Lecture Notes in Computer Science 4800 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Learning Theory: New Models and Algorithms
Computational Learning Theory: New Models and Algorithms by Robert Hal Sloan S.M. EECS, Massachusetts Institute of Technology (1986) B.S. Mathematics, Yale University (1983) Submitted to the Department- of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1989 @ Robert Hal Sloan, 1989. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Electrical Engineering and Computer Science May 23, 1989 Certified by Ronald L. Rivest Professor of Computer Science Thesis Supervisor Accepted by Arthur C. Smith Chairman, Departmental Committee on Graduate Students Abstract In the past several years, there has been a surge of interest in computational learning theory-the formal (as opposed to empirical) study of learning algorithms. One major cause for this interest was the model of probably approximately correct learning, or pac learning, introduced by Valiant in 1984. This thesis begins by presenting a new learning algorithm for a particular problem within that model: learning submodules of the free Z-module Zk. We prove that this algorithm achieves probable approximate correctness, and indeed, that it is within a log log factor of optimal in a related, but more stringent model of learning, on-line mistake bounded learning. We then proceed to examine the influence of noisy data on pac learning algorithms in general. Previously it has been shown that it is possible to tolerate large amounts of random classification noise, but only a very small amount of a very malicious sort of noise. -
On Computational Tractability for Rational Verification
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) On Computational Tractability for Rational Verification Julian Gutierrez1 , Muhammad Najib1 , Giuseppe Perelli2 , Michael Wooldridge1 1Department of Computer Science, University of Oxford, UK 2Department of Informatics, University of Leicester, UK fjulian.gutierrez, mnajib, [email protected], [email protected] Abstract theoretic (e.g., Nash) equilibrium. Unlike model checking, rational verification is still in its infancy: the main ideas, Rational verification involves checking which formal models, and reasoning techniques underlying rational temporal logic properties hold of a concur- verification are under development, while current tool sup- rent/multiagent system, under the assumption that port is limited and cannot yet handle systems of industrial agents in the system choose strategies in game the- size [Toumi et al., 2015; Gutierrez et al., 2018a]. oretic equilibrium. Rational verification can be un- derstood as a counterpart of model checking for One key difficulty is that rational verification is computa- multiagent systems, but while model checking can tionally much harder than model checking, because checking be done in polynomial time for some temporal logic equilibrium properties requires quantifying over the strategies specification languages such as CTL, and polyno- available to players in the system. Rational verification is also mial space with LTL specifications, rational ver- different from model checking in the kinds of properties that ification is much more intractable: 2EXPTIME- each technique tries to check: while model checking is inter- any complete with LTL specifications, even when using ested in correctness with respect to possible behaviour of explicit-state system representations. -
Downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All Use Subject to JSTOR Terms and Conditions 660 REVIEWS
Association for Symbolic Logic http://www.jstor.org/stable/2274542 . Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic. http://www.jstor.org This content downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All use subject to JSTOR Terms and Conditions 660 REVIEWS The penultimate chapter, Real machines, is the major exposition on Al techniques and programs found in this book. It is here that heuristic search is discussed and classic programs such as SHRDLU and GPS are described. It is here that a sampling of Al material and its flavor as research is presented. Some of the material here is repeated without real analysis. For example, the author repeats the standard textbook mistake on the size of the chess space. On page 178, he states that 10120 is the size of this space, and uses this to suggest that no computer will ever play perfect chess. Actually, an estimate of 1040 is more realistic. If one considers that no chess board can have more than sixteen pieces of each color and there are many configurations that are illegal or equivalent, then the state space is reduced considerably. -
Logics for Concurrency
Lecture Notes in Computer Science 1043 Edited by G. Goos, J. Hartmanis and J. van Leeuwen Advisory Board: W. Brauer D. Gries J. Stoer Faron Moiler Graham Birtwistle (Eds.) Logics for Concurrency Structure versus Automata ~ Springer Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornetl University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Faron Moller Department ofTeleinformatics, Kungl Tekniska H6gskolan Electrum 204, S-164 40 Kista, Sweden Graham Birtwistle School of Computer Studies, University of Leeds Woodhouse Road, Leeds LS2 9JT, United Kingdom Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Logics for concurrency : structure versus automata / Faron Moller; Graham Birtwistle (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo Springer, 1996 (Lecture notes in computer science ; Voi. 1043) ISBN 3-540-60915-6 NE: Moiler, Faron [Hrsg.]; GT CR Subject Classification (1991): F.3, F.4, El, F.2 ISBN 3-540-60915-6 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg 1996 Printed in Germany Typesetting: Camera-ready by author SPIN 10512588 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper Preface This volume is a result of the VIII TH BANFF HIGHER ORDER WORKSHOP held from August 27th to September 3rd, 1994, at the Banff Centre in Banff, Canada. -
Logics with Invariantly Used Relations Eickmeyer, Kord (2020)
Logics with Invariantly Used Relations Eickmeyer, Kord (2020) DOI (TUprints): https://doi.org/10.25534/tuprints-00013503 Lizenz: CC-BY 4.0 International - Creative Commons, Attribution Publikationstyp: Habilitation Fachbereich: 04 Department of Mathematics Quelle des Originals: https://tuprints.ulb.tu-darmstadt.de/13503 Fachbereich Mathematik Logics with Invariantly Used Relations vom Fachbereich Mathematik der Technischen Universität Darmstadt genehmigte Habilitationsschrift von Dr. Kord Eickmeyer aus Lage Datum des Habilitationsvortrags: 13. Dezember 2019 1. Gutachter: Prof. Dr. Martin Otto 2. Gutachter: Prof. Dr. Marc Pfetsch 3. Gutachter: Prof. Dr. Rodney Downey 4. Gutachter: Prof. Dr. Mikołaj Bojańczyk D 17 Logics with Invariantly Used Relations Habilitationsschrift Dr. Kord Eickmeyer Contents I Background 11 1 Preliminaries and Notation 13 1.1 Logic Preliminaries . 14 2 Logics with Invariantly Used Relations 25 2.1 Invariantly Used Relations . 25 2.2 Undecidability of the Syntax . 30 3 Structural Properties of Graphs 35 3.1 Trees and Tree Decompositions . 37 3.2 Treedepth . 40 3.3 Graphs of Bounded Genus . 44 3.4 Minors and Topological Subgraphs . 46 II Expressivity and Succinctness 51 4 Variants of First-Order Logic 53 4.1 Separation Results . 54 4.2 Trees . 55 4.3 Locality . 59 4.4 Depth-Bounded Structures . 62 5 Order-Invariant Monadic Second-Order Logic 75 5.1 Depth-Bounded Structures . 75 5.2 Decomposable Structures . 80 III Algorithmic Meta-Theorems 83 6 The Complexity of Model Checking 85 3 7 Successor-Invariant First-Order Logic 91 7.1 Interpreting a Successor Relation . 92 7.2 k-Walks in Graphs with Excluded Minors . 96 7.3 k-Walks in Graphs with Excluded Topological Subgraphs . -
Conversational Concurrency Copyright © 2017 Tony Garnock-Jones
CONVERSATIONALCONCURRENCY tony garnock-jones Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Computer and Information Science Northeastern University 2017 Tony Garnock-Jones Conversational Concurrency Copyright © 2017 Tony Garnock-Jones This document was typeset on December 31, 2017 at 9:22 using the typographical look-and-feel classicthesis developed by André Miede, available at https://bitbucket.org/amiede/classicthesis/ Abstract Concurrent computations resemble conversations. In a conversation, participants direct ut- terances at others and, as the conversation evolves, exploit the known common context to advance the conversation. Similarly, collaborating software components share knowledge with each other in order to make progress as a group towards a common goal. This dissertation studies concurrency from the perspective of cooperative knowledge-sharing, taking the conversational exchange of knowledge as a central concern in the design of concur- rent programming languages. In doing so, it makes five contributions: 1. It develops the idea of a common dataspace as a medium for knowledge exchange among concurrent components, enabling a new approach to concurrent programming. While dataspaces loosely resemble both “fact spaces” from the world of Linda-style lan- guages and Erlang’s collaborative model, they significantly differ in many details. 2. It offers the first crisp formulation of cooperative, conversational knowledge-exchange as a mathematical model. 3. It describes two faithful implementations of the model for two quite different languages. 4. It proposes a completely novel suite of linguistic constructs for organizing the internal structure of individual actors in a conversational setting. The combination of dataspaces with these constructs is dubbed Syndicate. -
Symposium on Principles of Database Systems Paris, France – June 14-16, 2004
23ndACM SIGMOD-SIGACT- SIGART Symposium on Principles of Database Systems Paris, France – June 14-16, 2004 http://www.sciences.univ-nantes.fr/irin/SIGMODPODS04/ The symposium invites papers on fundamental aspects of data management. Original research papers on the theory, design, specification, or implementation of data management tools are solicited. Papers emphasizing new topics or foundations of emerging areas are especially welcome. The symposium will be held at the Maison de la Chimie, Paris, in conjunction with the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD’04). Suggested topics include the following (this list is not exhaustive and the order does not reflect priorities): Access Methods & Physical Design Databases & Workflows Real-time Databases Active Databases Deductive Databases & Knowledge Bases Security & Privacy Complexity & Performance Evaluation Distributed Databases Semistructured Data & XML Data Integration & Interoperability Information Processing on the Web Spatial & Temporal Databases Data Mining Logic in Databases Theory of recovery Data Models Multimedia Databases Transaction Management Data Stream Management Object-oriented Databases Views & Warehousing Database Programming Languages Query Languages Web Services & Electronic Commerce Databases & Information Retrieval Query Optimization XML Databases Important Dates: Paper abstracts due: December 1, 2003 (11:59pm PST) Full papers due: December 8, 2003 (11:59pm PST) Notification of acceptance/rejection: February 23, 2004 Camera-ready due: March 22, 2004 -
Self-Sorting SSD: Producing Sorted Data Inside Active Ssds
Foreword This volume contains the papers presentedat the Third Israel Symposium on the Theory of Computing and Systems (ISTCS), held in Tel Aviv, Israel, on January 4-6, 1995. Fifty five papers were submitted in response to the Call for Papers, and twenty seven of them were selected for presentation. The selection was based on originality, quality and relevance to the field. The program committee is pleased with the overall quality of the acceptedpapers and, furthermore, feels that many of the papers not used were also of fine quality. The papers included in this proceedings are preliminary reports on recent research and it is expected that most of these papers will appear in a more complete and polished form in scientific journals. The proceedings also contains one invited paper by Pave1Pevzner and Michael Waterman. The program committee thanks our invited speakers,Robert J. Aumann, Wolfgang Paul, Abe Peled, and Avi Wigderson, for contributing their time and knowledge. We also wish to thank all who submitted papers for consideration, as well as the many colleagues who contributed to the evaluation of the submitted papers. The latter include: Noga Alon Alon Itai Eric Schenk Hagit Attiya Roni Kay Baruch Schieber Yossi Azar Evsey Kosman Assaf Schuster Ayal Bar-David Ami Litman Nir Shavit Reuven Bar-Yehuda Johan Makowsky Richard Statman Shai Ben-David Yishay Mansour Ray Strong Allan Borodin Alain Mayer Eli Upfal Dorit Dor Mike Molloy Moshe Vardi Alon Efrat Yoram Moses Orli Waarts Jack Feldman Dalit Naor Ed Wimmers Nissim Francez Seffl Naor Shmuel Zaks Nita Goyal Noam Nisan Uri Zwick Vassos Hadzilacos Yuri Rabinovich Johan Hastad Giinter Rote The work of the program committee has been facilitated thanks to software developed by Rob Schapire and FOCS/STOC program chairs. -
Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs
SUCCESSOR-INVARIANT FIRST-ORDER LOGIC ON GRAPHS WITH EXCLUDED TOPOLOGICAL SUBGRAPHS KORD EICKMEYER AND KEN-ICHI KAWARABAYASHI Abstract. We show that the model-checking problem for successor- invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topo- logical subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input for- mula and the width of the poset. Results of this form, i.e. showing that model-checking for a cer- tain logic is tractable on a certain class of structures, are often referred to as algorithmic meta-theorems since they give a unified proof for the tractability of a whole range of problems. First-order logic is arguably one of the most important logics in this context since it is powerful enough to express many computational prob- lems (e.g. the existence of cliques, dominating sets etc.) and yet its model-checking problem is tractable on rich classes of graphs. In fact, Grohe et al. [21] have shown that model-checking for FO is tractable on all nowhere dense classes of graphs. Successor-invariant FO is a semantic extension of FO by allow- ing the use of an additional binary relation which is interpreted as a directed Hamiltonian cycle, restricted to formulae whose truth value does not depend on the specific choice of a Hamiltonian cy- cle. While this is very natural in the context of model-checking (after all, storing a structure in computer memory usually brings with it a linear order on the structure), the question of how the computational complexity of the model-checking problem for this arXiv:1605.01198v1 [cs.LO] 4 May 2016 richer logic compares to that of plain FO is still open. -
Proposal for a Joint Special Session at the AMS-ASL Meeting of 2009, January 5-8, 2009, Washington, D.C
Proposal for a Joint Special Session at the AMS-ASL Meeting of 2009, January 5-8, 2009, Washington, D.C. Approved by the ASL, still needs approval of the AMS. Model Theoretic Methods in Finite Combinatorics Organizers: • Martin Grohe Institut fur¨ Informatik, Humboldt-Universit¨at zu Berlin Berlin, Germany homepage: www2.informatik.hu-berlin.de/∼grohe/ e-mail: [email protected] • Johann A. Makowsky (corresponding organizer) Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel homepage: www.cs.technion.ac.il/∼janos e-mail: [email protected] Purpose of the special session We want to bring the various aspects of the interaction between Model Theory and Finite Combinatorics to a wider audience. Altough the work on 0-1 laws is by now widely known, the other applications on counting functions, graph polynomials, extremal combinatorics, graph minors and regularity lemmas, have not yet received their deserved attention. Background In the last twenty years several applications of Logic, in particular Model theory, to problems in Combinatorics emerged. Among them we have • 0-1 laws and their variations. This is well summarized in the book by J. Spencer [Spe01]. • Modular linear recurrence relations for combinatorial counting functions (The Specker-Blatter Theorem) This theorem has remained widely unnoticed, and deserves wider attention and further study [Spe88, Fis03, FM03] • Recent progress in undertanding the ultimate periodicity of finite spectra by Y. Gurevich and S. Shelah, and E. Fischer and J.A. Makowsky [FM04]. • Applications of meta-theorems which apply to whole families of combina- torial problems, instead of just specific problems. -
COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who Is Who in Computer Science Research
COMP 516 COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who is Who in Computer Science Research Dominik Wojtczak Dominik Wojtczak Department of Computer Science University of Liverpool Department of Computer Science University of Liverpool 1 / 24 2 / 24 Prizes and Awards Alan M. Turing (1912-1954) Scientific achievement is often recognised by prizes and awards Conferences often give a best paper award, sometimes also a best “The father of modern computer science” student paper award In 1936 introduced Turing machines, as a thought Example: experiment about limits of mechanical computation ICALP Best Paper Prize (Track A, B, C) (Church-Turing thesis) For the best paper, as judged by the program committee Gives rise to the concept of Turing completeness and Professional organisations also give awards based on varying Turing reducibility criteria In 1939/40, Turing designed an electromechanical machine which Example: helped to break the german Enigma code British Computer Society Roger Needham Award His main contribution was an cryptanalytic machine which used Made annually for a distinguished research contribution in computer logic-based techniques science by a UK based researcher within ten years of their PhD In the 1950 paper ‘Computing machinery and intelligence’ Turing Arguably, the most prestigious award in Computer Science is the introduced an experiment, now called the Turing test A. M. Turing Award 2012 is the Alan Turing year! 3 / 24 4 / 24 Turing Award Turing Award Winners What contribution have the following people made? The A. M. Turing Award is given annually by the Association for Who among them has received the Turing Award? Computing Machinery to an individual selected for contributions of a technical nature made Frances E. -
Adventures in Monotone Complexity and TFNP
Adventures in Monotone Complexity and TFNP Mika Göös1 Institute for Advanced Study, Princeton, NJ, USA [email protected] Pritish Kamath2 Massachusetts Institute of Technology, Cambridge, MA, USA [email protected] Robert Robere3 Simons Institute, Berkeley, CA, USA [email protected] Dmitry Sokolov4 KTH Royal Institute of Technology, Stockholm, Sweden [email protected] Abstract Separations: We introduce a monotone variant of Xor-Sat and show it has exponential mono- tone circuit complexity. Since Xor-Sat is in NC2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite fields. These results can be interpreted as separating subclasses of TFNP in communication complexity. Characterizations: We show that the communication (resp. query) analogue of PPA (subclass of TFNP) captures span programs over F2 (resp. Nullstellensatz degree over F2). Previously, it was known that communication FP captures formulas (Karchmer–Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995). 2012 ACM Subject Classification Theory of computation → Communication complexity, The- ory of computation → Circuit complexity, Theory of computation → Proof complexity Keywords and phrases TFNP, Monotone Complexity, Communication Complexity, Proof Com- plexity Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.38 Related Version A full version of the paper is available at [24], https://eccc.weizmann.ac. il/report/2018/163/. Acknowledgements We thank Ankit Garg (who declined a co-authorship) for extensive discus- sions about monotone circuits. We also thank Thomas Watson and anonymous ITCS reviewers for comments. 1 Work done while at Harvard University; supported by the Michael O.