UNIT 9 Elelments of GROUP 16
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit – 1 Introduction - Chloro Alkali Industries-Scha 1305
SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING UNIT – 1 INTRODUCTION - CHLORO ALKALI INDUSTRIES-SCHA 1305 1 Process Equipment Symbols UnitOperation SchematicRepresentation Comments 1. Distillation Utilized for intermittent operation and handling small volumes (a) Batch of feed and product (b) ContinuosFra Suitable for high volume ctionator continuous separation of complex mixtures eg. petroleum fraction Employed for large capacity 2. Drying ofSolids operation on liquid feed to give powered, spherical,free (a) SprayDrier flowing product ;used in prodution of pigments, detergents,synthetic resins and misc inorganic salts 2 UnitOperation SchematicRepresentation Comments Suitable for drying free flowing granular solids which do not dust or stick ; high temp models are kilns (b) RotaryDrier for calcining cement, lime, etc. Best suited to drying pastes or powders in trays ; also used ( c ) Tunnel Driver to dry pottery, lumber, leather, etc., In sheet shaped forms 3. Evaporation Used for small batches ; often of viscous mat’s ; (a) OpenPan such designs are easy to clean 3 UnitOperation SchematicRepresentation Comments Used to contact solvent and feed 4. Extraction to give raffinate and extract ; widely adapted to removal of (a) Liquid -liquid napthenes from lube oil fractions Using solvents such as furfural Involves removal of a solute from a Solidbymeansofaliquidso;lventOften ( b) Solid-Liquid used in ore treatment to Recover (Leaching) metal values 5. FluidHandling ( a )Centrifugal Mostwidelyusedforliquidsofall pump types;simpleinconstructionand maintenance 4 UnitOperation SchematicRepresentation Comments (b) Reciprocating Pump Generally used for higher Or Compressor pressure delivery ; may be used for metering or proportioning Used for lower pressure ( c ) Jet Ejector operation or production of vacuum ; steam often used as motive fluid 6. -
Vol 10 No 09 Corrosion from High Ammonia in An
™ The CONTACTOR Published Monthly by Optimized Gas Treating, Inc. Volume 10, Issue 9, September, 2016 Severe Corrosion in the Incinerator of an SRU The case study that is the subject of this 푁푎2푆푂4 + 퐻2푂 + 푁푂 + 푁푂2 + 푂2 month’s issue of The Contactor™ arose from stack or by hydrolysis of nitrosylsulfuric acid: tests on an SRU. High SO2 levels were found to- gether with a high concentration of acid mist. Acid 2푁푂퐻푆푂4 + 퐻2푂 → 2퐻2푆푂4 + 푁푂 + 푁푂2 mist seemed to be related to the operation of the In the incinerator of an SRU, combusting ammonia sour water stripper (SWS) but in a way whose also produces NO components because the main chemistry was not understood. However, ammonia x fuel is actually hydrocarbon. For example, it has was suspected to be a contributor. † been reported in a very interesting paper that the Most of the ammonia produced in a refinery degree of conversion of ammonia to NOx is a is collected in sour water. Sometimes it can be strong function of excess air, ammonia content in prevented from entering the SRU from the SWS by the hydrocarbon fuel, and the degree of mixing in employing a two-stage stripping process which the flame. So the chemical species necessary for produces concentrated streams of H2S and NH3. generating sulfuric acid by the chemistry of the lead ProTreat is an excellent tool for accurate design chamber process are present because (1) there is and simulation of two-stage SWSs. Either this always SO2, and (2) ammonia enters the incinera- ammonia stream can be further concentrated into a tor either directly from a 2-stage SWS, or from in- marketable anhydrous form, or it can be directly complete destruction of NH3 in the reaction furnace incinerated. -
PROCESS MODELING and ANALYSIS of CO2 PURIFICATION for OXY-COAL COMBUSTION MASSACHUSETTS INS E by of TECHNOLOGY
PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION MASSACHUSETTS INS E By OF TECHNOLOGY Chukwunwike Ogbonnia Iloeje MAY 18 2011 B.Eng. Mechanical Engineering LIBRRIES University of Nigeria, Nsukka, 2004 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN AR(MES PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JANUARY 2011 0 2011 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author........... ............................... Department of Mechanical Engineering January 14, 2011 Certified by.............. Ahmed F. Ghoniem Ronald C. Crane Professor Thacic Cunanwicnr Accepted by.................................. .... ................. Dave E.Hardt Chairman, Department Committee on Graduate Students *r PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION By Chukwunwike Ogbonnia Iloeje Submitted to the Department of Mechanical Engineering on January 14, 2011 in Partial Fulfillment of the Requirements for the degree of Master of Science in Mechanical Engineering ABSTRACT Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants. -
Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol. -
The Chemical Industry 3. Industrial Production of NH3, HNO3, H2SO4
The Chemical Industry 3. Industrial production of NH3, HNO3, H2SO4 1 Ammonia production https://www.youtube.com/watch?v=wiwl4eoHbig&t=8s ◦ Ammonia is one of the most highly produced inorganic chemicals. There are numerous large-scale ammonia production plants worldwide, producing a total of 144 million tonnes of nitrogen (equivalent to 175 million tonnes of ammonia) in 2016. ◦ China produced 31.9% of the worldwide production, followed by Russia with 8.7%, India with 7.5%, and the United States with 7.1%. ◦ 80% or more of the ammonia produced is used for fertilizing agricultural crops. ◦ Ammonia is also used for the production of plastics, fibers, explosives, nitric acid (via the Ostwald process) and intermediates for dyes and pharmaceuticals. 2 Modern ammonia-producing plants ◦ A typical modern ammonia-producing plant first converts natural gas, liquified petroleum gas, or petroleum naphtha into gaseous hydrogen. ◦ The method for producing hydrogen from hydrocarbons is known as steam reforming. ◦ The hydrogen is then combined with nitrogen to produce ammonia via the Haber-Bosch process. https://www.youtube.com/watch?v=pzFZ9TYizaw 3 Starting with a natural gas feedstock, the processes used in producing the hydrogen are: The first step in the process is to remove sulfur compounds from the feedstock because sulfur deactivates the catalysts used in subsequent steps. Sulfur removal requires catalytic hydrogenation to convert sulfur compounds in the feedstocks to gaseous hydrogen sulfide: H2 + RSH → RH + H2S(gas) The gaseous hydrogen sulfide -
Cryptic Role of Tetrathionate in the Sulfur Cycle: a Study from Arabian Sea Oxygen Minimum Zone Sediments
bioRxiv preprint doi: https://doi.org/10.1101/686469; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryptic role of tetrathionate in the sulfur cycle: A study from Arabian Sea oxygen minimum zone sediments Subhrangshu Mandal1, Sabyasachi Bhattacharya1, Chayan Roy1, Moidu Jameela Rameez1, 5 Jagannath Sarkar1, Svetlana Fernandes2, Tarunendu Mapder3, Aditya Peketi2, Aninda Mazumdar2,* and Wriddhiman Ghosh1,* 1 Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India. 2 CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India. 10 3 ARC CoE for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia. * Correspondence emails: [email protected] / [email protected] 15 Running Title: Tetrathionate metabolism in marine sediments KEYWORDS: sulfur cycle, tetrathionate, marine oxygen minimum zone, sediment biogeochemistry 20 ABSTRACT To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15- 30 cm resolution along two, ~3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian 25 Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types. -
Stable Allotropes of Oxygen Are O2(G) and O3(G)
Group 16 Elements - Oxygen ! Stable allotropes of oxygen are O 2(g) and O 3(g). ! Standard laboratory preparations for O 2(g) include the following: MnO 2 2KClO 3 ∆ 2KCl + 3O 2 2HgO ∆ 2Hg + O 2 electrolysis 2H 2O 2H 2 + O 2 ! O2(g) is paramagnetic due to two unpaired electrons in π σ 2 σ 2 σ 2 π 4 π 2 separate * MOs: ( 2s) ( *2s) ( 2p) ( 2p) ( *2p) • Bond order is 2, and the bond length is 120.75 pm. ! Ozone is produced by passing an electric discharge through O2(g). • It is produced naturally by u.v. (240-300 nm). hν O2 2O O + O 2 ÷ O 3 ! Ozone is a bent molecule ( pO–O–O = 116.8 o). • Bond order is 1½ for each O–O bond, and the bond length is 127.8 pm. ! Both O 2 and O 3 are powerful oxidizing agents. + – o O2 + 4H + 4 e ÷ 2H 2O E = +1.23 V + – o O3 + 2H + 2 e ÷ O 2 + H 2O E = +2.07 V Group 16 Elements - Sulfur ! Sulfur is found free in nature in vast underground deposits. • It is recovered by the Frasch process, which uses superheated steam to melt and expel the fluid. Sulfur Allotropes ! Three principal allotropes: o o rhombic, S 8 (<96 C, mp = 112.8 C) o o monoclinic, S 8 (>96 C, mp = 119. C) amorphous, S n (metastable "plastic" sulfur) • Rhombic and monoclinic forms contain crown-shaped S 8 rings ( D4d). • Amorphous sulfur, containing long S n chains, is formed when molten sulfur is rapidly quenched; conversion to rhombic S 8 can take years. -
A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea
The ISME Journal (2020) 14:2261–2274 https://doi.org/10.1038/s41396-020-0684-5 ARTICLE A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea 1,2,3,4 1,2,4 3,4,5 1,2,3,4 4,5 1,2,4 Jing Zhang ● Rui Liu ● Shichuan Xi ● Ruining Cai ● Xin Zhang ● Chaomin Sun Received: 18 December 2019 / Revised: 6 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA − – – – − 1234567890();,: 1234567890();,: in converting thiosulfate to tetrathionate ( O3S S S SO3 ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. -
1 Two Pathways for Thiosulfate Oxidation in The
bioRxiv preprint doi: https://doi.org/10.1101/683490; this version posted June 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST Moidu Jameela Rameez1, Prosenjit Pyne1,$, Subhrangshu Mandal1, Sumit Chatterjee1, Masrure 5 Alam1,#, Sabyasachi Bhattacharya1, Nibendu Mondal1, Jagannath Sarkar1 and Wriddhiman Ghosh1* Addresses: Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India. 10 Present address: $National Institute of Cholera and Enteric Diseases, P-33, C. I. T Road, Scheme XM, Beliaghata, Kolkata 700 010, India. #Department of Biological Sciences, Aliah University, IIA/27, New Town, Kolkata-700160, India. *Correspondence: [email protected] 15 Running title: Thiosulfate oxidation via tetrathionate in an alphaproteobacterium Keywords: sulfur-chemolithotrophy, Sox multienzyme system, Alphaproteobacteria, thiosulfate oxidation via tetrathionate-intermediate, thiosulfate 20 dehydrogenase, tetrathionate oxidation Abstract Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby 25 operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy, involving direct oxidation of thiosulfate to sulfate (without any free intermediate) by the SoxXAYZBCD multienzyme system, is apparently the exclusive -
And Thiosulfate Ions in Aqueous Solution'
Inorg. Chem. 1992, 31, 3239-3242 3239 Equilibria and Kinetics of the Fast Interaction between Copper(I1) and Thiosulfate Ions in Aqueous Solution' Gyula R6bai2 and Irving R. Epstein' Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254-9 110 Received March 5. 1992 The fast reduction of copper(I1) by the thiosulfate ion in aqueous solution is preceded by the extremely rapid formation of a CU(S~O~)~~-complex with stability constant j3 = (3.6 f OS) X lo4M-2 at 25.0 OC and ionic strength 0.2 M (NaC104). The tetrathionate ion and a (thiosulfato)copper(I) complex are formed in the redox reaction, the rate of which is second order in [Cu(II)] and independent of [SZO~~-]in high excess of thiosulfate. The limiting value of the observed second-order rate constant is k4 = (1.05 f 0.08) X lo5 M-I s-l. The mechanism involves an intermolecular rate-determining step between two molecules of the bis(thiosulfato)copper(II) complex. Introduction experimental kinetics information as possible about reactions 1 and 2. Direct kinetics studies of the oxidations of copper(1) are Oscillatory kinetics have recently been reported for the scarce, owing to the high reactivity of the Cu+ ion with molecular oxidations of the thiosulfate ion by hydrogen peroxide3 and by the peroxodisulfate ion4 in a continuous-flow stirred tank reactor oxygen and to the ease of the disproportionation reaction 2Cu+ Cu2-" Cu. A kinetics study of the reduction of Cu2+appears (CSTR). A catalytic amount of copper(I1) was found to be -. + to suffer from no such complication. -
History of the Chemical Industry, 1750 to 1930
History of the Chemical Industry 1750 to 1930 – an Outline Copyright: David J M Rowe, University of York (1998) Introduction The aim of this survey is to sketch the history of the chemical industry (mainly in Britain), for the period 1750 to 1930, and its relationship with contemporary political, social, and scientific developments; much detail will inevitably be omitted for brevity. It will be argued that the development of the chemical industry arose largely in response to contemporary social needs; and that whereas the development gained much from scientific discoveries, problems encountered in industry also provided fertile ground for scientific enquiry. It is often supposed that pure science is a necessary precursor of technological development but a study of history reveals many cases in which scientific understanding of technology lags behind the technology, sometimes by a long way. Political Background Some major events: • American War of Independence 1775-1783 • French Revolution and Napoleonic Period Revolution 1789, First Empire (Napoleon I) 1804-1815 • American Civil War 1861-1865 • Unification of Italy; completed 1870 • Franco-Prussian War 1870-71 • Unification of Germany; foundation of German Empire 1871 • First World War 1914-1918 • Second World War 1939-1945 Emergence of Britain as the dominant world economic power between the end of the Napoleonic Wars (1815) and the First World War, but rise of Germany as a strong economy after 1871. Emergence of the USA as a powerful economy towards the end of the 19th century, to become -
Anaerobic Oxidation of Thiosulfate to Tetrathionate by Obligately Heterotrophic Bacteria, Belonging to the Pseudomonas Stutzeri Group
FEMS Microbiology Ecology 30 (1999) 113^123 Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group Dimitry Yu. Sorokin a, Andreas Teske b, Lesley A. Robertson c;*, J. Gijs Kuenen c a Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia b Max-Planck-Institut fu«r Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, Germany c Kluyver Laboratory of Biotechnology, TU Delft, Julianalaan 67, 2628 BC Delft, The Netherlands Received 3 March 1999; revised 3 June 1999; accepted 3 June 1999 Abstract A number of strains of heterotrophic bacteria were isolated from various environments on the basis of their potential to oxidize inorganic sulfur compounds to tetrathionate. The isolates were screened for the ability to oxidize thiosulfate under denitrifying conditions. Many of them could grow anaerobically with acetate and nitrate, and eight strains could oxidize thiosulfate to tetrathionate under the same conditions. In batch cultures with acetate as carbon and energy source, most active anaerobic thiosulfate oxidation occurred with N2O as electron acceptor. The level of anaerobic thiosulfate-oxidizing activity in cultures and cell suspensions supplied with nitrate correlated with the activity of nitrite reductase in cell suspensions. Some strains converted thiosulfate to tetrathionate equally well with nitrite, nitrate and N2O as electron acceptors. Others functioned best with N2O during anaerobic thiosulfate oxidation. The latter strains appeared to have a lower level of nitrite reductase activity. Thiosulfate oxidation under anaerobic conditions was much slower than in the presence of oxygen, and was obviously controlled by the availability of organic electron donor.