2020 Fossil List

Total Page:16

File Type:pdf, Size:1020Kb

2020 Fossil List FOSSIL LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. KINGDOM PROTOZOA MOLLUSKS (Phylum Mollusca) Phylum Foraminifera (Forams) * Class Bivalvia (clams, oysters, mussels) Order Fusulinida (Fusulinids)* Genus Exogyra Order Rotaliida* Genus Gryphaea Genus Nummulites* Genus Pecten KINGDOM ANIMALIA Genus Glycymeris Genus Astarte SPONGES (Phylum Porifera) Genus Nucula Genus Astraeospongia (calcareous sponge) Class Cephalopoda Genus Hydnoceras (glass sponge)* Order Goniatitida (goniatites)* BRYOZOANS (Phylum Bryozoa) Order Ceratitida (ceratites)* (Growth forms: branching, massive, fenestrate) Order Ammonitida (ammonites) Genus Archimedes Genus Baculites Genus Rhombopora Genus Dactylioceras GRAPTOLITES (Phylum Hemichordata)* Order Belemnitida (Belemnites) Order Dendroidea (benthic graptolites) Genus Belemnitella Order Graptoloidea (planktic graptolites) Order Nautilida (Chambered Nautilus) CORALS (Phylum Cnidaria) Order Orthocerida (“Orthoceras”) Order Tabulata (tabulate corals) Class Gastropoda (Snails) Genus Favosites Genus Conus Genus Halysites* Genus Cypraea Order Rugosa (rugose corals) Genus Platyceras Genus Heliophyllum (horn coral) Genus Turritella Genus Hexagonaria Genus Worthenia Order Scleratinia (stony corals) ECHINODERMS (Phylum Echinodermata) Genus Septastrea Class Asteroidea (Starfsh)* ARTHROPODS (Phylum Arthropoda) Class Blastoidea Subphylum Crustacea (shrimp, lobster, Genus Pentremites crabs, barnacles, ostracods)* Class Crinoidea (stems, columns, calyxes) Subphylum Chelicerata Class Echinoidea (regular or irregular echinoids Order Eurypterida (Eurypterids) including sea urchins, sand dollars and heart Class Insecta (Insects) urchins) Class Trilobita (Trilobites) Class Ophiuroidea (brittle stars)* Genus Cryptolithus VERTEBRATES (Phylum Chordata) Genus Calymene Superclass Agnatha (Jawless Fish) Genus Elrathia (Ostracoderms)* Genus Isotelus* Class Placodermi (Armored Jawed Fish) Genus Eldredgeops (formerly Phacops) Genus Bothriolepis BRACHIOPODS (Phylum Brachiopoda) Genus Dunkleosteus Class Inarticulata Class Chondrichthyes (Cartilaginous Fish) Genus Lingula Superorder Selachimorpha (Sharks) Class Articulata Genus Otodus Genus Atrypa Genus Carcharocles (formerly Genus Composita Carcharodon) Genus Juresania* Species C. megalodon Genus Leptaena Superorder Batoidea (Rays)* Genus Mucrospirifer Superclass Osteichthyes (Bony Fish) Genus Platystrophia Class Actinopterygii (ray-fnned) Genus Rafnesquina Genus Knightia Order Rhynchonellida Genus Xiphactinus* Class Sarcopterygii (lobe-fnned) Genus Eusthenopteron Genus Latimeria (Coelacanth) Genus Tiktaalik Note: Taxa marked by an asterisk (*) are for State and National Tournaments only ©2020-B21 FOSSIL LIST (CONT.) See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Class Amphibia (Amphibians) Class Mammalia (Mammals) Genus Acanthostega Genus Basilosaurus (prehistoric whale) Genus Eryops Genus Equus (modern horse) Genus Diplocaulus Genus Australopithecus (hominin)* Class Reptilia (Reptiles) Genus Homo (hominin) Order Crocodilia (crocodiles)* Species H. neanderthalensis Order Testudines (turtles)* Species H. erectus* Order Ichthyosauria (Ichthyosaurs) Species H. sapiens Order Squamata Genus Mammut (Mastodon) Family Mosasauridae (Mosasaurs) Genus Mammuthus (Mammoth) Order Plesiosauria (Plesiosaurs & Pliosaurs) Species M. primigenius Order Pterosauria (Pterosaurs) (Wooly Mammoth) Clade Dinosauria (Dinosaurs) Genus Megacerops (Brontothere) Order Saurischia (lizard-hipped) Genus Mesohippus (three-toed horse) Suborder Theropoda Genus Smilodon (saber-toothed cat) Genus Allosaurus KINGDOM PLANTAE Genus Coelophysis FLOWERING PLANTS (Phylum Anthophyta) Genus Dilophosaurus Genus Spinosaurus* Genus Acer (Maple) Genus Tyrannosaurus Genus Populus (Aspen & Poplar) Genus Velociraptor Genus Platanus (Sycamore) Suborder Sauropodomorpha GINKGOS (Phylum Ginkgophyta) Genus Brachiosaurus Genus Ginkgo Genus Diplodocus CLUB MOSSES (Phylum Lycopodiophyta) Genus Patagotitan* Genus Lepidodendron (scale tree) Genus Plateosaurus CONIFERS (Phylum Pinophyta) Order Ornithischia (bird-hipped) Infraorder Ankylosauria Genus Metasequoia Genus Ankylosaurus HORSETAILS (Phylum Sphenophyta) Infraorder Ceratopsia Genus Calamites (form leaf genus: Annularia) Genus Triceratops SEED FERNS (Phylum Pteridospermatophyta Genus Protoceratops* Genus Glossopteris Infraorder Ornithopoda TRUE FERNS (Phylum Pteridophyta) Genus Iguanodon Genus Parasaurolophus Genus Psaronius (form leaf genus: Pecopteris) Genus Maiasaura ADDITIONAL EARTH MATERIALS Infraorder Pachycephalosauria Trace Fossils Genus Dracorex Trails, Tracks, Trackways, Infraorder Stegosauria Borings, Burrows, Tubes Genus Stegosaurus Predation marks, Repair scars Class Aves (Birds) Coprolites Genus Archaeopteryx Stromatolites Genus Titanis (Terror Bird) Amber/copal Genus Ichthyornis* Petrifed wood Clade Synapsida Sedimentary Rocks Mammal-like Reptiles Coquina Genus Dimetrodon (pelycosaurs) Limestone (Chalk/Fossil limestone) Genus Lystrosaurus (therapsids) Sandstone Shale Chert Note: Taxa marked by an asterisk (*) are for State and National Tournaments only ©2020-B22.
Recommended publications
  • Warm Water Benthic Foraminifera Document The
    Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 11-15-2014 Warm Water Benthic Foraminifera Document the Pennsylvanian-permian Warming and Cooling Events – The Record from the Western Pangea Tropical Shelves Vladimir Davydov Boise State University Publication Information Davydov, Vladimir. (2014). "Warm Water Benthic Foraminifera Document the Pennsylvanian-permian Warming and Cooling Events – The Record from the Western Pangea Tropical Shelves". Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 284-295. http://dx.doi.org/10.1016/j.palaeo.2014.09.013 NOTICE: this is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, (In Press). doi: 10.1016/j.palaeo.2014.09.013 This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Palaeogeography, Palaeoclimatology, Palaeoecology, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/ j.palaeo.2014.09.013 1 Vladimir Davydov Warm water benthic foraminifera document the Pennsylvanian-Permian warming and cooling events – the record from the Western Pangea tropical shelves Permian Research Institute, Boise State University and Kazan (Volga Region) Federal University , Russia; 1910 University Drive, Department of Geosciences, Boise State University, Boise, Idaho, USA; [email protected]; fax: (208) 4264061. ABSTRACT. Shallow warm water benthic foraminifera (SWWBF), including all larger fusulinids (symbiont-bearing benthic foraminifera), are among the best indicators of paleoclimate and paleogeography in the Carboniferous and Permian.
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.
    [Show full text]
  • Llesins in PALEOZOIC PLANTS and in COALS of ·HIGH RANK
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR PROFESSIONAL PAPER 85-E llESINS IN PALEOZOIC PLANTS AND IN COALS OF ·HIGH RANK BY DAVID WHITE Published l\1arch 25, 19~4 PART E OF PROFESSIONAL PAPER 85, ~~CONTRIBUTIONS TO GENERAL GEOLOGY, 1913" WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page. Introduction ..............•............................................................................. 65 Resins in coals of low rank .............................................................................. ·. 66 Concentration of resins in coals .......................... , ............................................... 67 Effects of resin concentration ................. c •••••••••••••••••• _ •••••••• _ •••••••••••• _ •••••••••• ___ •• _ ••• 67 The obliteration of the resins ........................ ·... _.. _............. _........ _. __ ... _._ .. __ .. __ .. __ .. _ 69 Res.ins in Paleozoic plants and coals ..............................· ..................... _........ ___ .. _... 73 Conclusions ............. : ............................................... _.. · .................. __ . __ ._ ... 82 ILLUSTRATIONS. Page. PI,ATE IX. Fragments of bituminous coal showing carbonized wood, etc ........ _.. : ... __ .............. _. _.. 86 X. Bedding plane of coal from Exeter, IlL ............. _... _......... _........ _..... , ............. 88 XI. Resin lumps in Paleozoic coals ......... _.. _._ ........... _........ _.. _............. _.......... 90 . XII. Fragment from thin parting in coal
    [Show full text]
  • Part I. Revision of Buttsoceras. Part II. Notes on the Michelinoceratida
    MEMOIR 10 PART I Revision of Buttsoceras PART II Notes on the Michelinoceratida By ROUSSEAU H. FLOWER 1 9 6 2 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS Ex OFFICIO The Honorable Edwin L. Mechem ........................................ Governor of New Mexico Tom Wiley .......................................................... Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott ............................................................................................... Hobbs Holm 0. Bursum, Jr. ......................................................................................... Socorro Thomas M. Cramer ......................................................................................... Carlsbad Frank C. DiLuzio ...................................................................................... Albuquerque Eva M. Larrazolo (Mrs. Paul F.) ............................................................... Albuquerque Published October I2, 1962 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.00 Contents PART I REVISION OF BUTTSOCERAS Page ABSTRACT ....................................................................................................................... INTRODUCTION .............................................................................................................................
    [Show full text]
  • The Largest Tropical Peat Mires in Earth History
    Geological Society of America Special Paper 370 2003 Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history Stephen F. Greb William M. Andrews Cortland F. Eble Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA William DiMichele Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA C. Blaine Cecil U.S. Geological Survey, Reston, Virginia, USA James C. Hower Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA ABSTRACT The Colchester, Springfield, and Herrin Coals of the Eastern Interior Basin are some of the most extensive coal beds in North America, if not the world. The Colchester covers an area of more than 100,000 km^, the Springfield covers 73,500-81,000 km^, and the Herrin spans 73,900 km^. Each has correlatives in the Western Interior Basin, such that their entire regional extent varies from 116,000 km^to 200,000 km^. Correlatives in the Appalachian Basin may indicate an even more widespread area of Desmoinesian peatland development, although possibly sUghtly younger in age. The Colchester Coal is thin, but the Springfield and Herrin Coals reach thicknesses in excess of 3 m. High ash yields, dominance of vitrinite macerals, and abundant lycopsids suggest that these Desmoinesian coals were deposited in topogenous (groundwater fed) to solige- nous (mixed-water source) mires. The only modern mire complexes that are as wide- spread are northern-latitude raised-bog mires, but Desmoinesian
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]