ECOSYSTEM INTRODUCTION • Ecosystem Is the Smallest Structural
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Science (Ce-101) Unit- I
Lecture Notes of Environmental Science ENVIRONMENTAL SCIENCE (CE-101) UNIT- I Introduction to Environmental Science: The science of Environment studies is a multi-disciplinary science because it comprises various branches of studies like chemistry, physics, medical science, life science, agriculture, public health, sanitary engineering etc. It is the science of physical phenomena in the environment. It studies of the sources, reactions, transport, effect and fate of physical a biological species in the air, water and soil and the effect of from human activity upon these. Environment – The word environment comes from the greek word “environner” meaning surroundings around us. Scope of Environmental studies: The environment consists of four segments as under: 1. Atmosphere: The atmosphere implies the protective blanket of gases, surrounding the earth: It sustains life on the earth. It saves it from the hostile environment of outer space. It absorbs most of the cosmic rays from outer space and a major portion of the electromagnetic radiation from the sun. It transmits only here ultraviolet, visible, near infrared radiation (300 to 2500 nm) and radio waves. (0.14 to 40 m) while filtering out tissue-damaging ultraviolet waves below about 300 nm. The atmosphere is composed of nitrogen and oxygen. Besides, argon, carbon dioxide, and trace gases. 2. Hydrosphere: The Hydrosphere comprises all types of water resources oceans, seas, lakes, rivers, streams, reservoir, polar icecaps, glaciers, and groundwater. Nature 97% of the earth’s water supply is in the oceans, Prepared by: Er. Arshad Abbas Deptt. of Civil Engg. KMCUAF University Lucknow About 2% of the water resources are locked in the polar icecaps and glaciers. -
The Bodwad Sarvajanik Co-Op.Education Society Ltd., Bodwad Arts, Commerce and Science College, Bodawd Question Bank Class :-S.Y
The Bodwad Sarvajanik Co-Op.Education Society Ltd., Bodwad Arts, Commerce and Science College, Bodawd Question Bank Class :-S.Y.B.Sc SEM:- IV Subject: - BOTANY- 402 Plant Ecology 1. The science which deals with relationship between organisms and their environment is called a) Morphology b) Palynology c) Taxonomy d) Ecology 2. The meaning of Greek word Oikas a) Nature b) Environment c) House d) Temple 3. The term ecology coined by a) Odum b) Tansley c) Haeckel d) None 4. Autecology deals with the study of a) Ecology of individual species b) Ecology of many species c) Ecology of community d) All of these 5. Synecology deals with the study of a) Ecology of individual species b) Ecology of many species c) Ecology of community d) All of these 6. The branch of ecology which deals with the study of the organisms and geological environments of past is called a) Cytoecology b) Palecology c) Synecology d) Autoecology 7. Ecology deals with the study of a) Living beings b) Living and non living components c) Reciprocal relationship between living and non living components d) Biotic and Abiotic components 8. Phylloclade is modified a) Root b) Leaf c) Stem d) Bud 9. Cuscuta is a) Parasite b) Epiphyte c) Symbiont d) Lichen 10. Mycorrhiza is example of a) Symbiotic relationship b) Parasitic relationship c) Saprophytic relationship d) Negative interaction 11. Edaphic ecological factors are concerned with a) Rainfall b) Light c) Competition d) Soil 12. The soil is said to be physiologically dry when a) Temperature band light available to plants is insufficient b) There is abundance of water in soil c) Soil water is with high concentration of salts d) Both b and c 13. -
When Corridors Work: Insights from a Microecosystem
ecological modelling 202 (2007) 441–453 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolmodel When corridors work: Insights from a microecosystem Martin Hoyle ∗ School of Biology, University of Nottingham, Nottingham NG7 2RD, UK article info abstract Article history: Evidence for a beneficial effect of corridors on species richness and abundance in habitat Received 14 February 2006 patches is mixed. Even in a single microecosystem of microarthropods living in moss patches Received in revised form connected by a moss corridor, experiments have had different results (positive and neutral). 2 November 2006 This paper attempts to provide an explanatory framework for understanding these results. I Accepted 7 November 2006 developed a stochastic individual-based model of the moss—microarthropod microecosys- Published on line 12 December 2006 tem. Some of the movement parameter values were estimated from two manipulation experiments. Assuming mortality independent of the season, and assuming the corridors Keywords: merely increase migration rates between patches, only a very weak beneficial effect of corri- Conservation dors was possible in simulations. Incorporating a seasonal pattern to mortality caused some Habitat fragmentation simulated populations to die out, which were then occasionally rescued by migrants from Individual-based model the adjacent patch. Corridors were slightly beneficial if there was little or no immigration Metapopulation from the surrounding matrix. In contrast, corridors were very beneficial in simulations that Microarthropod incorporated lower emigration to the matrix when a corridor was present, even for moder- ate levels of immigration from the matrix. Thus corridors may reduce the chance of species extinction in patches even when the lifespan of the individuals is long relative to the time- scale in question. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverselyaffect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning ,H the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Beil & Howell Information Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313, 761-4700 800.521-0600 ~_..,------ Order Number 9215041 Stability in closed ecological systems: An examination of material and energetic parameters Shaffer, Jonathon Andrew, Ph.D. University of Hawaii, 1991 Copyright @1991 by Shaffer, Jonathon Andrew. -
ENVIRONMENTAL SYSTEMS and SOCIETIES SL IB Academy Environmental Systems and Societies Study Guide
STUDY GUIDE ENVIRONMENTAL SYSTEMS AND SOCIETIES SL www.ib.academy IB Academy Environmental systems and societies Study Guide Available on learn.ib.academy Author: Laurence Gibbons Design Typesetting This work may be shared digitally and in printed form, but it may not be changed and then redistributed in any form. Copyright © 2020, IB Academy Version: ESS.2.1.200320 This work is published under the Creative Commons BY-NC-ND 4.0 International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0 This work may not used for commercial purposes other than by IB Academy, or parties directly licenced by IB Academy. If you acquired this guide by paying for it, or if you have received this guide as part of a paid service or product, directly or indirectly, we kindly ask that you contact us immediately. Laan van Puntenburg 2a ib.academy 3511ER, Utrecht [email protected] The Netherlands +31 (0) 30 4300 430 0 Welcome to the IB Academy guide book for IB Environmental Systems and Society Standard Level. This guide contains all the theory you should know for your final exam. To achieve top marks this theory should be complimented with case studies. Although not covered in this booklet, we provide some in our online podcast series. The guide starts with an explanation of systems and models which are the foundations for the whole course. We will then look at systems in the natural world before turning our attention to humans and their impact. Throughout the guide there are helpful hints from the former IB students who now teach with IB Academy. -
A Keystone Predator Controls Bacterial Diversity in the Pitcher-Plant (Sarracenia Purpurea) Microecosystem
Environmental Microbiology (2008) 10(9), 2257–2266 doi:10.1111/j.1462-2920.2008.01648.x A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem Celeste N. Peterson,1,2* Stephanie Day,3,4† Introduction Benjamin E. Wolfe,1 Aaron M. Ellison,4 Bacterial assemblages may be structured by many Roberto Kolter2 and Anne Pringle1 forces at both local and regional scales. They are inte- 1Department of Organismic and Evolutionary Biology, grated into complex food webs and their composition, in Harvard University, Cambridge, MA 02138, USA. terms of species diversity and cell abundance, may be 2Department of Microbiology and Molecular Genetics, controlled by a combination of ‘top-down’ factors, such Harvard Medical School, Boston, MA 02115, USA. as grazing by predators, and ‘bottom-up’ factors, such 3Department of Biology, Howard University, Washington, as nutrient availability or other environmental param- DC 20059, USA. eters (Moran and Scheidler, 2002). Simple and well- 4Harvard Forest, Harvard University, Petersham, characterized natural model ecosystems can be used to MA 01366, USA. determine how each of these forces function and inter- act with each other at different scales. However, there is Summary a dearth of such systems available for field studies. That makes the model ecosystem of the carnivorous pitcher- The community of organisms inhabiting the water- plant Sarracenia purpurea (Sarraceniaceae) particularly filled leaves of the carnivorous pitcher-plant Sarrace- valuable. nia purpurea includes arthropods, protozoa and The food web that forms in the water-filled leaves of bacteria, and serves as a model system for studies of S. purpurea (Sarraceniaceae) has been used as a model food web dynamics. -
Molecular Musings in Microbial Ecology and Evolution Rebecca J Case* and Yan Boucher*
Case and Boucher Biology Direct 2011, 6:58 http://www.biology-direct.com/content/6/1/58 REVIEW Open Access Molecular musings in microbial ecology and evolution Rebecca J Case* and Yan Boucher* Abstract: A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is “What has been the influence of the ‘Universal Tree of Life’ based on molecular markers?” For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is “What was the impact of discovering frequent lateral gene transfer among microbes?” In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is “What are the implications of the unexpected extent of diversity?” The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. -
Glossary of Landscape and Vegetation Ecology for Alaska
U. S. Department of the Interior BLM-Alaska Technical Report to Bureau of Land Management BLM/AK/TR-84/1 O December' 1984 reprinted October.·2001 Alaska State Office 222 West 7th Avenue, #13 Anchorage, Alaska 99513 Glossary of Landscape and Vegetation Ecology for Alaska Herman W. Gabriel and Stephen S. Talbot The Authors HERMAN w. GABRIEL is an ecologist with the USDI Bureau of Land Management, Alaska State Office in Anchorage, Alaskao He holds a B.S. degree from Virginia Polytechnic Institute and a Ph.D from the University of Montanao From 1956 to 1961 he was a forest inventory specialist with the USDA Forest Service, Intermountain Regiono In 1966-67 he served as an inventory expert with UN-FAO in Ecuador. Dra Gabriel moved to Alaska in 1971 where his interest in the description and classification of vegetation has continued. STEPHEN Sa TALBOT was, when work began on this glossary, an ecologist with the USDI Bureau of Land Management, Alaska State Office. He holds a B.A. degree from Bates College, an M.Ao from the University of Massachusetts, and a Ph.D from the University of Alberta. His experience with northern vegetation includes three years as a research scientist with the Canadian Forestry Service in the Northwest Territories before moving to Alaska in 1978 as a botanist with the U.S. Army Corps of Engineers. or. Talbot is now a general biologist with the USDI Fish and Wildlife Service, Refuge Division, Anchorage, where he is conducting baseline studies of the vegetation of national wildlife refuges. ' . Glossary of Landscape and Vegetation Ecology for Alaska Herman W. -
Xerosere Faculty Name: Dr Pinky Prasad Email: [email protected]
Course: B.Sc. Botany Semester: IV Paper Code: BOT CC409 Paper Name: Plant Ecology and Phytogeography Topic: Xerosere Faculty Name: Dr Pinky Prasad Email: [email protected] XEROSERE: Xerosere is a plant succession that is limited by water availability. A xerosere may be lithosere initiating on rock and psammosere initiating on sand. LITHOSERE Bare rocks Bare rocks are eroded by rain water and wind loaded with soil particles. The rain water combines with atmospheric carbon dioxide that corrodes the surface of the rocks and produce crevices. Water enters these crevices, freezes and expands to further increase the crevices. The wind loaded with soil particles deposit soil particles on the rock and its crevices. All these processes lead to formation of a little soil at the surface of these bare rocks. Algal and fungal spores reach these rocks by air from the surrounding areas. These spores grow and form symbiotic association, the lichen, which act as pioneer species of bare rocks. There are six steps of xerosere. They are as follows: 1) Crustose lichen stage. 2) Foliage and fruticose lichen stage. 3) Moss stage. 4) Herbaceous stage 5) Shrub stage. 6) Climax forest stage. 1) Crustose lichen stage A bare rock consists of a very thin film of soil and there is no place for rooting plants to colonize. The plant succession starts with crustose lichens like Lecanora, Lecidia, Rhizocarpon lichen which adhere to the thin film of soil on the surface of rock and absorb moisture from atmosphere. These lichens produce lichenic acids which corrode the rock and their thalli collect windblown soil particles among them that help in formation of a thin layer of soil. -
Linking the Development and Functioning of a Carnivorous Pitcher Plant’S Microbial Digestive Community
The ISME Journal (2017) 11, 2439–2451 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Linking the development and functioning of a carnivorous pitcher plant’s microbial digestive community David W Armitage1,2 1Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA and 2Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf’s nitrogen uptake efficiency. Overall digestive performance was -
Biodiversity and Ecosystem Functioning in Soil
Article Lijbert Brussaard et al. Biodiversity and Ecosystem Functioning in Soil ognition of the pivotal role of the world's biota as the life-sup- We review the current knowledge on biodiversity in soils, port system for planet Earth, has revived interest in soil its role in ecosystem processes, its importance for human biodiversity as an asset to conserve, to understand and to man- purposes, and its resilience against stress and disturbance. age wisely in terms of its contribution to ecosystem services. The number of existing species is vastly higher than the The objective of this paper is to review the knowledge on the number described, even in the macroscopically visible diversity of soil biota and its role in ecosystem functioning, and taxa, and biogeographical syntheses are largely lacking. to identify key areas for future research. A major effort in taxonomy and the training of a new Although the diversity of soil organisms is worth conserving generation of systematists is imperative. This effort has to and studying in its own right, their functional roles offer a use- be focussed on the groups of soil organisms that, to the ful framework for making this effort more meaningful. We will best of our knowledge, play key roles in ecosystem functioning. To identify such groups, spheres of influence first define functional roles in a utilitarian way as ecosystem (SOI) of soil biota-such as the root biota, the shredders services. We will then have a closer look at what we mean by of organic matter and the soil bioturbators-are recognized biodiversity in soil, emphasizing spheres of influence (2; 'bio- that presumably control ecosystem processes, for logical systems of regulation' in 3) of the biota in soil and vari- example, through interactions with plants. -
Microbial Experimental Systems in Ecology
Microbial Experimental Systems in Ecology CHRISTINE M. JESSUP, SAMANTHA E. FORDE AND BRENDAN J.M. BOHANNAN I. Summary . .............................................. 273 II. Introduction. .......................................... 274 III. The History of Microbial Experimental Systems in Ecology . ...... 275 A. G.F. Gause and His Predecessors . ...................... 275 B. Studies Since Gause . .................................. 276 IV. Strengths and Limitations of Microbial Experimental Systems ...... 277 A. Strengths of Microbial Experimental Systems . .............. 277 B. Limitations of Microbial Experimental Systems . .......... 281 V. The Role of Microbial Experimental Systems in Ecology: Consensus and Controversy. .............................. 283 A. The Role of Microbial Experimental Systems . .............. 283 B. Controversies Surrounding Experimental Systems and Microbial Experimental Systems . ...................... 285 VI. Recent Studies of Microbial Experimental Systems . .............. 289 A. The Ecological Causes of Diversity . ...................... 290 B. The Ecological Consequences of Diversity.................. 296 C. The Response of Diversity to Environmental Change . ...... 298 D. Directions for Future Research .......................... 299 VII. Conclusions . .......................................... 300 Acknowledgments. .......................................... 300 References................................................... 300 I. SUMMARY The use of microbial experimental systems has traditionally been limited