TPD52: Functional Elucidation of a Novel Lipid Droplet Binding Protein in Human Hepatocytes

Total Page:16

File Type:pdf, Size:1020Kb

TPD52: Functional Elucidation of a Novel Lipid Droplet Binding Protein in Human Hepatocytes TPD52: functional elucidation of a novel lipid droplet binding protein in human hepatocytes. by Shi Bo Feng Biochemistry, McGill University, Montreal August 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master © Shi Bo Feng (2015) Acknowledgements I wish to thank Transplant Quebec with donors and their families and patients consenting to liver resection. I thank Dr. Jarred Chicoine and Dr. Robert Sladeck for the plasmid design and construction, also for making tetracycline inducible TPD52 cell lines. I would also like to thank Dr. Fariba Kalantari and Dr. Ali Fazel for providing fractionated human primary liver samples and delipidated lipid droplet fractions. I also thank Dr. Min Fu for her help with confocal microcopy, Sarita Negi for the cryosection of human liver samples, and Eun Joo Lee for training me on various techniques. Mom and Dad, thank you so much for your support all these years. Finally, I would like to thank Dr. Robert S. Kiss and Dr. Tommy Nilsson for accepting me into their laboratories and for supporting me in so many ways so I could complete two fulfilling years in research. ii Abstract TPD52: functional elucidation of a novel lipid droplet binding protein in human hepatocytes. Shi Bo Feng McGill University, (2015) Supervisors: Robert S. Kiss & Tommy Nilsson Lipid droplets (LDs) are intracellular vesicles involved in the storage of triglycerides (TG) and cholesteryl ester (CE). Although LDs are used for storage, they also play a dynamic role in cell metabolism. LD overaccumulation in the liver causes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), often resulting in liver dysfunction. We identified tumor protein D52 (TPD52) as a novel LD binding protein. By immunofluorescence and western blot, TPD52 was found on LDs in both HepG2 cells and human primary liver samples. Transient transfection of TPD52-eGFP fusion protein in HepG2 and inducible stable transfection in HEK293 showed that TPD52 stably localizes to LDs induced by oleic acid and by arachidonic acid. A fluorescence recovery after photobleaching (FRAP) experiment also showed the time-dependent recruitment of TPD52 to LDs. Moreover, an in situ biotinylation identification technique (Bio-ID) identified LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) as a potential TPD52 interacting protein. LAMTOR1 is a membrane protein found on late endosomes/lysosomes known to interact with components of the Ragulator complex regulating autophagy. LAMTOR1 was shown to localize to LDs in HepG2 and human primary liver samples by immunofluorescence. Implications of a functional link between TPD52 and LAMTOR1 are discussed. TPD52 may be linked to lipophagy, which has the potential of helping understanding NAFLD. TPD52 may be the key to develop potential treatment. iii Résumé TPD52: élucidation fonctionnelle d'une nouvelle protéine de la gouttelette lipidique de liaison dans les hépatocytes humains. Shi Bo Feng McGill University, (2015) Superviseurs: Robert S. Kiss & Tommy Nilsson Les gouttelettes lipidiques (LDS) sont des vésicules intracellulaires impliquées dans le dépôt des triglycérides (TG) et l'ester de cholestéryle (CE). Bien que LDs sont utilisées pour le dépôt, ils jouent également un rôle dynamique dans le métabolisme cellulaire. LD suraccumulation dans le foie provoque la maladie non alcoolique du foie gras (SNA) et la stéatohépatite non alcoolique (NASH), ce qui entraîne souvent un dysfonctionnement hépatique. Nous avons identifié la protéine tumorale D52 (TPD52) comme une nouvelle protéine de lié à la surface de LD. Par l’immunofluorescence et Western blot, TPD52 a été trouvé sur LD dans les deux cellules HepG2 et des échantillons de foie primaires humains. La transfection transitoire de TPD52-eGFP protéine de fusion dans des cellules HepG2 et transfection stable inductible dans les cellules HEK293 a montré que TPD52 localise de manière stable à LD induite par l'acide oléique et de l'acide arachidonique. Un recouvrement de fluorescence après photoblanchiment (FRAP) a également montré le recrutement en fonction du temps de TPD52 à LD. En outre, une technique in situ d'identification de biotinylation (Bio-ID) identifié LAMTOR1 (fin endosomal / lysosomial adaptateur, MAPK et mTOR activateur 1) en tant que protéine interagissant TPD52 de potentiel. LAMTOR1 est une protéine trouvé sur les endosomes tardifs / lysosomes connus pour interagir avec des composants du complexe autophagie Ragulator régulation. LAMTOR1 a été montré à localiser à LDS HepG2 et des échantillons de foie primaires humains par immunofluorescence. Conséquences d'un lien fonctionnel entre TPD52 et LAMTOR1 sont discutées. TPD52 peut être lié à lipophagy, qui a le potentiel d'aider la compréhension de NAFLD. TPD52 peut être la clé pour développer un nouveau traitement potentiel. iv Table of Contents Acknowledgements ..............................................................ii Abstract-Résumé ................................................................ iii List of Illustrations ............................................................. vii List of Figures .................................................................. viii INTRODUCTION................................................................ 1 Lipid and Lipid Droplet ......................................................... 1 LD structure ................................................................ 2 The PAT family proteins ................................................. 3 LD biogenesis .............................................................. 4 Disease related to LD accumulation: NAFLD & NASH................ 6 TPD52 family ..................................................................... 7 Structure..................................................................... 8 TPD52 association with cancer ....................................... 8 TPD52 expression in different cell lines ............................ 9 Potential function of TPD52 ............................................ 9 TPD52 and lipid metabolism ..........................................11 Autophagy/Lipophagy ........................................................ 11 Definitionof autophagy ................................................. 11 mTOR & Autophagy ..................................................... 12 LAMTOR1 & Autophagy ................................................ 13 Autophagy, lipid metabolism and NAFLD .........................13 Importance of the project and hypothesis ............................. 14 v RESULT........................................................................... 16 Part I: TPD52, an oncogene located on the LDs under a high oleate concentration..............................................................16 Part II: The heterogeneity of TPD52 expression on LDs surface 22 Part III: Exogenous TPD52 is expressed under various conditions65 Part IV: TPD52 family proteins (TPD52L1 & TPD52 L2) are also found on lipid droplet ................................................... 33 Part V: LAMTOR1- TPD52 interacting protein that is involved in autophagy .................................................................. 37 DISCUSSION & CONCLUSION.......................................... 42 MATERIALS & METHODS ................................................. 46 REFERENCE .................................................................... 50 vi List of Illustrations Illustration I: LD structure ................................................... 3 Illustration II: Schematic representation of LD biogenesis ........ 5 Illustration III: The spectrum range of NAFLD ........................ 7 Illustration IV: TPD52 gene map ........................................... 8 vii List of Figures Figure 1: Endogenous TPD52 co-localizes with PLIN2 on lipid droplet in hepG2 cell line ................................................ 18 Figure 2: Endogenous TPD52 associates with LDs in primary human liver tissue under physiological state ......................19 Figure 3: TPD52 expression level in human hepatic intracellular fractions shows TPD52’s localization on LDs ............ 21 Figure 4: TPD52 expression in human hepatic LD fractions is heterogeneous....................................................23 Figure 5: Exogenous TPD52 is found on LDs across different time points after oleate induction ................................. 27 Figure 6: Exogenous TPD52 is found on LDs generated using different lipid source ............................................ 29 Figure 7: FRAP analysis of TPD52 mobility on LD .................... 31 Figure 8: Both TPD52L1 and TPD52L2 are two known members of TPD52 family that localize on LD surface ................ 34 Figure 9: TPD52L1 expression in human hepatic LD fractions is heterogeneous and differs from TPD52 expression ... 36 Figure 10: LAMTOR1 co-localizes with PLIN2 on LDs ................ 39 Figure 11: Endogenous LAMTOR1 is located on LDs of NAFLD human liver .................................................................. 40 viii INTRODUCTION Lipid and Lipid Droplet Lipid droplets (LDs) are present in various eukaryotic cells as the storage organelles for excess free fatty acids and cholesterol (1). The mechanism and machinery to generate LDs is evolutionarily conserved from prokaryotic bacteria to humans (1,2). For storage purposes, free fatty acids are converted to triglycerides (TG), and cholesterol to cholesteryl ester (CE), and both are stored in LDs (1,2).
Recommended publications
  • Amplification of 8Q21 in Breast Cancer Is Independent of MYC and Associated with Poor Patient Outcome
    Modern Pathology (2010) 23, 603–610 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 603 Amplification of 8q21 in breast cancer is independent of MYC and associated with poor patient outcome Matthias Choschzick1, Paula Lassen1, Annette Lebeau1, Andreas Holger Marx1, Luigi Terracciano2, Uwe Heilenko¨tter3, Fritz Jaenicke4, Carsten Bokemeyer5, Jakob Izbicki6, Guido Sauter1 and Ronald Simon1 1Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; 2Institute of Pathology, University Hospital Basel, Basel, Switzerland; 3Department of Gynaecology, Hospital Itzehoe, Itzehoe, Germany; 4Department of Gynaecology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; 5Department of Oncology, Hematology, Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany and 6Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany Copy number gains involving the long arm of chromosome 8, including high-level amplifications at 8q21 and 8q24, have been frequently reported in breast cancer. Although the role of the MYC gene as the driver of the 8q24 amplicon is well established, the significance of the 8q21 amplicon is less clear. The breast cancer cell line SK-BR-3 contains three separate 8q21 amplicons, the distal two of which correspond to putative target genes TPD52 and WWP1. To understand the effect of proximal 8q21 amplification on breast cancer phenotype and patient prognosis, we analyzed 8q21 copy number changes using fluorescence in situ hybridization (FISH) in a tissue microarray containing more than 2000 breast cancers. Amplification at 8q21 was found in 3% of tumors, and was associated with medullary type (Po0.03), high tumor grade (Po0.0001), high Ki67 labeling index (Po0.05), amplification of MYC (Po0.0001), HER2, MDM2, and CCND1 (Po0.05 each), as well as the total number of gene amplifications (Po0.0001).
    [Show full text]
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Identification of TPD52 and DNAJB1 As Two Novel Bile Biomarkers for Cholangiocarcinoma by Itraq‑Based Quantitative Proteomics Analysis
    2622 ONCOLOGY REPORTS 42: 2622-2634, 2019 Identification of TPD52 and DNAJB1 as two novel bile biomarkers for cholangiocarcinoma by iTRAQ‑based quantitative proteomics analysis HONGYUE REN1*, MINGXU LUO2,3*, JINZHONG CHEN4, YANMING ZHOU5, XIUMEI LI4, YANYAN ZHAN6, DONGYAN SHEN7 and BO CHEN3 1Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000; 2Department of Gastrointestinal Surgery, Xiamen Humanity Hospital; Departments of 3Gastrointestinal Surgery, 4Endoscopy Center and 5Hepatopancreatobiliary Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen Fujian 361003; 6Cancer Research Center, Xiamen University Medical College, Xiamen, Fujian 361002; 7Biobank, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China Received December 17, 2018; Accepted September 26, 2019 DOI: 10.3892/or.2019.7387 Abstract. Cholangiocarcinoma (CCA) represents a type of proteins may contribute to tumor pathogenesis. In addition, the epithelial cancer with a late diagnosis and poor outcome. expression levels of TPD52 and DNAJB1 were found to be However, the molecular mechanisms responsible for the devel- closely associated with the clinical parameters and prognosis opment of CCA have not yet been fully identified. Thus, in this of patients with CCA. On the whole, the findings of this study study, we aimed to elucidate some of these mechanisms. For indicate that TPD52 and DNAJB1 may serve as novel bile this purpose, isobaric tags for relative and absolute quantifica- biomarkers for CCA. tion (iTRAQ) was performed to analyze the secretory proteins from the 2 CCA cell lines, TFK1 and HuCCT1, as well as from Introduction a normal biliary epithelial cell line, human intrahepatic biliary epithelial cells (HiBECs).
    [Show full text]
  • Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
    825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members).
    [Show full text]
  • Tpd52l2 (NM 025482) Mouse Tagged ORF Clone – MR202509
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MR202509 Tpd52l2 (NM_025482) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Tpd52l2 (NM_025482) Mouse Tagged ORF Clone Tag: Myc-DDK Symbol: Tpd52l2 Synonyms: 2810411G23Rik; AU016537; C86069; D54 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >MR202509 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGACTCTGCTAGCCAAGATATCAACCTGAATTCTCCTAACAAAGGTGTGCTGTCTGACTTTATGACTG ACGTCCCTGTTGACCCAGGTGTGGTCCACCGGACTCCAGTTGTAGAAGGCCTGACAGAGGGGGAGGAAGA AGAGCTTCGGGCTGAGCTTGCTAAGGTGGAAGAAGAAATTGTCACTCTGCGCCAGGTGCTGGCAGCCAAA GAGAGGCACTGTGGAGAGCTGAAAAGGAGGCTGGGCCTCTCCACATTAGGGGAGCTGAAGCAGAACCTGT CTAGGAGCTGGCATGATGTGCAGGTCTCTACTGCCTATGTGAAAACGTCTGAGAAACTTGGAGAGTGGAA TGAGAAAGTGACGCAGTCTGACCTCTACAAGAAGACTCAAGAAACTCTTTCACAGGCTGGACAGAAAACA TCAGCTGCCCTGTCCACCATGGGCTCTGCCATCAGCAGGAAGCTTGGAGACATGAGCAGCTACTCCATCC GCCACTCGATAAGTATGCCTGTCATGAGGAACTCAGCCACCTTCAAGTCATTTGAAGACCGAGTGGGGAC CATAAAGTCTAAGGTTGTGGGTGGCAGAGAGAATGGCAGCGATAACCTCCCTCCCTCTCCTGGAAGTGGT GACCAGACATTGCCGGATCATGCGCCTTTC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA This product is to be used for laboratory only. Not for diagnostic or therapeutic use.
    [Show full text]
  • Identification of the Downregulation of TPD52-Like3 Gene and NKX2-1 Gene in Type 2 Diabetes Mellitus Via RNA Sequencing
    Archives of Diabetes & Obesity DOI: 10.32474/ADO.2020.03.000156 ISSN: 2638-5910 Opinion Identification of The Downregulation of TPD52-Like3 Gene and NKX2-1 Gene in Type 2 Diabetes Mellitus Via RNA Sequencing Rob N M Weijers* Teaching Hospital , Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands *Corresponding author: Rob NM Weijers, Teacher, Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Oosterparkstraat 9, PO Box 95500, Amsterdam 1090, Netherlands Received: November 02, 2020 Published: November 12, 2020 Abstract between patients with type 2 diabetes mellitus, compared to non-diabetic patients. Ex-post review, based in part on both the A recent study using next-generation RNA sequencing was reported on genome-wide changes in gene expressing in the skin most downregulated gene TPD52L3, and in the gene regulation category the most downregulated gene NKX2-1. There is strong existence of lipid droplets, peridroplet mitochondria and cytoplasmic mitochondria, selected in the gene metabolism category the evidenceKeywords: that these two genes are involved in the disease process of type 2 diabetes mellitus. Gene Expression; Lipid Droplets; Mitochondria; RNA Sequencing; Type 2 Diabetes Mellitus Opinion Although both the peridroplet mitochondria and cytoplasmic mitochondria are similar in their cell membrane composition they In an earlier study, it was proposed that the final consequence of which already emerges in the prediabetic phase. It was thought to hereditary anomaly results in the development of type 2 diabetes, differ in other fundamental respects [3,4]. A comparison of the suggests that peridroplet mitochondria are more elongated, where protons (H+ purified peridroplet mitochondria to cytoplasmic mitochondria occur due to an increased flux, as compared to the healthy controls whereas cytoplasmic mitochondria tend to be smaller.
    [Show full text]
  • Identification of Tumor-Associated Cassette Exons in Human Cancer
    Valletti et al. Molecular Cancer 2010, 9:230 http://www.molecular-cancer.com/content/9/1/230 RESEARCH Open Access Identification of tumor-associated cassette exons in human cancer through EST-based computational prediction and experimental validation Alessio Valletti1†, Anna Anselmo2†, Marina Mangiulli1, Ilenia Boria1, Flavio Mignone3, Giuseppe Merla4, Vincenzo D’Angelo5, Apollonia Tullo6, Elisabetta Sbisà6, Anna Maria D’Erchia1, Graziano Pesole1,7* Abstract Background: Many evidences report that alternative splicing, the mechanism which produces mRNAs and proteins with different structures and functions from the same gene, is altered in cancer cells. Thus, the identification and characterization of cancer-specific splice variants may give large impulse to the discovery of novel diagnostic and prognostic tumour biomarkers, as well as of new targets for more selective and effective therapies. Results: We present here a genome-wide analysis of the alternative splicing pattern of human genes through a computational analysis of normal and cancer-specific ESTs from seventeen anatomical groups, using data available in AspicDB, a database resource for the analysis of alternative splicing in human. By using a statistical methodology, normal and cancer-specific genes, splice sites and cassette exons were predicted in silico. The condition association of some of the novel normal/tumoral cassette exons was experimentally verified by RT-qPCR assays in the same anatomical system where they were predicted. Remarkably, the presence in vivo of the predicted alternative transcripts, specific for the nervous system, was confirmed in patients affected by glioblastoma. Conclusion: This study presents a novel computational methodology for the identification of tumor-associated transcript variants to be used as cancer molecular biomarkers, provides its experimental validation, and reports specific biomarkers for glioblastoma.
    [Show full text]
  • TPD52L2 Polyclonal Antibody Catalog Number:11795-1-AP Featured Product 4 Publications
    For Research Use Only TPD52L2 Polyclonal antibody Catalog Number:11795-1-AP Featured Product 4 Publications www.ptglab.com Catalog Number: GenBank Accession Number: Purification Method: Basic Information 11795-1-AP BC006804 Antigen affinity purification Size: GeneID (NCBI): Recommended Dilutions: 150ul , Concentration: 900 μg/ml by 7165 WB 1:500-1:1000 Nanodrop and 447 μg/ml by Bradford Full Name: IP 0.5-4.0 ug for IP and 1:500-1:1000 method using BSA as the standard; tumor protein D52-like 2 for WB Source: IHC 1:20-1:200 Calculated MW: IF 1:50-1:500 Rabbit 206 aa, 22 kDa Isotype: Observed MW: IgG 25-30 kDa Immunogen Catalog Number: AG2364 Applications Tested Applications: Positive Controls: IF, IHC, IP, WB,ELISA WB : HEK-293 cells, HeLa cells, human brain tissue, Cited Applications: human kidney tissue, Jurkat cells, K-562 cells, MCF-7 IHC, WB cells, mouse brain tissue, rat brain tissue Species Specificity: IP : HEK-293 cells, human, mouse, rat IHC : human breast cancer tissue, human testis tissue Cited Species: human, mouse IF : HepG2 cells, Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0 Tumor protein D52-like proteins (TPD52) are small coiled-coil motif bearing proteins that were first identified in Background Information breast carcinoma. Three human TPD52 members had been identified, named hD52 (TPD52), hD53 (TPD52L1), and hD54 (TPD52L2). The most important characteristic of the protein family is a highly conserved coiled-coil motif that is required for homo- and heteromeric interaction with other TPD52-like proteins.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin Et Al
    US 20090297536A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin et al. (43) Pub. Date: Dec. 3, 2009 (54) COMPOSITIONS, KITS, AND METHODS FOR Related U.S. Application Data IDENTIFICATION, ASSESSMENT, (60) Provisional application No. 60/575,795, filed on May PREVENTION AND THERAPY OF CANCER 28, 2004, provisional application No. 60/580,337, filed on Jun. 15, 2004. (75) Inventors: Lynda Chin, Brookline, MA (US); Publication Classification Cameron W. Brennan, New York, NY (US); Ronald A. DePinho, (51) Int. Cl. Brookline, MA (US); Andrew J. A 6LX 39/395 (2006.01) Aguirre, Boston, MA (US) CI2O I/68 (2006.01) C40B 30/00 (2006.01) AOIK 67/00 (2006.01) Correspondence Address: A 6LX 3L/7052 (2006.01) FOLEY HOAG, LLP A638/02 (2006.01) PATENT GROUP, WORLD TRADE CENTER A638/16 (2006.01) WEST C07K I4/00 (2006.01) 155 SEAPORT BLVD C7H 2L/00 (2006.01) BOSTON, MA 02110 (US) C07K 6/00 (2006.01) A6IP35/00 (2006.01) (73) Assignee: Dana-Farber Cancer Institute, (52) U.S. Cl. ................ 424/172.1; 435/6:506/7; 800/10: Inc., Boston, MA (US) 424/183.1; 424/178.1: 514/44 A: 514/2: 514/12: 530/350:536/23.1; 530/389.1 (21) Appl. No.: 11/597,825 (57) ABSTRACT The invention relates to compositions, kits, and methods for (22) PCT Filed: May 27, 2005 detecting, characterizing, preventing, and treating human cancer. A variety of chromosomal regions (MCRs) and mark (86). PCT No.: PCT/US05/18850 ers corresponding thereto, are provided, wherein alterations in the copy number of one or more of the MCRs and/or S371 (c)(1), alterations in the amount, structure, and/or activity of one or (2), (4) Date: Jun.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]