Rapport D'activité 2007-2012

Total Page:16

File Type:pdf, Size:1020Kb

Rapport D'activité 2007-2012 Laboratoire d’Informatique Algorithmique : Fondements et Applications LIAFA Rapport d’activites´ 1er janvier 2007 – 30 juin 2012 Laboratoire d’Informatique Algorithmique : Fondements et Applications (LIAFA) UMR CNRS 7089 Universite´ Paris Diderot - Paris 7 Case 7014 75205 Paris Cedex 13 Tel. +33 (0)1 57 27 92 56 Fax. +33 (0)1 57 27 94 09 [email protected] http://www.liafa.univ-paris-diderot.fr Table des matieres` Preambule´ 1 I Rapport et projet scientifique du LIAFA 3 1 Rapport scientifique du laboratoire 5 2 Projet scientifique du laboratoire 29 II Algorithms and Complexity team 37 1 Research report: Algorithms and Complexity 39 2 Fiche resum´ e:´ Algorithmes et Complexite´ 45 3 Executive Summary: Algorithms and Complexity 47 4 Research project: Algorithms and Complexity 49 5 List of publications: Algorithms and Complexity 57 6 Appendix: Algorithms and Complexity 67 III Equipe Algorithmes Distribues´ et Graphes 77 1 Rapport scientifique : Algorithmes Distribues´ et Graphes 79 2 Fiche resum´ e´ : Algorithmes Distribues´ et Graphes 85 3 Executive Summary : Distributed Algorithms and Graphs 87 4 Projet scientifique : Algorithmes Distribues´ et Graphes 89 5 Liste des publications : Algorithmes Distribues´ et Graphes 95 6 Annexes : Algorithmes Distribues´ et Graphes 119 i TABLE DES MATIERES` IV Automata and Applications team 143 1 Research report: Automata and Applications 145 2 Fiche resum´ e:´ Automates et applications 151 3 Executive Summary: Automata and Applications 153 4 Research project: Automata and Applications 155 5 List of publications: Automata and Applications 163 6 Appendix: Automata and Applications 181 V Equipe Combinatoire 199 1 Rapport scientifique : Combinatoire 201 2 Fiche resum´ e´ : Combinatoire 207 3 Executive Summary : Combinatorics 209 4 Projet scientifique : Combinatoire 211 5 Liste des publications : Combinatoire 217 6 Annexes : Combinatoire 225 VI Modeling and Verification team 231 1 Research report: Modeling and Verification 233 2 Fiche resum´ e:´ Modelisation´ et Verification 239 3 Executive Summary: Modeling and Verification 241 4 Research project: Modeling and Verification 243 5 List of publications: Modeling and Verification 251 6 Appendix: Modeling and Verification 265 VII Bref historique du LIAFA 279 ii Table des matieres` detaill´ ee´ Preambule´ 1 I Rapport et projet scientifique du LIAFA 3 1 Rapport scientifique du laboratoire 5 1.1 Resum´ e´ des activites´ et des resultats´ de l’unite............................´ 5 1.1.1 Faits marquants 2007-2012 . .5 1.1.2 A propos d’une fusion LIAFA-PPS . .8 1.2 Gouvernance, administration et vie scientifique . .8 1.2.1 Gouvernance . .8 1.2.2 Administration et services . .9 1.2.3 Vie scientifique . 10 1.3 Composition . 11 1.4 Budget . 14 1.5 Le LIAFA dans son environnement . 16 1.5.1 L’universite´ Paris Diderot, l’UFR, la Fed´ eration,´ et l’Ecole Doctorale . 16 1.5.2 La Fondation et le LABEX Sciences Mathematiques´ de Paris . 16 1.5.3 Inria, CEA et Technicolor . 17 1.5.4 Environnement scientifique . 17 1.5.5 Animation . 19 1.5.6 Interdisciplinarite.......................................´ 19 1.6 Formation par la recherche . 20 1.7 Vulgarisation et diffusion scientifiques . 21 1.8 Valorisation . 21 1.9 Annexes . 22 1.9.1 Liste des membres permanents chercheurs et enseignants-chercheurs au 10/09/2012 . 22 1.9.2 Liste des membres du conseil de laboratoire . 24 1.9.3 Reglement` interieur´ . 25 1.9.4 Charte d’utilisation des moyens informatiques . 27 2 Projet scientifique du laboratoire 29 2.1 Positionnement scientifique et objectif gen´ eral´ . 29 iii TABLE DES MATIERES` DETAILL´ EE´ 2.2 Axes fed´ erateurs´ internes et implications externes . 30 2.2.1 Algorithmique . 31 2.2.2 Systemes` concurrents . 31 2.2.3 Structures et logique, jeux . 32 2.3 Rapprochement LIAFA-PPS . 33 2.3.1 Thematiques´ d’accroche . 33 2.3.2 Seminaire´ didactique . 34 2.4 Analyse SWOT . 35 II Algorithms and Complexity team 37 1 Research report: Algorithms and Complexity 39 1.1 Research areas and main objectives . 39 1.1.1 Development of the team . 39 1.1.2 Description of our main scientific results . 41 1.2 Selected results of significance . 42 1.2.1 Streaming algorithms for large XML databases . 42 1.2.2 Quantum cryptographic protocols . 43 1.3 Scientific service and influence, honors and prizes . 43 1.4 Internal organization . 44 2 Fiche resum´ e:´ Algorithmes et Complexite´ 45 2.1 Effectifs . 45 2.2 Production scientifique . 45 2.3 Bilan quantitatif . 45 2.3.1 Publications . 45 2.3.2 Logiciels, brevets, rapports, etc. 46 2.3.3 Rayonnement . 46 2.3.4 Interactions de l’equipe´ avec son environnement . 46 2.3.5 Actions de formation . 46 3 Executive Summary: Algorithms and Complexity 47 3.1 Members . 47 3.2 Scientific outcomes . 47 3.3 Quantitative assessment . 47 3.3.1 Publications . 47 3.3.2 Software, patents, reports, etc. 48 3.3.3 Influence of the team . 48 3.3.4 Interactions between the team and its environment . 48 3.3.5 Teaching . 48 iv TABLE DES MATIERES` DETAILL´ EE´ 4 Research project: Algorithms and Complexity 49 4.1 Research objectives . 49 4.1.1 Scientific outlook . 49 4.1.2 Our long term scientific goals: Efficiency and Security . 50 4.1.3 Detailed descriptoin of research objectives . 51 4.2 Project implementation . 53 5 List of publications: Algorithms and Complexity 57 ACL : Articles in international or national journals . 57 C-INV : Invited talks . 60 C-ACTI : International conference proceedings . 60 C-COM : International or national conferences without proceedings . 64 DO : Editing of journals and other works . 66 OS : Scientific works . 66 PV : Popularization works . 66 AP : Other works . 66 6 Appendix: Algorithms and Complexity 67 6.1 Composition and team organization . 67 6.1.1 Current members . 67 6.1.2 Former members . 68 6.1.3 Visitors . 69 6.1.4 Team organization . 69 6.2 Grants and research projects . 70 6.2.1 Management of international projects . 70 6.2.2 Management of national projects . 71 6.2.3 Participation in international projects . 71 6.2.4 Participation in local projects . 71 6.2.5 Participation in local projects . ..
Recommended publications
  • Logics with Invariantly Used Relations Eickmeyer, Kord (2020)
    Logics with Invariantly Used Relations Eickmeyer, Kord (2020) DOI (TUprints): https://doi.org/10.25534/tuprints-00013503 Lizenz: CC-BY 4.0 International - Creative Commons, Attribution Publikationstyp: Habilitation Fachbereich: 04 Department of Mathematics Quelle des Originals: https://tuprints.ulb.tu-darmstadt.de/13503 Fachbereich Mathematik Logics with Invariantly Used Relations vom Fachbereich Mathematik der Technischen Universität Darmstadt genehmigte Habilitationsschrift von Dr. Kord Eickmeyer aus Lage Datum des Habilitationsvortrags: 13. Dezember 2019 1. Gutachter: Prof. Dr. Martin Otto 2. Gutachter: Prof. Dr. Marc Pfetsch 3. Gutachter: Prof. Dr. Rodney Downey 4. Gutachter: Prof. Dr. Mikołaj Bojańczyk D 17 Logics with Invariantly Used Relations Habilitationsschrift Dr. Kord Eickmeyer Contents I Background 11 1 Preliminaries and Notation 13 1.1 Logic Preliminaries . 14 2 Logics with Invariantly Used Relations 25 2.1 Invariantly Used Relations . 25 2.2 Undecidability of the Syntax . 30 3 Structural Properties of Graphs 35 3.1 Trees and Tree Decompositions . 37 3.2 Treedepth . 40 3.3 Graphs of Bounded Genus . 44 3.4 Minors and Topological Subgraphs . 46 II Expressivity and Succinctness 51 4 Variants of First-Order Logic 53 4.1 Separation Results . 54 4.2 Trees . 55 4.3 Locality . 59 4.4 Depth-Bounded Structures . 62 5 Order-Invariant Monadic Second-Order Logic 75 5.1 Depth-Bounded Structures . 75 5.2 Decomposable Structures . 80 III Algorithmic Meta-Theorems 83 6 The Complexity of Model Checking 85 3 7 Successor-Invariant First-Order Logic 91 7.1 Interpreting a Successor Relation . 92 7.2 k-Walks in Graphs with Excluded Minors . 96 7.3 k-Walks in Graphs with Excluded Topological Subgraphs .
    [Show full text]
  • Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs
    SUCCESSOR-INVARIANT FIRST-ORDER LOGIC ON GRAPHS WITH EXCLUDED TOPOLOGICAL SUBGRAPHS KORD EICKMEYER AND KEN-ICHI KAWARABAYASHI Abstract. We show that the model-checking problem for successor- invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topo- logical subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input for- mula and the width of the poset. Results of this form, i.e. showing that model-checking for a cer- tain logic is tractable on a certain class of structures, are often referred to as algorithmic meta-theorems since they give a unified proof for the tractability of a whole range of problems. First-order logic is arguably one of the most important logics in this context since it is powerful enough to express many computational prob- lems (e.g. the existence of cliques, dominating sets etc.) and yet its model-checking problem is tractable on rich classes of graphs. In fact, Grohe et al. [21] have shown that model-checking for FO is tractable on all nowhere dense classes of graphs. Successor-invariant FO is a semantic extension of FO by allow- ing the use of an additional binary relation which is interpreted as a directed Hamiltonian cycle, restricted to formulae whose truth value does not depend on the specific choice of a Hamiltonian cy- cle. While this is very natural in the context of model-checking (after all, storing a structure in computer memory usually brings with it a linear order on the structure), the question of how the computational complexity of the model-checking problem for this arXiv:1605.01198v1 [cs.LO] 4 May 2016 richer logic compares to that of plain FO is still open.
    [Show full text]
  • Proposal for a Joint Special Session at the AMS-ASL Meeting of 2009, January 5-8, 2009, Washington, D.C
    Proposal for a Joint Special Session at the AMS-ASL Meeting of 2009, January 5-8, 2009, Washington, D.C. Approved by the ASL, still needs approval of the AMS. Model Theoretic Methods in Finite Combinatorics Organizers: • Martin Grohe Institut fur¨ Informatik, Humboldt-Universit¨at zu Berlin Berlin, Germany homepage: www2.informatik.hu-berlin.de/∼grohe/ e-mail: [email protected] • Johann A. Makowsky (corresponding organizer) Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel homepage: www.cs.technion.ac.il/∼janos e-mail: [email protected] Purpose of the special session We want to bring the various aspects of the interaction between Model Theory and Finite Combinatorics to a wider audience. Altough the work on 0-1 laws is by now widely known, the other applications on counting functions, graph polynomials, extremal combinatorics, graph minors and regularity lemmas, have not yet received their deserved attention. Background In the last twenty years several applications of Logic, in particular Model theory, to problems in Combinatorics emerged. Among them we have • 0-1 laws and their variations. This is well summarized in the book by J. Spencer [Spe01]. • Modular linear recurrence relations for combinatorial counting functions (The Specker-Blatter Theorem) This theorem has remained widely unnoticed, and deserves wider attention and further study [Spe88, Fis03, FM03] • Recent progress in undertanding the ultimate periodicity of finite spectra by Y. Gurevich and S. Shelah, and E. Fischer and J.A. Makowsky [FM04]. • Applications of meta-theorems which apply to whole families of combina- torial problems, instead of just specific problems.
    [Show full text]
  • Lecture Notes in Computer Science 4800 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
    Lecture Notes in Computer Science 4800 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Arnon Avron Nachum Dershowitz Alexander Rabinovich (Eds.) Pillars of Computer Science Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday 13 Volume Editors Arnon Avron Nachum Dershowitz Alexander Rabinovich Tel Aviv University School of Computer Science Ramat Aviv, Tel Aviv, 69978 Israel E-mail: {aa; nachumd; rabinoa}@post.tau.ac.il Library of Congress Control Number: 2008920893 CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, F.3, D.2.4, D.2-3, I.2.2 LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues ISSN 0302-9743 ISBN-10 3-540-78126-9 Springer Berlin Heidelberg New York ISBN-13 978-3-540-78126-4 Springer Berlin Heidelberg New York This work is subject to copyright.
    [Show full text]
  • Lecture Notes in Computer Science 4800 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
    Lecture Notes in Computer Science 4800 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Arnon Avron Nachum Dershowitz Alexander Rabinovich (Eds.) Pillars of Computer Science Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday 13 Volume Editors Arnon Avron Nachum Dershowitz Alexander Rabinovich Tel Aviv University School of Computer Science Ramat Aviv, Tel Aviv, 69978 Israel E-mail: {aa; nachumd; rabinoa}@post.tau.ac.il Library of Congress Control Number: 2008920893 CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, F.3, D.2.4, D.2-3, I.2.2 LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues ISSN 0302-9743 ISBN-10 3-540-78126-9 Springer Berlin Heidelberg New York ISBN-13 978-3-540-78126-4 Springer Berlin Heidelberg New York This work is subject to copyright.
    [Show full text]
  • Logical Approaches to Barriers in Computing and Complexity
    Arnold Beckmann Christine Gaßner Benedikt L¨owe (Eds.) Logical Approaches to Barriers in Computing and Complexity International Workshop, Greifswald, Germany, February 2010 Organized by the Alfried Krupp Wissenschaftskolleg Greifswald under the auspices of the Deutsche Vereinigung f¨urMathematische Logik und f¨ur Grundlagen der Exakten Wissenschaften (DVMLG), the Polskie Towarzystwo Logiki i Filozofii Nauki (PTLiFN), the Association for Computability in Europe (ACiE) and the European Association for Computer Science Logic (EACSL) Abstract Booklet Funded by the Alfried Krupp von Bohlen und Halbach-Stiftung, Essen and the Deutsche Forschungsgemeinschaft, Bonn Preface This booklet contains the extended abstracts of talks presented at the workshop on Logical Approaches to Barriers in Computing and Complexity, held on February 17{20, 2010, in Greifswald, Germany. The workshop was initiated by the Deutsche Vereinigung f¨urMathematische Logik und f¨urGrundlagen der Exakten Wissenschaften (DVMLG), the Polskie Towarzystwo Logiki i Filozofii Nauki (PTLiFN), the Association for Computability in Europe (ACiE) and the European Association for Computer Science Logic (EACSL) and organized under the auspices of these four learn`edsocieties. The workshop was funded by the Alfried Krupp von Bohlen und Halbach-Stiftung, Essen and the Deutsche Forschungsgemeinschaft, Bonn, and it was run by and held at the Alfried Krupp Wissenschaftskolleg in Greifswald, Germany. Scientific Scope. Computability theory and complexity theory have their origins in logic, with connec- tions to foundations of mathematics. The fundamental goal in these areas is to understand the limits of computability (that is analysing which problems can be solved on nowadays and future computers in principle) and effective computability (that is understanding the class of problems which can be solved quickly and with restricted resources.) Logic provides a multifarious toolbox of techniques to analyse questions like this, some of which promise to provide a deep insight in the structure of limit of compu- tation.
    [Show full text]