CML 514: Chemistry of the Main Group Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit – 1 Introduction - Chloro Alkali Industries-Scha 1305
SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING UNIT – 1 INTRODUCTION - CHLORO ALKALI INDUSTRIES-SCHA 1305 1 Process Equipment Symbols UnitOperation SchematicRepresentation Comments 1. Distillation Utilized for intermittent operation and handling small volumes (a) Batch of feed and product (b) ContinuosFra Suitable for high volume ctionator continuous separation of complex mixtures eg. petroleum fraction Employed for large capacity 2. Drying ofSolids operation on liquid feed to give powered, spherical,free (a) SprayDrier flowing product ;used in prodution of pigments, detergents,synthetic resins and misc inorganic salts 2 UnitOperation SchematicRepresentation Comments Suitable for drying free flowing granular solids which do not dust or stick ; high temp models are kilns (b) RotaryDrier for calcining cement, lime, etc. Best suited to drying pastes or powders in trays ; also used ( c ) Tunnel Driver to dry pottery, lumber, leather, etc., In sheet shaped forms 3. Evaporation Used for small batches ; often of viscous mat’s ; (a) OpenPan such designs are easy to clean 3 UnitOperation SchematicRepresentation Comments Used to contact solvent and feed 4. Extraction to give raffinate and extract ; widely adapted to removal of (a) Liquid -liquid napthenes from lube oil fractions Using solvents such as furfural Involves removal of a solute from a Solidbymeansofaliquidso;lventOften ( b) Solid-Liquid used in ore treatment to Recover (Leaching) metal values 5. FluidHandling ( a )Centrifugal Mostwidelyusedforliquidsofall pump types;simpleinconstructionand maintenance 4 UnitOperation SchematicRepresentation Comments (b) Reciprocating Pump Generally used for higher Or Compressor pressure delivery ; may be used for metering or proportioning Used for lower pressure ( c ) Jet Ejector operation or production of vacuum ; steam often used as motive fluid 6. -
Unit 3 Notes: Periodic Table Notes John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical -
Vol 10 No 09 Corrosion from High Ammonia in An
™ The CONTACTOR Published Monthly by Optimized Gas Treating, Inc. Volume 10, Issue 9, September, 2016 Severe Corrosion in the Incinerator of an SRU The case study that is the subject of this 푁푎2푆푂4 + 퐻2푂 + 푁푂 + 푁푂2 + 푂2 month’s issue of The Contactor™ arose from stack or by hydrolysis of nitrosylsulfuric acid: tests on an SRU. High SO2 levels were found to- gether with a high concentration of acid mist. Acid 2푁푂퐻푆푂4 + 퐻2푂 → 2퐻2푆푂4 + 푁푂 + 푁푂2 mist seemed to be related to the operation of the In the incinerator of an SRU, combusting ammonia sour water stripper (SWS) but in a way whose also produces NO components because the main chemistry was not understood. However, ammonia x fuel is actually hydrocarbon. For example, it has was suspected to be a contributor. † been reported in a very interesting paper that the Most of the ammonia produced in a refinery degree of conversion of ammonia to NOx is a is collected in sour water. Sometimes it can be strong function of excess air, ammonia content in prevented from entering the SRU from the SWS by the hydrocarbon fuel, and the degree of mixing in employing a two-stage stripping process which the flame. So the chemical species necessary for produces concentrated streams of H2S and NH3. generating sulfuric acid by the chemistry of the lead ProTreat is an excellent tool for accurate design chamber process are present because (1) there is and simulation of two-stage SWSs. Either this always SO2, and (2) ammonia enters the incinera- ammonia stream can be further concentrated into a tor either directly from a 2-stage SWS, or from in- marketable anhydrous form, or it can be directly complete destruction of NH3 in the reaction furnace incinerated. -
PROCESS MODELING and ANALYSIS of CO2 PURIFICATION for OXY-COAL COMBUSTION MASSACHUSETTS INS E by of TECHNOLOGY
PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION MASSACHUSETTS INS E By OF TECHNOLOGY Chukwunwike Ogbonnia Iloeje MAY 18 2011 B.Eng. Mechanical Engineering LIBRRIES University of Nigeria, Nsukka, 2004 SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN AR(MES PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JANUARY 2011 0 2011 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author........... ............................... Department of Mechanical Engineering January 14, 2011 Certified by.............. Ahmed F. Ghoniem Ronald C. Crane Professor Thacic Cunanwicnr Accepted by.................................. .... ................. Dave E.Hardt Chairman, Department Committee on Graduate Students *r PROCESS MODELING AND ANALYSIS OF CO2 PURIFICATION FOR OXY-COAL COMBUSTION By Chukwunwike Ogbonnia Iloeje Submitted to the Department of Mechanical Engineering on January 14, 2011 in Partial Fulfillment of the Requirements for the degree of Master of Science in Mechanical Engineering ABSTRACT Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants. -
JCHS Physical Science 2017-18 Chapter 4
JCHS Physical Science 2017-18 Chapter 4 FSA Science Team Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHOR FSA Science Team To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2017 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. -
Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3. -
1. Hydrogen Forms Compounds with Most Non-Metallic Elements and with Some Metals
PMT 1. Hydrogen forms compounds with most non-metallic elements and with some metals. (a) Calculate the empirical formula of the compound used in the manufacture of artificial rubber which has the following composition by mass. Hydrogen 11.1% Carbon 88.9% (3) (b) The boiling temperatures of hydrogen chloride and hydrogen iodide are: Hydrogen chloride ±85ºC Hydrogen iodide ±35ºC Explain why hydrogen iodide has a higher boiling temperature than hydrogen chloride. ............................................................................................................................. ... ............................................................................................................................. ... ............................................................................................................................. ... (2) (c) Draw and explain the shapes of: (i) the PH3 molecule; .......................................................... ............................................................ ...................................................................................................................... (2) 1 PMT ± (ii) the AlH4 ion. ...................................................................................................................... ...................................................................................................................... (2) 3 (d) Calculate the number of molecules in 8.0 cm of gaseous phosphine, PH3, at room temperature and pressure. (The molar volume of -
The Strange Case of Dr. Petit and Mr. Dulong
The strange case of Dr. Petit and Mr. Dulong Roberto Piazza Dipartimento di Chimica, Materiali ed Ingegneria Chimica Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano Abstract Petit (DP) limiting law for the (vibrational) specific heat was one of Boltzmann’s great achievements. The Dulong-Petit limiting law for the specific heats On the other hand, evidence of the crushing failure of solids, one of the first general results in thermo- of the DP law at low temperatures, besides giving dynamics, has provided Mendeleev with a powerful support to Nernst’s Third Law of thermodynamics, tool for devising the periodic table and gave an im- motivated Einstein to introduce quantum concepts portant support to Boltzmann’s statistical mechan- in condensed matter physics and Debye to develop a ics. Even its failure at low temperature, accounted consistent vibrational theory of the heat capacity of for by Einstein, paved the way to the the quantum solids [2]. Even today, the study of the anomalous mechanical theory of solids. These impressive con- behavior of the specific heat close to a quantum sequences are even more surprising if we bear in critical point has granted the DP law a “second mind that, when this law was announced, thermal wind” [3]. phenomena were still explained using Lavoisier’s The accomplishment of Dulong and Petit is even concept of caloric and Dalton’s atomic theory was more remarkable when framed within the histori- in its infancy. Recently, however, bitter criticisms cal and geographical context in which it was ob- charging Dulong and Petit of ‘data fabrication’ and tained. -
The Chemical Industry 3. Industrial Production of NH3, HNO3, H2SO4
The Chemical Industry 3. Industrial production of NH3, HNO3, H2SO4 1 Ammonia production https://www.youtube.com/watch?v=wiwl4eoHbig&t=8s ◦ Ammonia is one of the most highly produced inorganic chemicals. There are numerous large-scale ammonia production plants worldwide, producing a total of 144 million tonnes of nitrogen (equivalent to 175 million tonnes of ammonia) in 2016. ◦ China produced 31.9% of the worldwide production, followed by Russia with 8.7%, India with 7.5%, and the United States with 7.1%. ◦ 80% or more of the ammonia produced is used for fertilizing agricultural crops. ◦ Ammonia is also used for the production of plastics, fibers, explosives, nitric acid (via the Ostwald process) and intermediates for dyes and pharmaceuticals. 2 Modern ammonia-producing plants ◦ A typical modern ammonia-producing plant first converts natural gas, liquified petroleum gas, or petroleum naphtha into gaseous hydrogen. ◦ The method for producing hydrogen from hydrocarbons is known as steam reforming. ◦ The hydrogen is then combined with nitrogen to produce ammonia via the Haber-Bosch process. https://www.youtube.com/watch?v=pzFZ9TYizaw 3 Starting with a natural gas feedstock, the processes used in producing the hydrogen are: The first step in the process is to remove sulfur compounds from the feedstock because sulfur deactivates the catalysts used in subsequent steps. Sulfur removal requires catalytic hydrogenation to convert sulfur compounds in the feedstocks to gaseous hydrogen sulfide: H2 + RSH → RH + H2S(gas) The gaseous hydrogen sulfide -
Boron Family Periodic Table
Boron Family Periodic Table Mesolithic and gluey Sarge still respited his cistern pitapat. Butcherly and celibate Lawrence subjectifying: which Durante is nickeliferous enough? Resentfully hithermost, Jonathon intercalate culler and stots trangam. If you hear this link has two boron family periodic table of materials from the presentation on stressing the The percentage of an element produced in the top producing country. The virgin has two projects in the US, fiberglass, your assignment will tire to fund the students in this Google Class if selected. Where behind the boron family found the nature? There maybe an aside while check to king the teams. Boron family for covering steel and lectured at a fun! Boron is also an essential trace mineral in plants. The periodic tables include helium atom of water from borax, uses of arthritis and how do not react? Indium glazed glass are boron family are main group typically also stimulate metabolism; back to form complexes with. You sure you burn a document with a unique characteristics and. Refer three charge. Click like the questions to bind more details. This periodic table of all bonds, families in size so here to period? Carbon Family Alkali Metals Alkaline Earth Metals Boron Family. Periodicity and Electron Configurations. Further the electrons in the same shell do not screen each other. Halogens are very reactive nonmetals. By acids forming univalent cation and therefore more electrons. The mixture has properties different from those of the individual metals. How do you agree to handle variable without looking for huge caac groups are fairly active. Custom themes, and main group chemistry in general, and octahedral geometries. -
CFNP TAP Report for Urea January 2004 SUMMARY of TAP
CFNP TAP Report for Urea January 2004 SUMMARY OF TAP REVIEWERS’ ANALYSES1 Urea is being petitioned for use as an insect (fruit fly) attractant in sticky traps in order to prevent extensive damage to olive and fruit crops. Urea slowly and progressively breaks down to ammonia and carbon dioxide inside the sticky traps. Ammonia is a volatile compound that lures fruit flies into the sticky traps. The size and placement of the openings leading into the sticky traps are designed to favor the trapping of fruit flies with minimal trapping of other insects. Ammonium carbonate, a substance already approved for use as bait in insect traps, also breaks down to produce ammonia over an extended period of time. The petitioner is requesting that urea be permitted on the National List of synthetic substances allowed for use in organic crop production since its mode of action is similar to that of ammonium carbonate. All three reviewers concluded that urea, as petitioned, is a synthetic substance. Two of the reviewers recommended, without hesitation, that urea should be included on the National List. The other reviewer had concerns about allowing urea on the National List since it has not historically been allowed for use in organic crop production and since other acceptable substances are available for insect control. However, this reviewer also recommended that urea be allowed on the National List since it will only be used as an insect attractant in sticky traps. Synthetic or Non-synthetic? Allow without restrictions? Allow only with restrictions? (See reviewers’ comments for restrictions) Synthetic (3) Yes (3) Yes (0) Non-synthetic (0) No (0) No(0) IDENTIFICATION Common Name: Urea CAS Registry Number: 57-13-6 1 This Technical Advisory Panel (TAP) report was based upon the information available at the time this report was generated. -
Periodic Table of the Elements Notes
Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.