On Computational Tractability for Rational Verification

Total Page:16

File Type:pdf, Size:1020Kb

On Computational Tractability for Rational Verification Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) On Computational Tractability for Rational Verification Julian Gutierrez1 , Muhammad Najib1 , Giuseppe Perelli2 , Michael Wooldridge1 1Department of Computer Science, University of Oxford, UK 2Department of Informatics, University of Leicester, UK fjulian.gutierrez, mnajib, michael.wooldridgeg@cs.ox.ac.uk, giuseppe.perelli@leicester.ac.uk Abstract theoretic (e.g., Nash) equilibrium. Unlike model checking, rational verification is still in its infancy: the main ideas, Rational verification involves checking which formal models, and reasoning techniques underlying rational temporal logic properties hold of a concur- verification are under development, while current tool sup- rent/multiagent system, under the assumption that port is limited and cannot yet handle systems of industrial agents in the system choose strategies in game the- size [Toumi et al., 2015; Gutierrez et al., 2018a]. oretic equilibrium. Rational verification can be un- derstood as a counterpart of model checking for One key difficulty is that rational verification is computa- multiagent systems, but while model checking can tionally much harder than model checking, because checking be done in polynomial time for some temporal logic equilibrium properties requires quantifying over the strategies specification languages such as CTL, and polyno- available to players in the system. Rational verification is also mial space with LTL specifications, rational ver- different from model checking in the kinds of properties that ification is much more intractable: 2EXPTIME- each technique tries to check: while model checking is inter- any complete with LTL specifications, even when using ested in correctness with respect to possible behaviour of explicit-state system representations. In this paper a system, rational verification is interested only in behaviours sustained by a Nash equilibrium we show that the complexity of rational verification that can be , when a multia- can be greatly reduced by restricting specifications gent system is modelled as a multi-player game. This, in par- to GR(1), a fragment of LTL that can represent ticular, adds a new ingredient to the verification problem, as it preferences most response properties of reactive systems. We is now necessary to take into account the of play- also provide improved complexity results for ra- ers with respect to the possible runs of the system. Typically, tional verification when considering players’ goals in rational verification, such preferences are given by associ- LTL γ i given by mean-payoff utility functions—arguably ating an goal i with each player in the game. In this ' the most widely used quantitative objective for case, rational verification with respect to a specification is EXPTIME agents in concurrent and multiagent systems. In 2 -complete, regardless of whether the representa- [ et al. particular, we show that for a number of relevant tion of the system is given succinctly Gutierrez , 2017a; et al. ] settings, rational verification can be done in poly- Gutierrez , 2015b or explicitly simply as a finite-state [ et al. ] nomial space or even in polynomial time. labelled transition graph Gutierrez , 2015a . In this paper, we address this issue and provide complex- ity results that greatly improve on the 2EXPTIME-complete 1 Introduction result of the general case. In particular, we consider games The formal verification of systems using temporal logics such where the goals of players are represented as either GR(1) as LTL and CTL [Emerson, 1990] is a major research area, formulae (an important fragment of LTL that can express which has led to the development of an impressive number most response properties of a concurrent and reactive sys- of industrial-strength verification tools and techniques. Ar- tem [Bloem et al., 2012]), or mean-payoff utility functions guably the most successful technique within formal verifica- (one of the most studied reward and quality measures used tion is model checking, which can be done in polynomial in games for automated formal verification). In each case, space for LTL specifications and even in polynomial time we study the rational verification problem for system spec- for CTL specifications [Clarke et al., 2018]. In the con- ifications ' given as GR(1) formulae and as LTL formulae, text of multiagent systems, rational verification forms a nat- with respect to system models that are formally represented ural counterpart of model checking [Gutierrez et al., 2015b; as concurrent game structures [Alur et al., 2002]. Wooldridge et al., 2016; Gutierrez et al., 2017a]. This is the Our main results, summarised in Table 1, show that in the problem of checking whether a given property ', expressed cases above mentioned, the 2EXPTIME result can be dramat- as a temporal logic formula, is satisfied in a computation of ically improved, to settings where rational verification can be a system that might be generated if agents within the sys- solved in polynomial space, NP, or even in polynomial time tem choose strategies for selecting actions that form a game- if the number of players in the game is assumed to be fixed. 329 Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) Players’ goals Specification E-NASH LTL LTL 2EXPTIME-complete GR(1) LTL PSPACE-complete (Corollary 1) GR(1) GR(1) FPT (Theorem 3) mp LTL PSPACE-complete (Corollary 2) mp GR(1) NP-complete (Theorem 5) Table 1: Summary of main complexity results. Related Work: If (α; 0) j= ', we write α j= ' and say that α satisfies '. Rational verification has been studied for a number of set- General Reactivity of rank 1. The language of General Re- tings, including iterated Boolean games, reactive modules activity of rank 1, denoted GR(1), is the fragment of LTL of games, and concurrent game structures [Gutierrez et al., formulae written in the following form [Bloem et al., 2012]: 2015b; Gutierrez et al., 2017a; Gutierrez et al., 2015a; Gutier- (GF ^ ::: ^ GF ) ! (GF' ^ ::: ^ GF' ), rez et al., 2017b]. In all cases, the problem is 2EXPTIME- 1 m 1 n complete. Rational verification is also closely related to ra- where each subformula i and 'i is a Boolean combination tional synthesis, which is also 2EXPTIME-complete both in of atomic propositions. the Boolean case [Fisman et al., 2010] and with rational en- Mean-Payoff value. For an infinite sequence β 2 R! of real vironments [Kupferman et al., 2016]. All of the above cases numbers, let mp(β) be the mean-payoff value of β, that is, only consider perfect information. In settings with imperfect information, the problem has been shown to be undecidable mp(β) = lim inf avgn(β) n!1 both for games with succinct and explicit model representa- N 1 Pn−1 tions [Gutierrez et al., 2018b; Filiot et al., 2018]. where, for n 2 , we define avgn(β) = n j=0 βj. Our work also relates to LTL and mean-payoff (mp) games Arenas. An arena is a tuple at large. While the former are already 2EXPTIME-complete even for two-player games (and in fact already 2EXPTIME- A =hN; Ac; St; s0; tr; λi hard for many LTL fragments [Alur and La Torre, 2004]), where N, Ac, and St are finite non-empty sets of players the latter are NP-complete for multi-player games [Ummels N = jNj actions states s 2 St ] (write ), , and , respectively; 0 and Wojtczak, 2011 and in NP \ coNP for two-player ~ games [Zwick and Paterson, 1996], and in fact solvable in is the initial state; tr : St × Ac ! St is a transition function quasipolynomial time since they can be reduced to two-player mapping each pair consisting of a state s 2 St and an action N perfect-information parity games [Calude et al., 2017]. profile ~a 2 Ac~ = Ac , one for each player, to a successor state; and λ : St ! 2AP is a labelling function, mapping every state to a subset of atomic propositions. 2 Preliminaries We sometimes call an action profile ~a = (a1;:::; an) 2 ~ Linear Temporal Logic. LTL extends propositional logic Ac a decision, and denote ai the action taken by player i. We with two operators, X (“next”) and U (“until”), for express- also consider partial decisions. For a set of players C ⊆ N ing properties of paths [Pnueli, 1977; Emerson, 1990]. The and action profile ~a, we let ~aC and ~a−C be two tuples of syntax of LTL is defined with respect to a set AP of atomic actions, respectively, one for all players in C and one for all propositions as follows: players in NnC. We also write ~ai for ~afig and ~a−i for ~aNnfig. 0 0 For two decisions ~a and ~a , we write (~aC ;~a−C ) to denote the ' ::= > j p j :' j ' _ ' j X' j ' U ' decision where the actions for players in C are taken from ~a and the actions for players in N n C are taken from ~a0. where p 2 AP. As usual, we define '1^'2 ≡ :(:'1_:'2), A path π = (s ;~a0); (s ;~a1) ··· is an infinite sequence in F U G F 0 1 '1 ! '2 ≡ :'1 _ '2, ' ≡ > ', and ' ≡ : :'. We ~ ! k interpret LTL formulae with respect to pairs (α; t), where α 2 (St × Ac) such that tr(sk;~a ) = sk+1 for all k. Paths are (2AP)! is an infinite sequence of sets of atomic proposition generated in the arena by each player i selecting a strategy σi that indicates which propositional variables are true in every that will define how to make choices over time. We model N strategies as finite state machines with output. Formally, for time point and t 2 is a temporal index into α. Formally, 0 the semantics of LTL is given by the following rules: arena A, a strategy σi = (Qi; qi ; δi; τi) for player i is a finite state machine with output (a transducer), where Qi is a finite 0 (α; t) j= > and non-empty set of internal states, qi is the initial state, (α; t) j= p iff p 2 αt δi : Qi × Ac~ ! Qi is a deterministic internal transition (α; t) j= :' iff it is not the case that (α; t) j= ' function, and τi : Qi ! Aci an action function, Aci ⊆ Ac (α; t) j= ' _ iff (α; t) j= ' or (α; t) j= for all i 2 N.
Recommended publications
  • Computational Learning Theory: New Models and Algorithms
    Computational Learning Theory: New Models and Algorithms by Robert Hal Sloan S.M. EECS, Massachusetts Institute of Technology (1986) B.S. Mathematics, Yale University (1983) Submitted to the Department- of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1989 @ Robert Hal Sloan, 1989. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Electrical Engineering and Computer Science May 23, 1989 Certified by Ronald L. Rivest Professor of Computer Science Thesis Supervisor Accepted by Arthur C. Smith Chairman, Departmental Committee on Graduate Students Abstract In the past several years, there has been a surge of interest in computational learning theory-the formal (as opposed to empirical) study of learning algorithms. One major cause for this interest was the model of probably approximately correct learning, or pac learning, introduced by Valiant in 1984. This thesis begins by presenting a new learning algorithm for a particular problem within that model: learning submodules of the free Z-module Zk. We prove that this algorithm achieves probable approximate correctness, and indeed, that it is within a log log factor of optimal in a related, but more stringent model of learning, on-line mistake bounded learning. We then proceed to examine the influence of noisy data on pac learning algorithms in general. Previously it has been shown that it is possible to tolerate large amounts of random classification noise, but only a very small amount of a very malicious sort of noise.
    [Show full text]
  • Downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All Use Subject to JSTOR Terms and Conditions 660 REVIEWS
    Association for Symbolic Logic http://www.jstor.org/stable/2274542 . Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic. http://www.jstor.org This content downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All use subject to JSTOR Terms and Conditions 660 REVIEWS The penultimate chapter, Real machines, is the major exposition on Al techniques and programs found in this book. It is here that heuristic search is discussed and classic programs such as SHRDLU and GPS are described. It is here that a sampling of Al material and its flavor as research is presented. Some of the material here is repeated without real analysis. For example, the author repeats the standard textbook mistake on the size of the chess space. On page 178, he states that 10120 is the size of this space, and uses this to suggest that no computer will ever play perfect chess. Actually, an estimate of 1040 is more realistic. If one considers that no chess board can have more than sixteen pieces of each color and there are many configurations that are illegal or equivalent, then the state space is reduced considerably.
    [Show full text]
  • Logics for Concurrency
    Lecture Notes in Computer Science 1043 Edited by G. Goos, J. Hartmanis and J. van Leeuwen Advisory Board: W. Brauer D. Gries J. Stoer Faron Moiler Graham Birtwistle (Eds.) Logics for Concurrency Structure versus Automata ~ Springer Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornetl University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Faron Moller Department ofTeleinformatics, Kungl Tekniska H6gskolan Electrum 204, S-164 40 Kista, Sweden Graham Birtwistle School of Computer Studies, University of Leeds Woodhouse Road, Leeds LS2 9JT, United Kingdom Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Logics for concurrency : structure versus automata / Faron Moller; Graham Birtwistle (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo Springer, 1996 (Lecture notes in computer science ; Voi. 1043) ISBN 3-540-60915-6 NE: Moiler, Faron [Hrsg.]; GT CR Subject Classification (1991): F.3, F.4, El, F.2 ISBN 3-540-60915-6 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg 1996 Printed in Germany Typesetting: Camera-ready by author SPIN 10512588 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper Preface This volume is a result of the VIII TH BANFF HIGHER ORDER WORKSHOP held from August 27th to September 3rd, 1994, at the Banff Centre in Banff, Canada.
    [Show full text]
  • Conversational Concurrency Copyright © 2017 Tony Garnock-Jones
    CONVERSATIONALCONCURRENCY tony garnock-jones Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Computer and Information Science Northeastern University 2017 Tony Garnock-Jones Conversational Concurrency Copyright © 2017 Tony Garnock-Jones This document was typeset on December 31, 2017 at 9:22 using the typographical look-and-feel classicthesis developed by André Miede, available at https://bitbucket.org/amiede/classicthesis/ Abstract Concurrent computations resemble conversations. In a conversation, participants direct ut- terances at others and, as the conversation evolves, exploit the known common context to advance the conversation. Similarly, collaborating software components share knowledge with each other in order to make progress as a group towards a common goal. This dissertation studies concurrency from the perspective of cooperative knowledge-sharing, taking the conversational exchange of knowledge as a central concern in the design of concur- rent programming languages. In doing so, it makes five contributions: 1. It develops the idea of a common dataspace as a medium for knowledge exchange among concurrent components, enabling a new approach to concurrent programming. While dataspaces loosely resemble both “fact spaces” from the world of Linda-style lan- guages and Erlang’s collaborative model, they significantly differ in many details. 2. It offers the first crisp formulation of cooperative, conversational knowledge-exchange as a mathematical model. 3. It describes two faithful implementations of the model for two quite different languages. 4. It proposes a completely novel suite of linguistic constructs for organizing the internal structure of individual actors in a conversational setting. The combination of dataspaces with these constructs is dubbed Syndicate.
    [Show full text]
  • Symposium on Principles of Database Systems Paris, France – June 14-16, 2004
    23ndACM SIGMOD-SIGACT- SIGART Symposium on Principles of Database Systems Paris, France – June 14-16, 2004 http://www.sciences.univ-nantes.fr/irin/SIGMODPODS04/ The symposium invites papers on fundamental aspects of data management. Original research papers on the theory, design, specification, or implementation of data management tools are solicited. Papers emphasizing new topics or foundations of emerging areas are especially welcome. The symposium will be held at the Maison de la Chimie, Paris, in conjunction with the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD’04). Suggested topics include the following (this list is not exhaustive and the order does not reflect priorities): Access Methods & Physical Design Databases & Workflows Real-time Databases Active Databases Deductive Databases & Knowledge Bases Security & Privacy Complexity & Performance Evaluation Distributed Databases Semistructured Data & XML Data Integration & Interoperability Information Processing on the Web Spatial & Temporal Databases Data Mining Logic in Databases Theory of recovery Data Models Multimedia Databases Transaction Management Data Stream Management Object-oriented Databases Views & Warehousing Database Programming Languages Query Languages Web Services & Electronic Commerce Databases & Information Retrieval Query Optimization XML Databases Important Dates: Paper abstracts due: December 1, 2003 (11:59pm PST) Full papers due: December 8, 2003 (11:59pm PST) Notification of acceptance/rejection: February 23, 2004 Camera-ready due: March 22, 2004
    [Show full text]
  • Self-Sorting SSD: Producing Sorted Data Inside Active Ssds
    Foreword This volume contains the papers presentedat the Third Israel Symposium on the Theory of Computing and Systems (ISTCS), held in Tel Aviv, Israel, on January 4-6, 1995. Fifty five papers were submitted in response to the Call for Papers, and twenty seven of them were selected for presentation. The selection was based on originality, quality and relevance to the field. The program committee is pleased with the overall quality of the acceptedpapers and, furthermore, feels that many of the papers not used were also of fine quality. The papers included in this proceedings are preliminary reports on recent research and it is expected that most of these papers will appear in a more complete and polished form in scientific journals. The proceedings also contains one invited paper by Pave1Pevzner and Michael Waterman. The program committee thanks our invited speakers,Robert J. Aumann, Wolfgang Paul, Abe Peled, and Avi Wigderson, for contributing their time and knowledge. We also wish to thank all who submitted papers for consideration, as well as the many colleagues who contributed to the evaluation of the submitted papers. The latter include: Noga Alon Alon Itai Eric Schenk Hagit Attiya Roni Kay Baruch Schieber Yossi Azar Evsey Kosman Assaf Schuster Ayal Bar-David Ami Litman Nir Shavit Reuven Bar-Yehuda Johan Makowsky Richard Statman Shai Ben-David Yishay Mansour Ray Strong Allan Borodin Alain Mayer Eli Upfal Dorit Dor Mike Molloy Moshe Vardi Alon Efrat Yoram Moses Orli Waarts Jack Feldman Dalit Naor Ed Wimmers Nissim Francez Seffl Naor Shmuel Zaks Nita Goyal Noam Nisan Uri Zwick Vassos Hadzilacos Yuri Rabinovich Johan Hastad Giinter Rote The work of the program committee has been facilitated thanks to software developed by Rob Schapire and FOCS/STOC program chairs.
    [Show full text]
  • COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who Is Who in Computer Science Research
    COMP 516 COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who is Who in Computer Science Research Dominik Wojtczak Dominik Wojtczak Department of Computer Science University of Liverpool Department of Computer Science University of Liverpool 1 / 24 2 / 24 Prizes and Awards Alan M. Turing (1912-1954) Scientific achievement is often recognised by prizes and awards Conferences often give a best paper award, sometimes also a best “The father of modern computer science” student paper award In 1936 introduced Turing machines, as a thought Example: experiment about limits of mechanical computation ICALP Best Paper Prize (Track A, B, C) (Church-Turing thesis) For the best paper, as judged by the program committee Gives rise to the concept of Turing completeness and Professional organisations also give awards based on varying Turing reducibility criteria In 1939/40, Turing designed an electromechanical machine which Example: helped to break the german Enigma code British Computer Society Roger Needham Award His main contribution was an cryptanalytic machine which used Made annually for a distinguished research contribution in computer logic-based techniques science by a UK based researcher within ten years of their PhD In the 1950 paper ‘Computing machinery and intelligence’ Turing Arguably, the most prestigious award in Computer Science is the introduced an experiment, now called the Turing test A. M. Turing Award 2012 is the Alan Turing year! 3 / 24 4 / 24 Turing Award Turing Award Winners What contribution have the following people made? The A. M. Turing Award is given annually by the Association for Who among them has received the Turing Award? Computing Machinery to an individual selected for contributions of a technical nature made Frances E.
    [Show full text]
  • Adventures in Monotone Complexity and TFNP
    Adventures in Monotone Complexity and TFNP Mika Göös1 Institute for Advanced Study, Princeton, NJ, USA mika@ias.edu Pritish Kamath2 Massachusetts Institute of Technology, Cambridge, MA, USA pritish@mit.edu Robert Robere3 Simons Institute, Berkeley, CA, USA robere@cs.toronto.edu Dmitry Sokolov4 KTH Royal Institute of Technology, Stockholm, Sweden sokolov.dmt@gmail.com Abstract Separations: We introduce a monotone variant of Xor-Sat and show it has exponential mono- tone circuit complexity. Since Xor-Sat is in NC2, this improves qualitatively on the monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over R can be exponentially more powerful than over finite fields. These results can be interpreted as separating subclasses of TFNP in communication complexity. Characterizations: We show that the communication (resp. query) analogue of PPA (subclass of TFNP) captures span programs over F2 (resp. Nullstellensatz degree over F2). Previously, it was known that communication FP captures formulas (Karchmer–Wigderson, 1988) and that communication PLS captures circuits (Razborov, 1995). 2012 ACM Subject Classification Theory of computation → Communication complexity, The- ory of computation → Circuit complexity, Theory of computation → Proof complexity Keywords and phrases TFNP, Monotone Complexity, Communication Complexity, Proof Com- plexity Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.38 Related Version A full version of the paper is available at [24], https://eccc.weizmann.ac. il/report/2018/163/. Acknowledgements We thank Ankit Garg (who declined a co-authorship) for extensive discus- sions about monotone circuits. We also thank Thomas Watson and anonymous ITCS reviewers for comments. 1 Work done while at Harvard University; supported by the Michael O.
    [Show full text]
  • CRN Equal Access to Financial Aid and a Continued on Page 8 Best Practices Memo
    COMPUTING RESEARCH NEWS A Publication of the Computing Research Association September 2003 Vol. 15/No. 4 Guest Column Title IX and Women in Academics By Senator Ron Wyden in traditionally male-dominated the right thing to do; it is the smart fields such as the hard sciences, math thing to do. This fall the athletic fields of and engineering—disciplines where The numbers reveal a striking America’s elementary and secondary our nation needs competent workers inequity when it comes to gender schools, colleges and universities will now more than ever before. representation in the math, science resound with the voices of girls and We can all agree that fairness and technology fields. A National young women who choose to include implores us to create and enforce Science Foundation study found that sports as part and parcel of their equal opportunity for women in women accounted for only 23 per- educational experience. Those girls math, science and technology. That cent of physical scientists and 10 and young women will not only be is a compelling argument in itself, percent of engineers. The percent- taking physical exercise; they’ll be but it is not the only argument. A ages of women on faculties in these exercising their rights to equal report from the Hart-Rudman areas are even lower, with 14 percent Senator Ron Wyden opportunity under a law known as Commission on National Security to of science faculty members being Title IX. 2025 warned that America’s failure women and a mere 6 percent in Title IX states a simple principle.
    [Show full text]
  • CS256/Spring 2008 — Lecture #11 Zohar Manna
    CS256/Spring 2008 — Lecture #11 Zohar Manna 11-1 Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g., “p is true only (at most) at even positions.” Questions (foundational/practical): • What other languages can we use to express properties of sequences (⇒ properties of programs)? • How do their expressive powers compare? • How do their computational complexities (for the decision problems) compare? 11-2 ω-languages Σ: nonempty finite set (alphabet) of characters Σ∗: set of all finite strings of characters in Σ finite word w ∈ Σ∗ Σω: set of all infinite strings of characters in Σ ω-word w ∈ Σω (finitary) language: L ⊆ Σ∗ ω-language: L ⊆ Σω 11-3 States Propositional LTL (PLTL) formulas are constructed from the following: • propositions p1,p2,...,pn. • boolean/temporal operators. • a state s ∈{f, t}n i.e., every state s is a truth-value assignment to all n propositional variables. Example: If n = 3, then s : hp1 : t, p2 : f, p3 : ti corresponds to state tft. p1 ↔ p2 denotes the set of states {fff,fft,ttf,ttt} • alphabet Σ = {f, t}n i.e, 2n strings, one string for every state. Note: t, f = formulas (syntax) 11-4 t, f = truth values (semantics) Models of PLTL 7→ ω-languages • A model of PLTL for the language with n propositions σ : s0,s1,s2,... can be viewed as an infinite string s0s1s2 . , i.e., σ ∈ ({f, t}n)ω • A PLTL formula ϕ denotes an ω-language n ω L = {σ | σ Õ ϕ} ⊆ ({f, t} ) Example: If n = 3, then ϕ : ¼ (p1 ↔ p2) denotes the ω-language L(ϕ) = {fff,fft,ttf,ttt}ω 11-5 Other Languages to Talk about Infinite Sequences • ω-regular expressions • ω-automata 11-6 Regular Expressions Syntax: ∗ r ::= ∅ | ε | a | r1r2 | r1 + r2 | r (ε = empty word, a ∈ Σ) Semantics: A regular expression r (on alphabet Σ) denotes a finitary language L(r) ⊆ Σ∗: L(∅) = ∅ L(ε) = {ε} L(a) = {a} L(r1r2) = L(r1) · L(r2) = {xy | x ∈ L(r1), y ∈ L(r2)} L(r1 + r2) = L(r1) ∪ L(r2) ∗ ∗ L(r ) = L(r) = {x1x2 · · · xn | n ≥ 0, x1, x2, .
    [Show full text]
  • 30Th International Symposium on Theoretical Aspects of Computer Science
    30th International Symposium on Theoretical Aspects of Computer Science STACS’13, February 27th to March 2nd, 2013, Kiel, Germany Edited by Natacha Portier Thomas Wilke LIPIcs – Vol. 20 – STACS’13 www.dagstuhl.de/lipics Editors Natacha Portier Thomas Wilke École Normale Supérieure de Lyon Christian-Albrechts-Universität zu Kiel Lyon Kiel natacha.portier@ens-lyon.fr wilke@ti.informatik.uni-kiel.de ACM Classification 1998 F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathematical Logic, F.4.3 Formal Languages, G.2.1 Combinatorics, G.2.2 Graph Theory ISBN 978-3-939897-50-7 Published online and open access by Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-50-7. Publication date February, 2013 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. License This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported license (CC-BY- ND 3.0): http://creativecommons.org/licenses/by-nd/3.0/legalcode. In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors’ moral rights: Attribution: The work must be attributed to its authors. No derivation: It is not allowed to alter or transform this work. The copyright is retained by the corresponding authors. Digital Object Identifier: 10.4230/LIPIcs.STACS.2013.i ISBN 978-3-939897-50-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics iii LIPIcs – Leibniz International Proceedings in Informatics LIPIcs is a series of high-quality conference proceedings across all fields in informatics.
    [Show full text]
  • Corel Ventura
    IJCAI-03 Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence Acapulco, Mexico August 9–15, 2003 Sponsored by the International Joint Conferences on Artificial Intelligence, Inc. (IJCAI) The American Association for Artificial Intelligence (AAAI) The Mexican Society for Artificial Intelligence (SMIA) In cooperation with the AI Communities from Argentina, Brazil, Chile, and Venezuela Copyright © 2003 International Joint Conferences on Artificial Intelligence, Inc. All rights reserved. Edited by Georg Gottlob and Toby Walsh Distributed by Morgan Kaufmann Publishers an imprint of Elsevier Science 500 Sansome Street, Suite 400 San Francisco, CA 941111 http://www.mkp.com Printed in the United States Design, composition, production, and manufacturing management by Professional Book Center, Denver, Colorado http://www.probook.com These proceedings are dedicated to the memory of Raymond Reiter (1939–2002), a distinguished scholar and pioneer, whose contributions have left an indelible mark on our field. His legacy to us is a very rich collection of ideas and results, with names like Closed-World Assumptions, Default Logic, Consistency-Based Diagnosis, Successor State Axioms, and Cognitive Robotics. Raymond Reiter served as IJCAI Program Chair in 1991 and received the IJCAI Research Excellence Award in 1993. We remember him as a brilliant scientist, a wonderful colleague, and a friend. The IJCAI Board of Trustees The IJCAI-03 Conference Committee BRIEF CONTENTS Ordering Information . iv Foreword . v IJCAI-03 Conference Organization . vi Corporate Sponsorship. vi Local Arrangements Committee . vii Program Committee . viii Poster Track Program Committee. ix IJCAI-03 Awards . ix Distinguished Papers . x Invited Speakers . x IJCAI Organization . xi AAAI Organization . xii IJCAI-03 Reviewers .
    [Show full text]