bioRxiv preprint doi: https://doi.org/10.1101/686469; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryptic role of tetrathionate in the sulfur cycle: A study from Arabian Sea oxygen minimum zone sediments Subhrangshu Mandal1, Sabyasachi Bhattacharya1, Chayan Roy1, Moidu Jameela Rameez1, 5 Jagannath Sarkar1, Svetlana Fernandes2, Tarunendu Mapder3, Aditya Peketi2, Aninda Mazumdar2,* and Wriddhiman Ghosh1,* 1 Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India. 2 CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India. 10 3 ARC CoE for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia. * Correspondence emails:
[email protected] /
[email protected] 15 Running Title: Tetrathionate metabolism in marine sediments KEYWORDS: sulfur cycle, tetrathionate, marine oxygen minimum zone, sediment biogeochemistry 20 ABSTRACT To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15- 30 cm resolution along two, ~3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian 25 Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types.