Itisreasonabletosupposethata Increasing numbersofsuchbinariesarenowbeingdiscovered. The likelyoutcomeoftheevolutiontwostarsinadetached Accepted 2002January31.Received14;inoriginalform2001February23 Armagh Observatory,CollegeHill,BT619DG Mon. Not.R.Astron.Soc.333,121-132(2002) ^E-mail: csj@.arm.ac.uk companion startstoaccretematerial. Inlooseterms,thisdescribes companion. Tidalforceswilltakeoveranddisruptthelessmassive connects thetwostars(Rochelobe)andspilloverontoits will thenfillthecommongravitationalpotentialsurfacethatjust completely withinaHubbletime.Thelessmassivewhitedwarf orbital decayasaconsequenceofgravitationalradiationor star, causingittoformadiscfromwhichthemoremassive substantial fractionoftheorbitssuchbinarieswilldecay Hideyuki SaioandC.SimonJeffery* white dwarfsandtheprogenyofextremeheliumstars Merged binarywhitedwarfevolution:rapidlyaccretingcarbon-oxygen © 2002RAS 1 INTRODUCTION AstronomicalInstitute,SchoolofScience,TohokuUniversity,Sendai980-8578,Japan © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem rates forCO+Hewhitedwarfpairs,theevolutionarytime-scalesareroughlyconsistentwith We haveexaminedtheevolutionofmergedlow-massdoublewhitedwarfsthatbecome merger asthebest,ifnotonly,viablemodelforcreationofextremeheliumstarsand,by helium zoneoftheinitialCOwhitedwarfs.Theseresultsestablish+Hedwarf helium shellduringapreviousasymptoticgiantbranchphaseareassumedtoexistinthe the observednumbersofextremeheliumstars.Predictedsurfacecarbonandoxygen The theoreticalmodelsforthemergerofaO.b-M©COwhitedwarfwith0.3-MqHe mass isaccumulated,aheliumshellflashoccurs,theradiusandluminosityincrease matter, consistingmostlyofhelium,ontoacarbon-oxygen(CO)whitedwarf.Aftercertain ABSTRACT Key words:binaries:close-:chemicallypeculiarevolutionwhitedwarfs. andmassesobtainedfromtheirpulsations.Togetherwithpredictedmerger logTeff-logg diagram,withtheirobservedratesofbluewardevolution,and dwarf agreeverywellwiththeobservedlocationsofextremeheliumstarsin enough, thestarevolvesbluewardalmosthorizontallyinHertzsprung-Russelldiagram. luminous heliumstars.Wehaveapproximatedthemergingprocessbyrapidaccretionof association, themajorityofRCoronaeBorealisstars. abundances canbeconsistentwiththeobservedvaluesifcarbonandoxygenproducedin a pre-determinedvalue.Whenthemassabovehelium-burningshellbecomessmall star becomesayellowgiant.Massaccretionisstoppedartificiallywhenthetotalmassreaches by enhancementsofCNO-processed,5a-and«-captureproducts is whethertheyaretheproducts ofsingle-starorbinary-star luminosities (Asplundetal.2000); thelatterwillalsobe Hill &Heber1999).EHesareoftenconsideredtoberelatedthe A fewhavesignificantlylowerL!Mratiosanddonotshow3a- (Jeffery1996).Inmostcasestheyarealsocharacterized luminous starswithhighlyprocessedsurfaces. helium core,coalesce.Itsmotivationisanattempttoexplainthe evolution. Thetaskhasbeendifficult fromtheoutsetbecause,in considered inthispaper. cooler RCrBstarsbecauseoftheir similarsurfacecompositionand ), whereluminosity,L,andthemass,M,areinsolarunits. evolutionary originofextremeheliumstars(EHes),arareclass white dwarfs,onewithacarbon-oxygencoreandtheother and themajorityhavelogL/M>4(asindicatedbytheirsurface and A-typegiantstarswithextremelylowsurfaceabundancesof acquired theirunusualcharacteristics.Typically,theyarerareB- «-capture productsintheiratmospheres(e.g.V652Her,Jeffery, The majorquestionconcerningthe evolutionaryoriginofEHes The taskofstellarevolutiontheoryistoexplainhowthesestars 2 O O 2MNRAS.333. .1213 1 been developedbyconsideringevolutionarymodelsforaccreting binary systems(Jeffery,Drilling&Heber1987),forcingthe reasons, namely:(i)adegenerateCOcorewithhelium-burning been causedbytheabsenceofdetailednumericalMBWDmodels. WD tocoolgiantobservedinV605Aql(Pollaccoetal.1992), by thelargedegreeoffreedomallowedinreproducingawiderange post-AGB sequence. become awhitedwarf,alsoforcingthestartoexpandrapidly. rich surface.Twoprincipalhypothesesemergedduringthe1980s. ignition ofaheliumshellintheaccretedenvelope,whichforces Tutukov 1984;Webbink1984)consideredtheaccretionofawhite the normalevolutionofsinglestarsfrommainsequenceto necessary toexaminetheirdetailed propertiesalongsideanumber have beenconsidered(Saio&Nomoto 1998;Iben1990),itis the generalpropertiesofsuchmodelsforbothCOandHeWDs higher thanobservedinEHes(Herwigetal.1999).Pandey In particular,theLTPmodelfailstoaccountforallEHestwo Benetti 1996),allofwhicharehydrogen-deficienttosomeextent. FGSge (Herbig&Boyarchuk1968)andY4334Sgr(Duerbeck LTP modelhasalsobeensupportedbytherapidevolutionfrom Heber &Hunger1991;Leuenhagen,HamannJeffery1996).The high CandOconcentrationsinPG1159[WC]stars(Werner, Again, thesubsequentevolutionwouldresemblecanonical mass thatafinalthermalpulsewouldoccurafterthestarhad near thesurfaceofastaratendAGBevolutionwassuch merger, orcontractiontotheheliummainsequence-possibly dwarf (WD)secondaryontoawhiteprimary,resultinginthe white dwarfphase,itseemedimpossibletoremovethehydrogen- of observationalconstraints.The first constraintisthedistribution white dwarfs(Saio&Nomoto1998;SaioJeffery2000).Whilst companions. of abinarysystem.Anyputativesingle-staroriginimpliesthat conclusion thattheirevolutionmusthaveincludedthedestruction 2000). IthasalsobeenestablishedthatnoEHesaremembersof one low-L/MEHewithremarkableprecision(Saio&Jeffery extreme heliumstarsonthebasisofthisargument. 2000) and(ii)correctlycomputedLTPmodelspredictsurface of surfacecompositions,froms-processelementsinsomeRCrB deficient stars.PartofthesuccessLTPmodelshasbeencaused et al.1999)andusedtodiscusstheoriginsofvarioushydrogen- considered whatwouldhappenwhentheheliumlayerremaining giving asubdwarfBstar-inthecaseofHe+WDmerger contraction tothewhitedwarftrack,incaseofaCO+HeWD would followthecanonicalpost-asymptoticgiantbranch(AGB) abundances ofcarbonandoxygenthatareanordermagnitude (Iben 1990). star toexpandbecomeacoolgiant.Thesubsequentevolution some fractionwouldcontinuetohaveobservablebinary successfully thephysicaldimensionsandpulsationpropertiesof (2001) haveemphaticallyrejectedtheLTPmodelfororiginof shell cannotaccountforthelow-luminosityEHes(Saio&Jeffery stars (Bond,Luck&Newman1979;LambertRao1994)tovery (Iben &MacDonald1995;BlockerSchönberner1997;Herwig TheMBWDandLTPmodelsarealso referredtointheliteratureas ‘double-degenerate’ (DD)and‘final-flash’ (FF)models,respectively. 122 H.SaioandC.S.Jeffery 1 Methods tostudytheconsequencesofMBWDsystemshave In contrast,themergeroftwoheliumwhitedwarfshasdescribed However, anotherpartofthesuccessLTPmodelmayhave The LTPmodelhasbeenstudiedextensivelyinrecentyears The ‘latethermalpulse’model(LTP:Ibenetal.1983) The ‘mergedbinarywhitedwarfmodel’(MBWD:Iben& © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem 8 -51 Mi =0.6Mand0.9.Thecomputationalmethodisthe M =0.9,0.8and0.7for0.6,0.8, rapidly accretinghelium-richmaterial(T=0.98,Z0.02).In We havecalculatedevolutionarymodelsstartingwithwhitedwarfs properties, willbecomparedwiththeobservationalconstraints range 0.6-0.9M©.Thesemodels,includingtheirpulsation recently beenmeasured(Jefferyetal.2001a).Finally,pulsational ratio. ThesecondisthesurfacecompositionofEHescompared range impliesawidefortheassumedefficiencyof 2.1 Assumptionsandinitialmodels 2 EVOLUTIONMODELS measurements usingBaade’smethod(Jefferyetal.2001a)ora the firstinstance,massestimatesbasedonpulsationperiod instability isubiquitousamongstEHesandRGBs.Thisprovides,in the evolutionarymodels.Athirdisprovidedbyseculartime- for theearlyaccretionphaseofevolution. that theresultsareinsensitiveto choiceoftheinitialTexcept ignition (whenpresent).Theycorrespondtoevolvedwhitedwarfs the accretionphaseshouldbelowenoughtoavoidhydrogen values forTwereoriginallychosensothattheshelltemperaturein temperature arelogL/L=-3.03and-2.64logr6.774 model hasM=O.46M.Theluminosityandthecentral model hasadegenerateC-0coreof0.58M,whiletheO.5-M helium starsof0.6and0.5Mfromthezero-agemain merger process. mass isbetween0.1and0.4Mgreaterthantheinitialmass.This merger hasamassintherange0.3-0.4M.Thechoiceoffinal in theformM(Mi).Thus0.9(0.6)meansmodelhaving helium starsintheliterature,wehaveadoptedfinalmassesof Eddington limitaccretionrateforwhitedwarfs.Initialmasses hydrogen {X=0.001).Fortheinitialaccretionphase,whichis accreting carbon-oxygenwhitedwarfswithfinalmassesinthe comparison withnon-linearhydrodynamicmodels. alone (Saio&Jeffery1988)and,ultimately,directmass with thatgivenasaconsequenceofnucleosynthesisandmixingby of EHesintheeffectivetemperature(r)versussurfacegravity dwarf havinglogT=7.072(logL/L =—2.39).Wehavefound computed additionalmodelsequence startingwithaO.6-Mwhite with agesof6-9X10yr. and 6.999forthe0.6-O.5-Mmodels,respectively.These 0.6 Mo,forMi=0.5M.Modelswilloccasionallybereferredto final mass.Consideringtherangeofmassesreportedforextreme was stoppedwhenthetotalmassincreasedtoapre-determined double whitedwarfsystem,wehaveadoptedanaccretionrateof considered asaroughapproximationofthemergingprocess considered accretionofmattercontainingasmallfraction order toseetheeffectofatraceamounthydrogen,wehavealso summarized above. scales which,inthecaseofsomerapidlyevolvingEHes,have (log g)plane.Thelatterisaproxyfortheluminosity-to-mass(L/M) sequence tothewhitedwarfsequence.TheO.6-M (2000). same asthatusedinSaio&Nomoto(1998)andJeffery (Mi) ofwhitedwarfsconsideredare0.6and0.5M.Theaccretion 1 X10Moyr,whichisapproximatelyone-halfofthe 0f f0 c c 0c co0 0 0 0 0 f0 eff c 0 0 0 0 0 0 It isthepurposeofthispapertopresentevolutionmodelsfor To seethedependenceofresults ontheinitialr,wehave Initial whitedwarfmodelshavebeenobtainedbyevolving Our modelsassumethattheheliumwhitedwarfdestroyedin c © 2002RAS,MNRAS 333,121-132 2 O O 2MNRAS.333. .1213 represents evolutionstartingwitha0.5-MCOwhitedwarfaccreting represents theevolutionstartingwitha0.6-MoCOwhitedwarfaccreting measured as0.94±0.68and0.790.46 M,respectively. The tracksaftertheterminationofaccretion areshownasthicklines.The model sequencethataccretesmatterwithhydrogenisnotshowntoavoid for a0.5-MoCOwhitedwarfaccretingmostlyhelium(dashedline).(The Figure 2.ExpandedsectionofFig.1withadditionalmodels.Initialmodels mass became0.7M. mostly heliumandnohydrogen.Theaccretionwasstoppedwhenthetotal mostly heliumandnohydrogen(Y=0.98,Z0.02).Theaccretionwas Figure 1.EvolutionarytracksstartingwithCOwhitedwarfs.Thesolidline are shownforcomparison.Themasses ofPVTelandV2244Ophwere dimensions oftwoextremeheliumstars takenfromJefferyetal.(2001a) 0.9 MforMi=0.6Mq,and0.6,0.7, 0.8and0.9MforMi=0.5Mq. confusion.) Evolutionwasstoppedwhen thetotalmassbecame0.7,0.8and are fora0.6-MqCOwhitedwarfaccretingmostlyhelium(solidline),and containing asmallfractionofhydrogen(X=0.001).Thedashedline each track.Thedottedlineisforthesamemodelbutaccretinggas stopped whenthetotalmassbecame0.7Mnearlyatcoolestpartof © 2002RAS,MNRAS 333,121-132 o 0 0 0 0 0 © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem loT g df Merged binary(CO+He)whitedwarfevolution123 repeating verymildflashesandtheluminosityincreasesupto burning shell;thereafteritfollowsthe helium-burningshell. logL/L© —3.5onatracknearlyparalleltotheoriginalwhite After thefirstflash,helium-burningshellmovesinward in radius)thenthestarexpandsalittle;Alog/?—0.8 log L/Lq—0alongawhitedwarfsequence(i.e.withlittleincrease logL/L© ——2.6beforeaheliumshellflashisignitedatM= is forthecasestartingwithsamewhitedwarfmodelbut matter withouthydrogen(F=0.98,Z0.02)andthedottedline lines areforcasesstartingwiththe0.6-Mwhitedwarfaccreting Figs 1and2showevolutionarytracksafterstartingaccretion.Solid 2.2 Evolutiontoayellowgiant He-shell flash.InitiallytheHe-shell/CO-core boundary(wherethehelium Figure 3.EvolutionofthemodelwithMi—0.6M©showingbehaviour than theabove0.6Mcase.Theearlierignitionisprobablycaused ignition shellislocatedatM—0.5003M©when0.013 the luminosityincreasesalongwhitedwarfsequence.Thefirst white dwarftoayellowgianttakes~200yr(Fig.3). dwarf sequence.ThenitturnsrightontheHertzsprung-Russell 0.604 Mq(Fig.3).Atignitionamassof0.029Mhasbeen with the0.5-Mqwhitedwarfaccretingmatterwithouthydrogen. abundance iszero)locatedatthepoint ofdeepestingressthehelium- of time.Notetherapidexpansion(< 100 yr)tolowrfollowingthefirst the positionofhelium-burningshell andconvectivezonesasafunction of thenuclearluminosity(L),total L,effectivetemperatureT, accumulated. Afterignition,theluminosityincreasesinitiallyupto and 2).Withthestartofaccretionluminosityincreasesto accreting mostlyheliumwithouthydrogen(solidlinesinFigs1 accreting mattercontainingasmallfractionofhydrogen accreted (Fig.4).Themassbeforetheignitionissmaller (HR) diagramtobecomeayellowgiant.Thetransitionfrom (AlogTeff ——0.2).Withthisexpansionthefirstshellflashends. (X =0.001).Dashedlinesrepresentevolutionarytracksstarting shell flashoccurswhenlogL/L©—3.5andlogoff~5.2.The shown bydashedlinesinFigs1and2.Withthestartofaccretion r o 0 r0 0 eff n QÍÍ First, wediscussthecasestartingwith0.6-Mwhitedwarf Evolution sequencesstartingwiththe0.5-Mwhitedwarfare o o 3 45 log t(yr) 2 O O 2MNRAS.333. .1213 Mi -0.6M. panels. burning shellmovesinwardrepeatingverymildflashesandthe by thefactthatinitialcoretemperatureof0.5-Mmodelis dropstologL/L©—2.84.Thereafter,thehelium- higher thanthatofthe0.6-Momodel.Followingshellignition, luminosity andeffectivetemperature (K)areshownintheupperthree Figure 5.Thelocationofthehelium (solidline)andhydrogen-burning following helium-shellignitionissignificantlyslowerthanfor Figure 4.AsinFig.3forthemodelwithMi=0.5Mq.Theexpansionrate envelope expandstobecomeayellowgiant. and mass(M).Theconcurrentvalues ofnuclearluminosity,surface (broken line)shellsandconvectivezones areshownasafunctionoftime 0 o 124 H.SaioandC.S.Jeffery 0 A jumpinthelocationofhelium-burningshellappearsto 2 3456 © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem log t(yr) log t(yr) 4 _51 but averysmallheliumabundanceandtheouterpeakhasslightly by whetherthemassabovehelium-burning shellissmallerthan reaches apre-determinedvalue,notionally representingtheamount base oftheconvectionzone. role indredging-upnewlyprocessedmaterialtothestellarsurface than thecasewithouthydrogen,evolutionarypathtoyellow luminosity beginstoincrease.Followingtheheliumshellflash, After arapiddecreaseinluminosity,whichlastsonly~20yr, transformed toastructuresupportedbythehelium-burningshell. logL/L© —3.7,consumingmostoftheaccretedhydrogen.After luminosity increasesalongthewhitedwarfsequenceupto fraction ofhydrogen(thedottedlineinFig.1),ashell that oftheinnerpeak. lower temperaturebutalargerheliumabundance.Theinnerpeak two peakswithintheshell;innerpeakhasahighertemperature This arisesbecausethedistributionofenergygenerationhas the carbonabundanceinconvection zonedecreaseswith inflated andthestarremainsayellowgiantaslongaccretion 2.3 Bluewardevolutionfromayellowgiant helium-rich layerssothattheveryweakhydrogen-burningshellis up to—0.1and—2.5X10,respectively.However,these material mildlyenhancedincarbon.Thisisdredgeduptothe .Thehelium-burningshellhasmovedinwards,leaving the yellowgiantareimportantbecausetheycanplayan hydrogen abundanceistoosmalltomodifytheopacity the helium-burningshellbecomesfullyestablished(Fig.5).The helium-burning shellgovernstheenvelopestructure,even for agivenmass(0.7-M©trackisshowninFig.1),becausethe giant regionisbluerandmoreluminous.However,theevolution expansion oftheenvelopeextinguisheshydrogen-burning evolution governedbythehelium-burningshellbeginsand 0.600 M)when0.002hasbeenaccreted(Fig.5).The flash occursclosetotheoriginalwhitedwarfsurface(M= occurs whentheenergygenerationrateofouterpeakexceeds weakens astheheliumabundancedecreaseswithtime.Thejump occur afterthegiantphaseiswellestablished(cf.Figs3and4). available fromthemergerprocess. Furtherevolutionisdetermined . caused byadecreaseintheenvelopeopacity,whichoccursbecause each trackincreasesslightlyinthelatephaseofaccretion.Thisis continues. AscanbeseenfromFig.2,theeffectivetemperatureof Since theaccretionrate10Myrishigh,envelopestays abundances aredilutedconsiderablyasmassaccretionproceeds. convection zoneextendsinwardstobelowthepositionoffirst and —0.0002,respectively.Asthestarbecomesagiant,surface oxygen abundanceintheconvectiveshellatthatphaseare—0.1 zone thatreachesjusttothesurfaceofstar.Thecarbonand considering theweaknuclear-burningshellthatisre-ignitedafter after theyellowgiantphaseisverysimilartothatwithouthydrogen shell. SincethevalueofMathelium-burningshellislarger surface luminositybeginstodecreaserapidlyandtheenvelopeis shifted inwardstoalayerbetweenthehelium-burningshelland surface toincreasethecarbonandoxygenabundancesby (Fig. 5).Thefirsthelium-shellflashisassociatedwithaconvection significantly. ~600yr theheliumshellburningignitesatM—0.602M©, 0 r Q r r For the0.6-Mowhitedwarfaccretingmattercontainingasmall The massaccretionisstoppedartificially whenthetotalmass In themodelwithhydrogen,protonsarecarrieddownwardsinto The locationandextentofconvectionzonesintheenvelope © 2002RAS,MNRAS 333,121-132 2 O O 2MNRAS.333. .1213 2 8 2 required tosustainagiveneffectivetemperature.Therefore,for relation. Inturn,thelowerluminosityincreasesenvelopemass relative importanceofthermalpressure.Alargerradiusat relation betweentheradiusandmassofC-0core.Because blueward nearlyhorizontallyontheHRdiagram. Recallthat,forshell-burningstarsin equilibrium,theshellluminosityis LSS 3184isconsiderablyabovethe dottedcurve,butthesurface high-luminosity extremeheliumstarsseemtobeconsistentwith to —4.46for0.9(0.5)M©(dashedlines).Theobservedpositionsof to —4.47for0.9(0.6)M©(solidlines)and—3.770.6(0.5)M© higher-mass modelsrangingfromlogL/M~4.22for0.7(0.6)M© mass modelsforagivenMi. lines (Mi=0.5M©).Theuppercorrespondtothehigher- Table 1.Solidanddashedlinesindicateevolutiontracksformodels Fig. 6showsevolutiontracksduringthecontractionphaseand 3 L/MRATIOS temperature zoneislessimportant. total massbecausetheratioofthermaltodegeneratepressuresis model from=0.6M©.Thedifferenceissmallerforalarger mass isassociatedwithadifferentcore-massshell-luminosity lower gravitythere)andhencealuminosity,thuseachinitial the helium-burningshellyieldsalowertemperature(becauseof in themodelfrom=0.5M©than high-temperature (sayT>10K)zoneintheC-0coreisthicker mass butwith=0.5and0.6Mqarisesfromadifferenceinthe luminosity increasesasthemassofCOcoreowingto the equilibriumvaluecorrespondingtocoremassatcurrent core massandtheenvelope(cf. Saio 1988;Iben&Tutukov1989). governed bythecoremassandeffective temperatureisgovernedbythe maynotbeaccurate(Woolf &Jeffery2000). Saio &Jeffery(2000).Thelow-luminosityextremeheliumstar our COwhitedwarfmergermodelshavingtotalmassesofbetween during thecontractionevolution.ThevaluesofL/Marehigherfor dwarfs, respectively.Thetotalmassesare0.7,0.8and0.9M©for obtained inthispaperstartingwith0.6-and0.5-M©COwhite diagram. Theobservationaldataandtheirsourcesaregivenin observed positionsofextremeheliumstarsinthelogg-logrff 0.5 M©hasalargerenvelopemassandislessluminousthanthe given totalmassandeffectivetemperaturethemodelfromMi= 0.6 M©foragivencoremass,theradiusathelium-burning above thehelium-burningshellbecomessufficientlysmall, an outwardprogressofthehelium-burningshell.Whenmass accretion, thestarevolvesslowlyasayellowgiantforwhile.The evolution occursforthecaseof0.6(0.5)Mq. diagram) correspondingtotheenvelopeandcoremasses.Such evolution immediatelytowardtheequilibriumposition(onHR .Ifthisisthecase,starstartsablueward sequence obtainedstartingwitha0.4-M©heliumwhitedwarfby (Fig. 2),theluminosity-to-massratio,L/M,isnearlyconstant solid lines(M[=0.6M©)and0.6,0.7,0.80.9M©fordashed smaller inthelargerC-0coreandhencethicknessofhigh- shell inthemodelfromM)=0.5M©islargerbecauseof surface temperaturebeginstoincreaseandthestarevolves © 2002RAS,MNRAS 333,121-132 — 0.7and1M©. 144941 areclosetothedottedline,whichisanevolutionary e Low-luminosity extremeheliumstarssuchasV652HerandHD The causeforthedifferencebetweenmodelswithsame If theenvelopemassissufficientlyhighatterminationof Since theevolutiononHRdiagramisroughlyhorizontal © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem Merged binary(CO+He)whitedwarfevolution125 radius ofthehelium-burningshellislargerandhence respectively. Theupperlinescorrespond tohighertotalmasses.Themasses from equilibriummodels,whichconsistofanisothermal in theenvelopehardlyaffectscontractionrate. indicates clearlythattheexistenceofasmallamounthydrogen luminosity islower. the modelfromM[=0.5—M©whitedwarf,because Numbers inparenthesesindicatetheinitialwhitedwarfmass(Mi). Fig. 7showsratesoftheeffectivetemperaturechangecausedby 4 CONTRACTIONRATES luminosity extremeheliumstars,andseemtobeconsistentwiththe line for0.6(0.5)M©areBD+10°2179andHD124448.These with a0.4-Moheliumwhitedwarf.Open squaresshowobservedpositions models obtainedstartingfrom0.6-and0.5-MCOwhitedwarfs, Figure 6.Evolutionarytracksforthebluewardevolutionfromyellow for 0.8M©obtainedfromequilibriummodelsisshownbyadash- contraction. Foragiventotalmassthecontractionrateisslowerfor consumption ofheliuminmoremassivemodelsyieldsafaster outward progressionofthehelium-burningshellsothatfaster contraction againsttheeffectivetemperatureforvariousmodels. dwarf. evolution modelof—0.6M©startedwitha0.5-M©C-0white of someextremeheliumstars(seeTable 1). extreme heliumstarscomputedinSaio &Jeffery(2000),whichwasstarted dashed lines.Thedottedlinedenotes a0.7-Mtrackforlow-luminosity are 0.7,0.8and0.9M©forsolidlines and0.6,0.7,0.80.9Mfor giant phaseonthelogg-logLffplane.Solidanddashedlinesarefor dotted line. obtained withMi=0.6M©.Forcomparisonthecontractionrate envelope. Theseratesaresimilartothoseofourevolutionmodels degenerate C-0core,helium-burningshell,andahelium-rich stars haveL/Mvaluesintermediatebetweenthoseofhigh-andlow- o o 0 e The contractionratesinmostmodelsaregovernedbythe Two starswithlogLff~4.2andg—2.5alongthedashed Another modelproposedtoproduceluminousheliumstarsisa Comparing dottedandsolidlinesfor0.7(0.6)M©inFig.7 Saio (1988)estimatedcontractionratesofextremeheliumstars e log T ef( 2 O O 2MNRAS.333. .1213 region ontheHRdiagramcontracting fromitsborn-againAGB much fasterthanthoseforourmodels havingsimilarmasses.The late (orfinal)thermalpulsemodel, whichpassestheheliumstar Figure 7.Ratesoftheeffectivetemperaturechangecausedbycontraction. observed byJefferyetal.(2001a). curve representstheheatingratesfor0.8Mfromequilibriummodelsby 0.5-Mo whitedwarf.NumbersinparenthesesindicateThedash-dotted originated fromthe0.6-Mwhitedwarf,anddashedcurves and 0.836-Momodels,respectively. Thesecontractionratesare Saio (1988).Opensquaresareheatingratesforextremeheliumstars Solid curves(andadottedcurvefor0.7M©withhydrogen)aremodels (1997) wecanestimatethelog[dT ff/dt]s as1.6and3.3for0.625- stage. Fromevolutionarytracksshown inBlocker&Schönberner 126 H.SaioandC.S.Jeffery 0 Q e © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem 0 0 24 Lyn84, Lynas-Grayetal.(1984);Lyn87,(1987)(basedonrandL);PanOl,Pandey Jeffery (1998);Jef98b,etal.Jef99,(1999);JefOl,(2001a); V652 Her4.3903.68 LSS 3184(—BXCir)4.3663.35 DYCen 4.2902.15 LSS 994.1851.90 LSS 43574.2072.00 LSIV-14°109 3.9770.90 LSIV— 1°2(—V2244Oph)4.1061.35 LSIV+62 4.5024.05 BD- 9°4395(=V2205Oph)4.362.55 BD—1°3438 (=NOSer)4.072.30 BD+1°4381 (=FQAqr)3.940.75 BD+10°2179 4.232.55 HD225642 (=V1920Cyg=LSII+33°5)4.2092.00 HD 168476(=PVTel)4.141.35 HD 160641(=V2076Oph)4.502.73 HD 1449414.3653.9 HD 1244484.1922.52 Table 1.Measuredsurfacepropertiesofextremeheliumstars. et al.(2001);Sch74,Schönberner&Wolf(1974);Wal81,Walker(1981);WooOO,Woolf CoD—461775 (=LSE78)4.262.00 (1983); Jef92,Jeffery&Heber(1992);Jef93,(1993);Jef93b,Jef98a, Star & Jeffery(2000)((/f*>(r). References: Dri98,Drilling,Jeffery&Heber(1998);Har97,Harrison(1997);Heb83, eff rff l0T g e„ logoff logglogL/Lo birth rates,Iben,Tutukov&Yungelson(1996)arrivedatasimilar between 0.8(0.6)and0.9M©.Wenote,however,thatthepositions plotted inFig.7asopensquares.Itisremarkablethatthreeofthe poor surfaceshaveeffectivelysimilarcontractionrates(Blocker Jeffery 1988),thisgiveswhat hasbeenreferredtoasa luminosity-to-mass ratio.When combined withanappropriate used forestimatingthestellarmass. Oneisthestellarsurface In previousstudiesofextremehelium stars,twoproxieshavebeen is thecorrectmodel. Arguing fromthestandpointofobservednumbersandpredicted luminosity extremeheliumstarmodelsinFig.6. in thisfigurearenotalwaysconsistentwiththepositions four starsarelocatedalongthetracksfor0.9-Mqmodels.The BD-9°4395 andBD-1°3438(seeTable1).Theirresultsare variations oftheextremeheliumstarsHD160641,168476, in thelatethermalpulsemodelismuchsmallerthanthatof hydrogen-rich atmospheres.Morerecentmodelswithhydrogen- models ofBlocker&Schönberner(1997)stillhavesubstantially core-mass shell-luminosity(M- L) relation(e.g.Saio1988; gravity, whichprovidesadirect measurementofthestellar 5 RADIALPULSATIONS of extremeheliumstarsarethereforeessentialtodeterminewhich conclusion. Accurateestimatesofthemassesandluminosities consistent withthelatethermalpulsemodelifmasswere close tothelinefor0.9MinFig.7buttracklow- log Tff—loggplane(Fig.6).Inparticular,BD-1°3438islocated exception (HD168476)isconsistentwiththerateforamodel equilibrium valueforagiveneffectivetemperaturerangingfrom 2001). Thisdifferencecomesfromthefactthatenvelopemass — 0.6M©,whileourmergermodelrequires—0.8-0.9M. -10000 to-40000K. c s 0 e 0 The observedcontractionrates(Jefferyetal.2001a)wouldbe Jeffery etal.(2001a)measuredtheratesoftemperature 4.28 4.40 3.03 3.15 1 (Kyi-) dr/dr eff 120 95 20 33 Dri98,Woo00 Wal81,Jef01 Lyn84,Jef99 Lyn87,Jef01 PanOl, JefOl PanOlJefOl Jef92,Jef01 Reference © 2002RAS,MNRAS 333,121-132 Jef93b Jef98b Jef98b Heb 83 Jef98b PanOl PanOl Har97 Sch74 Jef98 Jef93 2 O O 2MNRAS.333. .1213 by avarietyofprocesses.Thehydrogendeficiencyextreme record ofpreviousevolution,dredgedtoordepositedonthesurface radius andcontractionrates,asecondwindowontothehistoryof remarkable coincidencewiththecorrespondingmassmeasure- Woolf &Foliáceo2001b;Jeffery2000).Theseare resolve themass.Incaseoftwoshort-periodpulsators physics inthemodelatmospheres.Therefore,itisimportantto range 0.77-0.95M©.Usingmorerecentspectroscopicanalyses, provides anindependentmeasureoftheluminosity-to-massratio the stellarmetallicity;(ii)a high carbonabundanceand Pandey etal.2001).Principalamong theseare:(i)anitrogen helium starsistheprimaryindicatoroftheirextremelyprocessed highly evolvedstarsisprovidedbytheirsurfacecomposition.The In additiontothegrossstellardimensionsofmass,luminosity, these observationsarethestrongestevidenceyetavailablethat models. Whilemorecouldbedonetoimprovethemeasurements, measurement thatfitthemodelsof0.9(0.6,0.5)M©mergedbinary ments (0.79and0.94M©). for 0.8(0.6)and0.9(0.6,0.5)-M©modelsinFig.2 4.40 ±0.06,respectively. LS IV-1°2=V2244OphandHD168476PVTel,respectively. measured massesof0.79±0.46and0.940.68M©for Fig. 6. measure extremeheliumstarluminositiesdirectly.Thiscanbe frequently measuredtoanaccuracyof±0.3dex,andissensitive Jeffery etal.(2001a)showedMtolieintherange0.5-1.0M©(14 the massesMforfivepulsatingextremeheliumstarsliein helium starsthatpulsate,bythepulsationperiodwhich,together oxygen abundancesinanyprogenitor asestimatedfromproxiesfor abundance equivalenttothecombined carbon,nitrogenand general abundancepatternsatlength (Heber1986;Jeffery1996; atmospheres. Previousauthorshave reviewedanddiscussedthe chemicals exposedatthestellarsurfaceeffectivelyprovideafossil 6.1 Predictedabundances 6 SURFACECOMPOSITIONS dwarf. and notofevolutionfollowingalatethermalpulseinsinglewhite extreme heliumstarsaretheresultofbinarywhitedwarfmergers as 31±3and344R©logL/L©=4.280.06 corresponding radiiandluminositiesaremorepreciselymeasured are primarilycausedbythemeasurementerrorinlogg.The gravity estimateofJefferyetal.(2001a).]Thelargeerrorsinmass consistent withthelowmassesinferredfromtheirpositionsin 0.4 M©havebeenmeasured(Lynas-Grayetal.1984;Jeffery, achieved forpulsatingstarsusingBaade’smethodtomeasurethe assuming astandardM-Lrelationforshell-helium-burningstars, with atheoreticalrelationderivedfromlinearpulsationtheory, (CO +He)whitedwarfevolutionandcontradictlatethermalpulse (V652Her andLSS3184=BXCir),massesof0.5-0.7 stellar radiusandluminosity.Again,surfacegravityisrequiredto (Saio &Jeffery1988).Again,asuitableM-Lrelationprovides © 2002RAS,MNRAS 333,121-132 stars), witheightstarshavingM>0.7M©. [We haveadoptedthevalueforLSIV—1°2basedonlower ‘pulsation’ mass(M).Saio&Jeffery(1988)showedthat, ‘spectroscopic’ mass(M).Thesecondisprovided,forthose s p cs cs p s HD 168476hasbothadirectmassandcontractionrate The luminositydataplacethesetwostarsdirectlyonthetracks For themoreluminousheliumstars,Jefferyetal.(2001a)have The weaklinkintheseargumentsisthesurfacegravity,which © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem Merged binary(CO+He)whitedwarfevolution127 -4 3 5 -5 -4 -3 _4 been adoptedfortheremainingheavyelements.Insomemodelsa predominantly ofheliumwithamasslessthan0.4M©.Onits respectively. ForthecaseofMi=0.5M©,corresponding through theCNOcycle.Fromtheseconsiderationswehave helium whitedwarf.Thedonorisassumedtoconsist is thattheaccretedgasfullymixedremnantofadonor model withhydrogen.Thesurface carbonandoxygenabundances the convectiveenvelopebecomesdeeperanddredgesupmatter the weakerheliumflash. The smallerextentoftheshellconvectionzoneand increased upto0.12and2.5X10,respectively,beforetheflash mass fractionsofcarbonandoxygenintheconvectiveshell involved intheshellconvectionzonewas~0.025M©,and the firstheliumflash.Duringflash,shellconvectionzone helium zone.Somecarbonandlittleoxygenwereproducedduring include somecarbonandoxygen. has aheliumzonewithoutcarbonandoxygen.Inordertoseethe AGB (e.g.Herwig2000).However,ourinitialwhitedwarfmodel helium layertherewouldexistconsiderableamountsofcarbonand neglected athinhydrogenlayerwithmassofsome~0.0001M©, of ~0.5-0.6M©;wehaveshownhowmassaffectsthesubsequent gas. CNO abundances.ThesolarabundancescaledtoZ=0.02has oxygen inthedonorwouldhavebeenconvertedtonitrogen qualitatively consistentwiththeobservations.Thefirstassumption of assumptions,sowecanonlydemonstratethattheyare extreme heliumstarsmustbeabletoreproducetheseobservables. downwards intothestar.Asuccessfulmodelforevolutionof occasionally ahighoxygenabundanceindicativeofmixingfrom of thismodelare5.1X10“and 1.9 X10“inmass,respectively. considerably bythematteraccreted afterwards. carbon abundanceisashigh —0.1,butitwillbediluted carbon andoxygenabundancesforMi=0.5M©,areattributedto quantities were—0.01M©,—0.03and—2X10,respectively. oxygen abundancesintheshellwere—0.06and2xl0, convection zonewas~0.006M©andthemaximumcarbon diminished. Forthecasewithhydrogen,massinshell zone. Forthecaseof=0.6M©withouthydrogen,mass extended throughalmostalloftheenvelopeaboveignition with aheliumzone,thecompositionofwhichismodifiedto effect ofcarbonandoxygenintheheliumzone,wehavecalculated oxygen createdduringthermalpulseswhenthestarwason which wouldhavesurroundedthehelium-richlayer.Within evolution. ExteriortotheCOcorethereexitsahelium-richlayer accreting COwhitedwarf.Thecoreisassumedtohaveamass abundances. Thenitrogenabundanceisthesumoforiginal adopted Y=0.98andX0.011fortheheliumnitrogen a zoneaffectedbyheliumburningintothestellarenvelope;and and oxygentothesurface.At deepestpenetrationthesurface affected bytheheliumburningasseeninFig.5,bringingcarbon small fractionofhydrogen{X=0.001)isincludedintheaccreted surface wouldhavebeenahydrogenlayerofmass~10- (iii) tracesofhydrogen,representingarelicouterlayermixed started withawhitedwarfmodelhavingnocarbon/oxygeninthe some modelsequencesstartingwithinitialwhitedwarfmodels (CNO-processed) withaofmass~0.02-0.04M©.Wehave 10M© (Driebeetal.1998).Alloftheoriginalcarbonand N The secondsetofassumptionsconcernsthestructure The theoreticalmodelspresentedinthispapercontainanumber Fig. 8showsthedistributionofelements withinthe0.7(0.6)-M© The envelopeexpandsaftertheheliumflashandbottomof First wediscusschemicalcompositionsofevolutionmodels 2 O O 2MNRAS.333. .1213 12 is receding(Figs3-5).Forthesame reasonthesurfaceabundance Table 2,respectively.Thecarbonandoxygenabundancesare the smallamountofhydrogen. the convectionenvelopeandmixedwithaccretedmatter.Fig.8 The surfacehydrogen,heliumandnitrogenabundancesarevery Figure 8.Thedistributionofelementswithintheoutermostlayers oxygen abundances,whichisattributed toweakerheliumburning. does notchangeaftertheaccretion wasterminated.Foragiven explained byadilutioneffect becauseappreciablemass given (bymassfraction)inthesecondandthirdcolumnsof 0.675 (1) nucleosynthesis duringthemergerevent.Thesimplemodelleads the theoreticalmodels. layer isgiveninTable3.4comparestheresultwith helium stars.Withtheadoptedparameters,compositionofeach The recipeparametershavebeenadjustedtoobtainßreasonably Finally, aparameterß:\J0l(=10)indicatesthelevelofs-process cycles duringhydrogenburningisspecifiedby/cno/(/cn+ contribution oftheCNOcycletocombinedCNand captures) asrequired.Withinthissimplerecipe,therelative cycles andheliumburningby3aC-acapturescanbewritten distributions withinZarechosentoreflectsolarvaluesexcept original compositionß°,definedbytheinitialheliumandmetal outer partoftheCOcore.Eachlayerhaschemicalcompositionß, where mo:codenotesthemassthatcouldbebroughtfrom with mass 2000). during thermalpulseswhenthestarwasonAGB(e.g.Herwig CO:He shellwell,particularlywithregardtothedredge-upof observational datafromPandeyetal.(2001),andtheresults consistent withobservationsofsurfaceabundancesinrealextreme 6.3 Observedabundances carbon enrichmentasabove.Wehaveadoptedtwotestvaluesfor of theCOwhitedwarfandoxygenabundancefollows abundances Y(=0.028)andZ0.01)(theadoptedparameter Secondly, themodelsandrecipesdonotmakeanyallowancefor jßc:AGB =0and0.2,asadoptedintheevolutionarycalculations. solar value. C(<*,y)0 isgivenbyhJ(h*+/c)(=0.8).Afurther C SQ C a Values forßfollowinghydrogenburningbytheCNandCNO Thus theingredientsofourrecipemodelcomprisefivelayers Neither thenumericalmodelsnorsimplerecipetreat 0.0010 0.0043 0.0019 0.0171 0.975 0.00009 0 0.327 CO:He CO:CO 0.0349 0.05 0.0020 0.20 0.71 0.03 (2) 0.0029 0.20 0 0.80 0 0 0 0.0041 0.0046 0.0020 0.0183 0.970 0.00009 0.33 2 O O 2MNRAS.333. .1213 14 -5 ratio intheheliumlayerdepends on thenumberofthermalpulses possible explanationisprovided by theobservationthatC/O binary beforethemergeroritisdestroyedbyprotoncaptureduring between 0.3and1percent(bynumber;0.93by require thateithermo:co~0.004-0.012M©bedislodgedfrom to arangeofprogenitorAGBstar masses. fraction ofcarbonwithinthetight constraintsalreadydiscussed.A to anotherisdifficultexplainwhileatthesametimekeeping RCrB stars(seeTable4). helium-rich layerofanAGBstar.Incorporatingthisinour is necessary.Herwigetal.(1999)showthat«-capturesonN the merger. than this(Driebeetal.1998).Eitherhydrogenisejectedfromthe helium whitedwarfisthoughttobeanorderofmagnitudelarger ^co:H ^5X10M©.However,thehydrogen-richenvelopeofa variation inoxygen. three importantobservations:theextremelylowhydrogen mild toundetectableenhancementsofyttriumandbarium. that twocoolextremeheliumstarsandtherelatedRCrBshow mass). Herwig (2000).Pandeyetal.(2001)notetheremarkable the correspondingcarbonabundanceinheliumzone(CO:He) the surfaceofCOwhitedwarforobservedcarbon to theingestionofprotonsandcarbonintosamehotmaterial, 2000). ThewiderangeofC/Oratios inEHestarsmaysimplypoint during previousevolutionontheasymptotic giantbranch(Herwig can produceamassfractionof3.5percentneoninthe observational problem;thisisdiscussedbyJeffery&Heber consistency ofC/Heratiosinextremeheliumstarsthatalllie was producedbythermalpulsesintheAGBstage.Inlattercase enhanced intheheliumshellduringAGBevolution. environment iscapableofproducingadditionalneon,which with thepotentialtomakenitrogen.Freshnitrogeninahelium-rich abundance ofneoncomparablewiththatseeninthemajority abundance, thehighneonabundanceandlargestar-to-star simple recipe(2)forthemergermodelyieldsasurface (1993), Jeffery(1998)andPandeyetal.(2001),butmorework significantly tothenewstellarsurface.Pandeyetal.(2001)report should be—0.1-0.3,whichisconsistentwiththeAGBmodelsby C 130 H.SaioandC.S.Jeffery With meóme^^He:He,olds-processelementsdonotcontribute The largevariation(—2dex)inoxygenabundancefromonestar There isapossibilitythatthehighneonabundancean To accountfortheobservedhydrogenabundance,ranem+ The simplerecipehasdifficultyinaccountingqualitativelyfor An importantresultisthattheobservedcarbonabundances © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem for mergedC+Owhitedwarfs(seeTable3),andaverageobservedabundances Ba Fe Ne N H log mmodel for hotandcoolextremeheliumstarsthemajorityofRCrB(Pandeyetal. 0.9(0.6) withenrichedCO,seeTable2),predictedfromthesimplemixingrecipe Table 4.Surfaceabundancesfromtheoreticalmodels(1:0.9(0.6)Hand2: O C 2001). Abundancesaregivenaslogn,-normalizedto^u7i= Si + c(1) (/ 7.5 7.6 2.2 5.6 9.2 8.1 8.0 8.2 model 2.2 7.5 7.6 7.9 9.1 8.1 8.0 (2) recipe hotcool 7.2 7.2 7.8 9.3 8.6 8.3 8.1 (1) (2)EHe 1.9 7.2 7.3 9.3 8.4 8.6 8.3 8.1 1.9 1 -31 -2-131 between 10000and40K. Fourmorelieoutsidethis progeny ofmergersbetweenaCOandHewhitedwarf,there the significantdifferences,notablyinnitrogenandneon,havean RCrBs andfindthemtobebroadlysimilar.Itisnotclearwhether temperature range.Galacticsurveys forextremeheliumstarsare MV SgrandDYCen,thereare17 extremeheliumstarswith^eff Excluding thelow-luminositystarsV652HerandHD144941 40000K rangesfrom10to100Kyr,dependingonmass.This heating rateforextremeheliumstarswithrbetween10000and the GalaxyforCO+Hemergers(Ibenetal.1996give frequency hasbeenexaminedextensively(Ibenetal.1996;Han necessary frequency.Thequestionofclosebinarywhitedwarf must bereasonableevidencethatsuchmergerstakeplacewiththe In ordertopursuethethesisthatextremeheliumstarsare these stars. However, itisequallyclearthattheydoaverygoodjobin to explainthedetailedsurfacecompositionsofbothgroups. mergers. Itisclearthatthemodelsneedfurtherrefinementinorder helium stars,iftheyaretobeconsideredasCO+Hewhitedwarf compare thesurfaceabundancesofextremeheliumstarsand discuss thesurfaceabundancesofRCrBstars.Pandeyetal.(2001) although theconnectionremainscontentious.Asplundetal.(2000) direct antecedentsofextremeheliumstars(Schönberner1977), Galactic plane. essentially complete(Drilling1986); theyhaveabulgedistribution which maybeHe+mergers,butincludingthehotRCrBs within thistemperaturerangeofbetween13and1.3. estimate forthenumberofextremeheliumstarsinGalaxy Combining themergerrateandevolutionarytime-scalegivesan gives evolutionarytime-scalesofbetween3000and300yr. 2.32 X10yr). dwarf pairsis2.2X10yrintheGalaxy,or4.4 and Hewhitedwarfthatthecurrentmergerrateforall deduced that20percentofallwhitedwarfpairsconsistaCO 7 SOMESTATISTICS accounting forthegeneralpropertiesofsurfacecomposition described inthispaperapplyequallytoRCrBstarsandextreme observational orastrophysicalorigin.Themodels(andrecipe) so thatonlyahandfularelikely toremainundetectedinthe 1998; Nelemansetal.2001).Mostrecently,(2001) eff The coolerRCrBstarshavebeenputativelyidentifiedasthe Jeffery etal.(1996)catalogueallknownextremeheliumstars. Both theoreticalmodelsandempiricalevidencesuggestthatthe 6.9 7.4 9.2 9.3 8.6 8.3 8.0 7.4 6.6 9.1 9.2 6.3 8.6 8.5 1.7 RCrB maj. 7.1 6.5 6.1 8.3 8.2 8.6 8.9 1.5 12.0 7.50 7.55 7.96 2.15 8.08 8.87 8.55 © 2002RAS,MNRAS 333,121-132 2 O O 2MNRAS.333. .1213 -321 5 5 We havecalculatedtheevolutionofastarformedbyaccretion Borealis stars. majority ofextremeheliumstars and, byassociation,RCoronae most completeandsatisfactory model forthecreationof the evolutionarylifetimesofextremeheliumstarsarecompatible have beenproducedbythermalpulsesduringtheoriginalAGB the heliumlayerofCOwhitedwarf.Thisenrichmentwould RCrBs. Wehavedemonstratedthattheenhancedcarbonand itself. Meanwhile,wehaveshownbothquantitativelyand necessary toprobethephysicsandoutcomeofmergerprocess merger products;detailedhydrodynamicalcalculationswillbe informative concerningtheexpectedsurfacecompositionsof massive tobe,forexample,productsofalatethermalpulse for afewextremeheliumstarsandareinexcellentagreementwith mergers oroflower-massCOwhitedwarfmergers.Luminosities, lower L/MratiosandmaybetheproductsofHe+whitedwarf masses of0.6M(or0.5M©andHewhitedwarf to simulateevolutionfollowingmergerofaheliumwhitedwarf in 3-30extremeheliumstarstheGalaxy. then be~2X10-10yr.ThevalueofNelemansetal. in theGalaxy(Jefferyetal.1996).Themergerrateforthesewould numbers involved,thesituationisnotirredeemable. mations madeinthederivationofmergerratesandsmall conclude thattheCO+Hewhite dwarfmergerprovidesthe qualitatively nearlyalloftheobservables ofextremehelium accretion ofheliumbyCOwhitedwarfscanreproduce with observednumbers. evolution oftheprogenitor(Herwig2000). oxygen abundancesareprobablyderivedfromCOenrichmentin qualitatively thataCO+Hemergercanaccountformostofthe composition oftheaccretedmatter,theyarenotcompletely evolution. O.4M(He)] whitedwarfmerger.Theyaretooluminousand our modelforaO.6M(CO)+0.3MHe)[orO.5M 0.2-0.3 M©(O.3-O.4M).Asmallnumberofheliumstarshave diagram agreeswellwithmergermodelshavingCOwhitedwarf Coronae Borealisstars. observations ofextremeheliumstarsand,toalesserextent,R with acarbon-oxygenwhitedwarf,andhavebeencompared occurs athighluminosity.Themodelswerecalculatedinaneffort accretion. Whentheheliumisexhausted,bluewardevolution where itwillstayfor~10yrif0.1-0.4M©isavailable of helium-richmaterialontoacarbon-oxygenwhitedwarf.After 8 CONCLUSION et al.1990),althoughonly33RCrBsandHdCsareactuallyknown 200-1000 RCrBstarsandnon-variablecoolHdC(Lawson cool CO+Hemergerproducts.Thereareestimatedtobe extreme heliumstars.However,giventhenumberofapproxi- stars. Nootherevolutionmodel cancurrentlydothis.We surface compositioncharacteristicsofextremeheliumstarsand secular contractionratesandmasseshavebeenmeasureddirectly shell-helium ignitionthestarexpandstobecomeayellowgiant, (2001) isatthelowendofthisrange;uppervaluewouldresult (Fig. 5)are~10yr,sothereshouldbe30-300timesasmany © 2002RAS,MNRAS 333,121-132 0 0 0 0 While somedetailsneedtoberefined,ourmodelsforthe The distributionofmostextremeheliumstarsinthelogg-rff For starscoolerthan10000K,theoreticalevolutiontime-scales According tothesestatistics,thereappearbetoomany Statistically, theproductofpredictedCO+Hemergerratesand Since themodelsmakeabinitioassumptionsconcerning e © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem Merged binary(CO+He)whitedwarfevolution131 paper. Han Z.,1998,MNRAS,296,1019 Duerbeck H.W.,BenettiS.,1996,ApJ,468,LI11 Drilling J.S.,JefferyC.HeberU.,1998,A&A,329,1019 Drilling J.S.,1986,inHungerK.,SchönbernerD.,RaoN.eds,IAU Driebe T,SchönbernerD.,BlockerHerwigE,1998,A&A,339,123 Bond H.E.,LuckR.NewmanM.J.,1979,ApJ,233,205 Benz W.,BowersR.L.,CameronA.G.PressW.H.,1990,ApJ,348, Blocker T,SchönbernerD.,1997,A&A,324,991 Blocker T,2001,Ap&SS,275,1 Asplund M.,GustafssonB.,LambertD.L.,RaoN.K.,2000,A&A,353, Professor D.Schönberner,whichwerehelpfulinimprovingthe Arts andLeisureinNorthernIrelandthroughagranttotheArmagh for thePromotionofScienceandbyDepartmentCulture, This researchhasbeensupportedbytheBritishCouncilthrough ACKNOWLEDGMENTS Lynas-Gray A.E.,KilkennyD.,Skillen L,JefferyC.S.,1987,MNRAS, Lynas-Gray A.E.,SchönbernerD.,Hill P.W.,HeberU.,1984,MNRAS, Leuenhagen U.,HamannW.-R.,Jeffery C.S.,1996,A&A,312,167 Lawson W.A.,CottrellP.L.,KilmartinM.,GilmoreA.C.,1990, Lambert D.L.,RaoN.K.,1994,JApA,15,47 Jeffery C.S.,WoolfV.M.,PollaccoD.,2001b,A&A,376,497 Jeffery C.S.,StarlingR.L.C.,HillP.W.,PollaccoD.,2001a,MNRAS, Jeffery C.S.,HillP.W.,HeberU.,1999,A&A,346,491 Jeffery C.S.,HamillP.J.,HarrisonM.,JeffersS.V,1998,A&A,340, Jeffery C.S.,HeberU.,HillP.W.,DreizierDrillingJ.LawsonW.A., Jeffery C.S.,DrillingJ.HeberU.,1987,MNRAS,226,317 Jeffery C.S.,HeberU.,1993,A&A,270,167 Jeffery C.S.,HeberU.,1992,A&A,260,133 Jeffery C.S.,1998,MNRAS,294,391 Jeffery C.S.,1996,inHeberU.,eds,ASPConf.Ser.Vol.96, Jeffery C.S.,1993,A&A,279,188 Jeffery C.S.,1988,MNRAS,235,1287 Iben L,Jr,TutukovA.Y.,YungelsonL.R.,1996,ApJ,456,750 Iben L,Jr,TutukovA.V.,1989,ApJ,342,430 Iben L,Jr,TutukovA.V.,1984,ApJS,55,335 Iben I.,Jr,McDonaldJ.,1995,inKoesterD.,WernerK.,eds,WhiteDwarfs. Iben L,Jr,KalerJ.B.,TruranW.,RenziniA.,1983,ApJ,264,605 Iben L,Jr,1990,ApJ,353,215 Herwig E,BlockerT,LangerN.,Driebe1999,A&A,349,L5 Herwig E,2000,A&A,360,952 Herbig G.H.,BoyarchukA.A.,1968,ApJ,153,397 Heber U.,1986,inHungerK.,SchönbernerD.,RaoN.eds,IAUColl. Heber U.,1983,A&A,118,39 Harrison P.M.,JefferyC.S.,1997,A&A,323,177 REFERENCES Collaborative ResearchGrantTOK/880/41/4,bytheJapanSociety Observatory. Weacknowledgethecommentsofreferee, Dordrecht, Holland,p.9 MNRAS, 247,91 476 Francisco, p.471 Leuenhagen U.,WernerK.,1996,inJefferyC.S.,Hebereds,ASP Hydrogen DeficientStars.Astron.Soc.Pac.,SanFrancisco,p.152 Holland, p.33 Coll. 87,Hydrogen-DeficientStarsandRelatedObjects.Reidel, 647 287 227, 1073 209, 387 Conf. Ser.Vol.96,HydrogenDeficientStars.Astron.Soc.Pac.,San 321, 111 Springer, Berlin,p.48 87, Hydrogen-deficientstarsandrelatedobjects.Reidel,Dordrecht, 2 O O 2MNRAS.333. .1213 Pollacco D.L.,LawsonW.A.,CleggR.E.S.,HillRW.,1992,MNRAS, Pandey G.,RaoN.K.,LambertD.L.,JefferyC.S.,AsplundM.,2001, Nelemans G.,YungelsonL.R.,PortegiesZwartS.R,VerbuntF.,2001, Saio H.,NomotoK.,1998,ApJ,500,388 Saio H.,JefferyC.S.,2000,MNRAS,313,671 Saio H.,JefferyC.S.,1988,ApJ,328,714 Saio H.,1988,MNRAS,235,203 132 H.SaioandC.S.Jeffery MNRAS, 324,937 A&A, 365,491 257, 33p © Royal Astronomical Society •Provided bytheNASA Astrophysics DataSystem Woolf V.W.,JefferyC.S.,2000,A&A,358,1001 Werner K.,HeberU.,Hunger1991,A&A,244,437 Webbink R.E,1984,ApJ,277,355 Walker H.J.,SchönbernerD.,1981,A&A,97,291 This paperhasbeentypesetfromaTgX/LTgXfilepreparedbytheauthor. Schönberner D.,WolfR.E.A.,1974,A&A,37,87 Schönberner D.,1977,A&A,57,437 © 2002RAS,MNRAS 333,121-132