Eye Muscle Problems in Children and Adults: a Guide to Understanding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specific Eye Conditions with Corresponding Adaptations/Considerations
Specific Eye Conditions with Corresponding Adaptations/Considerations # Eye Condition Effect on Vision Adaptations/Considerations 1 Achromotopsia colors are seen as shades of grey, tinted lenses, reduced lighting, alternative nystagmus and photophobia improve techniques for teaching colors will be with age required 2 Albinism decreased visual acuity, photophobia, sunglasses, visor or cap with a brim, nystagmus, central scotomas, strabismus reduced depth perception, moving close to objects 3 Aniridia photophobia, field loss, vision may tinted lenses, sunglasses, visor or cap with fluctuate depending on lighting brim, dim lighting, extra time required to conditions and glare adapt to lighting changes 4 Aphakia reduced depth perception, inability to sunglasses, visor or cap with a brim may accommodate to lighting changes be worn indoors, extra time required to adapt to lighting changes 5 Cataracts poor color vision, photophobia, visual bright lighting may be a problem, low acuity fluctuates according to light lighting may be preferred, extra time required to adapt to lighting changes 6 Colobomas photophobia, nystagmus, field loss, sunglasses, visor or cap with a brim, reduced depth perception reduced depth perception, good contrast required 7 Color Blindness difficulty or inability to see colors and sunglasses, visor or cap with a brim, detail, photophobia, central field reduced depth perception, good contrast scotomas (spotty vision), normal required, low lighting may be preferred, peripheral fields alternative techniques for teaching colors -
Vision Screening Training
Vision Screening Training Child Health and Disability Prevention (CHDP) Program State of California CMS/CHDP Department of Health Care Services Revised 7/8/2013 Acknowledgements Vision Screening Training Workgroup – comprising Health Educators, Public Health Nurses, and CHDP Medical Consultants Dr. Selim Koseoglu, Pediatric Ophthalmologist Local CHDP Staff 2 Objectives By the end of the training, participants will be able to: Understand the basic anatomy of the eye and the pathway of vision Understand the importance of vision screening Recognize common vision disorders in children Identify the steps of vision screening Describe and implement the CHDP guidelines for referral and follow-up Properly document on the PM 160 vision screening results, referrals and follow-up 3 IMPORTANCE OF VISION SCREENING 4 Why Screen for Vision? Early diagnosis of: ◦ Refractive Errors (Nearsightedness, Farsightedness) ◦ Amblyopia (“lazy eye”) ◦ Strabismus (“crossed eyes”) Early intervention is the key to successful treatment 5 Why Screen for Vision? Vision problems often go undetected because: Young children may not realize they cannot see properly Many eye problems do not cause pain, therefore a child may not complain of discomfort Many eye problems may not be obvious, especially among young children The screening procedure may have been improperly performed 6 Screening vs. Diagnosis Screening Diagnosis 1. Identifies children at 1. Identifies the child’s risk for certain eye eye condition conditions or in need 2. Allows the eye of a professional -
Hereditary Reversion Pigmentation of the Eyelids with Heterochromia of the Iris
874 LEE MASTEN FRANCIS enucleated. The following report on the Other cells were round with hyper- specimen was submitted from the New chromatic nuclei; while scattered thruout York State Institute for the Study of the tumor were large deeply staining Malignant Diseases: cells with one or two nuclei but free from The gross appearance of a cross sec- pigment. There were apparently two tion of the eye shows a tumor lying in types of pigmented cells, the one a large the lower temporal quadrant of the eye, irregular cell with long protoplasmic evidently springing from the choroid processes densely filled with fine yellow- near the margin of the optic disc. This ish granules, evidently chromatophores. tumor measured 15x10 mm. and was The other type of pigmented cell was a slightly nodular irregular ovoid tumor. evidently a tumor cell of the type men- The surface appeared smooth, was dark tioned above but containing fewer gran- gray in color and was of a soft consist- ules than the chromatophores. Thruout ency. The retina was markedly detached the tumor were small areas of hemor- and contained a clear serous fluid. Cross rhage and between the cells could be section of the tumor mass showed a demonstrated here and there, free pig- deeply pigmented homogeneous surface. ment granules. Microscopically, the tumor varied as From this picture, we would make a to the cellular constituents. There were diagnosis of malignant melanoma, fre- areas showing many pigment cells and quently called melanosarcoma, but by other areas almost free from the same. some authorities considered as melanotic The tumor was very vascular showing many fine capillaries around which in carcinoma. -
Ophthalmological Findings in Children and Adolescents with Silver Russell
Ophthalmological findings in children and adolescents with Silver Russell Syndrome Marita Andersson Gronlund, Jovanna Dahlgren, Eva Aring, Maria Kraemer, Ann Hellstrom To cite this version: Marita Andersson Gronlund, Jovanna Dahlgren, Eva Aring, Maria Kraemer, Ann Hellstrom. Oph- thalmological findings in children and adolescents with Silver Russell Syndrome. British Journal of Ophthalmology, BMJ Publishing Group, 2010, 95 (5), pp.637. 10.1136/bjo.2010.184457. hal- 00588358 HAL Id: hal-00588358 https://hal.archives-ouvertes.fr/hal-00588358 Submitted on 23 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ophthalmological findings in children and adolescents with Silver Russell Syndrome M Andersson Grönlund, MD, PhD1, J Dahlgren, MD, PhD2, E Aring, CO, PhD1, M Kraemer, MD1, A Hellström, MD, PhD1 1Institute of Neuroscience and Physiology/Ophthalmology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. 2Institute for the Health of Women and Children, Gothenburg Paediatric Growth Research Centre (GP-GRC), The Sahlgrenska -
A Patient & Parent Guide to Strabismus Surgery
A Patient & Parent Guide to Strabismus Surgery By George R. Beauchamp, M.D. Paul R. Mitchell, M.D. Table of Contents: Part I: Background Information 1. Basic Anatomy and Functions of the Extra-ocular Muscles 2. What is Strabismus? 3. What Causes Strabismus? 4. What are the Signs and Symptoms of Strabismus? 5. Why is Strabismus Surgery Performed? Part II: Making a Decision 6. What are the Options in Strabismus Treatment? 7. The Preoperative Consultation 8. Choosing Your Surgeon 9. Risks, Benefits, Limitations and Alternatives to Surgery 10. How is Strabismus Surgery Performed? 11. Timing of Surgery Part III: What to Expect Around the Time of Surgery 12. Before Surgery 13. During Surgery 14. After Surgery 15. What are the Potential Complications? 16. Myths About Strabismus Surgery Part IV: Additional Matters to Consider 17. About Children and Strabismus Surgery 18. About Adults and Strabismus Surgery 19. Why if May be Important to a Person to Have Strabismus Surgery (and How Much) Part V: A Parent’s Perspective on Strabismus Surgery 20. My Son’s Diagnosis and Treatment 21. Growing Up with Strabismus 22. Increasing Signs that Surgery Was Needed 23. Making the Decision to Proceed with Surgery 24. Explaining Eye Surgery to My Son 25. After Surgery Appendix Part I: Background Information Chapter 1: Basic Anatomy and Actions of the Extra-ocular Muscles The muscles that move the eye are called the extra-ocular muscles. There are six of them on each eye. They work together in pairs—complementary (or yoke) muscles pulling the eyes in the same direction(s), and opposites (or antagonists) pulling the eyes in opposite directions. -
The Official Scientific Journal of the Delhi Ophthalmologycal Society DJO Vol
DJO Vol.20, No. 2, October-December 09 DJO Vol.20, No. 2, October-December 09 October-December 2, No. Vol.20, DJO The Official Scientific Journal of the Delhi Ophthalmologycal Society DJO Vol. 20, No. 2, October-December, 2009 Delhi Journal of Ophthalmology Editor Editorial Board Rohit Saxena Rajvardhan Azad Ramanjit Sihota Managing Editor Vimla Menon Divender Sood Rajesh Sinha Atul Kumar Rishi Mohan Ashok K Grover Namrata Sharma Editorial Committee Mahipal S Sachdev Tanuj Dada Parijat Chandra M.Vanathi Lalit Verma Rajinder K hanna Tushar Agarwal Prakash Chand Agarwal Sharad Lakhotia Harbans Lal Chandrashekhar Kumar Swati Phuljhele P V Chaddha Amit Khosla Shibal Bhartiya Reena Sharma Dinesh Talwar B Ghosh Munish Dhawan Twinkle Parmar K.P.S Malik Kirti Singh Harinder Sethi Varun Gogia Pradeep Sharma B P Guliani Raghav Gupta Sashwat Ray V P Gupta S P Garg Ashish Kakkar Saptrishi Majumdar S. Bharti Arun Baweja General Information Delhi Journal of Ophthalmology (DJO), once called Visiscan, is a quarterly journal brought out by the Delhi Opthalmological Society. The journal aims at providing a platform to its readers for free exchange of ideas and information in accordance with the rules laid out for such publication. The DJO aims to become an easily readable referenced journal which will provide the specialists with up to date data and the residents with articles providing expert opinions supported with references. Contribution Methodology Delhi Journal of Opthalmology (DJO) is a quarterly journal. Author/Authors must have made significant contribution in carrying out the work and it should be original. It should be accompanied by a letter of transmittal. -
Hyperopia Hyperopia
Hyperopia Hyperopia hyperopia hyperopia • Farsightedness, or hyperopia, • Farsightedness occurs if your eyeball is too as it is medically termed, is a short or the cornea has too little curvature, so vision condition in which distant objects are usually light entering your eye is not focused correctly. seen clearly, but close ones do • Its effect varies greatly, depending on the not come into proper focus. magnitude of hyperopia, the age of the individual, • Approximately 25% of the the status of the accommodative and general population is hyperopic (a person having hyperopia). convergence system, and the demands placed on the visual system. By Judith Lee and Gretchyn Bailey; reviewed by Dr. Vance Thompson; Flash illustration by Stephen Bagi 1. Cornea is too flap. hyperopia • In theory, hyperopia is the inability to focus and see the close objects clearly, but in practice many young hyperopics can compensate the weakness of their focusing ability by excessive use of the accommodation functions of their eyes. Hyperopia is a refractive error in • But older hyperopics are not as lucky as them. By which parallel rays of light aging, accommodation range diminishes and for 2. Axial is too short. entering the eye reach a focal older hyperopics seeing close objects becomes point behind the plane of the retina, while accommodation an impossible mission. is maintained in a state of relaxation. 1 Amplitude of Accommodation hyperopia Maximum Amplitude= 25-0.4(age) • An emmetropic eye for reading and other near Probable Amplitude= 18.5-.3(age) work, at distance of 16 in (40cm), the required amount of acc. -
Duane Retraction Syndrome
Med. J. Cairo Univ., Vol. 78, No. 1, June: 331-336, 2010 www.medicaljournalofcairouniversity.com Duane Retraction Syndrome KARIMA L. SHALABY, M.D.* and MOSTAFA BAHGAT, M.D.** The Pediatric Ophthalmology Section*, Tripoli Eye Hospital and the Department of Ophthalmology**, Faculty of Medicine, Cairo University. Abstract Electromyography studies have shown paradox- ical innervations of Lateral rectus muscle and Purpose of Study: To evaluate and to manage if manage- anomalous synergistic innervations of medial rec- ment indicated for cases of Duane retraction syndrome. tus, inferior rectus, superior rectus and oblique Patients and Methods: 15 Duane retraction syndrome muscles [7,8] . (DRS) patients seen in Pediatric clinic in Tripoli Eye Hospital in period from January 2006-December 2006. Complete In most cases of DRS the entire 6 th nerve atro- ophthalmic examination including ortho-optic assessment for phy instead of post half of 6 th nerve (without all cases. specific teratogenic stimulus) 95% of DRS cases Results: Patients age ranged 1 year to 20 years in this this is the only initial abnormality. In about 5% of group of study, females were affected more than males with cases other abnormalities seen (e.g. nerve deafness). 2 to 1 ratio. Type 1 (esotropic) is the most common 80% of cases. Left eye was affected more than right eye. Bilateral in Most cases of DRS are sporadic [5,9] . 13.3% of cases. DRS clinical picture varies widely, surgical intervention will not eliminate the abnormality but will lessen Etiology: it. Two cases were operated upon to improve alignment in Etiology of DRS has been proposed by several primary position. -
Surgical Options in Managing Convergent Strabismus Fixus Related to High Myopia
Ophthalmol Ina 2015;41(2):107-115 107 Case Report Surgical Options in Managing Convergent Strabismus Fixus Related to High Myopia Jessica Zarwan, Gusti G Suardana, Anna P Bani Department of Ophthalmology, Faculty of Medicine, Indonesia University Cipto Mangunkusumo Hospital, Jakarta ABSTRACT Background: Convergent strabismus fixus is a condition in which one or both eyes are anchored in extreme adduction. This condition is caused by superotemporal herniation of the enlarged globe from the muscle cone through the space between the superior and lateral rectus muscle. It is commonly related to high myopia. Recently, transposition type procedure which unite the superior and lateral rectus muscles were proposed as the treatment of choice in this condition. However, there is no clear consensus regarding the best surgical procedure in convergent strabismus fixus. This case series reported three rare cases of convergent strabismus fixus related to high myopia and highlight the option of surgical procedure that can be done in these cases. Case Illustration: Three patients presented with convergent strabismus fixus of both eyes with history of bilateral high myopia since childhood. All patients showed Krimsky tests of >95∆ET preoperatively, with medial displacement of superior rectus and inferior displacement of lateral rectus of both eyes in all patients on orbital imaging. The bilateral Yokoma procedure both resulted in an orthophoric postoperative result with marked improvement in abduction and elevation. The hemi-Jensen also showed a significant improvement of over than 60∆ on the operated eye, resorting it to a central position during primary gaze. Conclusion: Convergent strabismus fixus is a rare condition and frequently associated with high myopia. -
Blue Light and Your Eyes
Blue Light and Your Eyes What is blue light? 211 West Wacker Drive, Suite 1700 Sunlight is made up of red, orange, yellow, green, blue, indigo and Chicago, Illinois 60606 violet light. When combined, it becomes the white light we see. 800.331.2020 Each of these has a different energy and wavelength. Rays on the PreventBlindness.org red end have longer wavelengths and less energy. On the other end, blue rays have shorter wavelengths and more energy. Light that looks white can have a large blue component, which can expose the eye to a higher amount of wavelength from the blue end of the spectrum. Where are you exposed to blue light? The largest source of blue light is sunlight. In addition, there are many other sources: • Fluorescent light • CFL (compact fluorescent light) bulbs • LED light • Flat screen LED televisions • Computer monitors, smart phones, and tablet screens Blue light exposure you receive from screens is small compared to the amount of exposure from the sun. And yet, there is concern over the long-term effects of screen exposure because of the close proximity of the screens and the length of time spent looking at them. According to a recent NEI-funded study, children’s eyes absorb more blue light than adults from digital device screens. This publication is copyrighted. This sheet may be reproduced—unaltered in hard print (photocopied) for educational purposes only. The Prevent Blindness name, logo, telephone number and copyright information may not be omitted. Electronic reproduction, other reprint, excerption or use is not permitted without written consent. -
Updates on Myopia
Updates on Myopia A Clinical Perspective Marcus Ang Tien Y. Wong Editors Updates on Myopia Marcus Ang • Tien Y. Wong Editors Updates on Myopia A Clinical Perspective Editors Marcus Ang Tien Y. Wong Singapore National Eye Center Singapore National Eye Center Duke-NUS Medical School Duke-NUS Medical School National University of Singapore National University of Singapore Singapore Singapore This book is an open access publication. ISBN 978-981-13-8490-5 ISBN 978-981-13-8491-2 (eBook) https://doi.org/10.1007/978-981-13-8491-2 © The Editor(s) (if applicable) and The Author(s) 2020, corrected publication 2020 Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifc statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Approved and Unapproved Abbreviations and Symbols For
Facility: Illinois College of Optometry and Illinois Eye Institute Policy: Approved And Unapproved Abbreviations and Symbols for Medical Records Manual: Information Management Effective: January 1999 Revised: March 2009 (M.Butz) Review Dates: March 2003 (V.Conrad) March 2008 (M.Butz) APPROVED AND UNAPPROVED ABBREVIATIONS AND SYMBOLS FOR MEDICAL RECORDS PURPOSE: To establish a database of acceptable ocular and medical abbreviations for patient medical records. To list the abbreviations that are NOT approved for use in patient medical records. POLICY: Following is the list of abbreviations that are NOT approved – never to be used – for use in patient medical records, all orders, and all medication-related documentation that is either hand-written (including free-text computer entry) or pre-printed: DO NOT USE POTENTIAL PROBLEM USE INSTEAD U (unit) Mistaken for “0” (zero), the Write “unit” number “4”, or “cc” IU (international unit) Mistaken for “IV” (intravenous) Write “international unit” or the number 10 (ten). Q.D., QD, q.d., qd (daily) Mistaken for each other Write “daily” Q.O.D., QOD, q.o.d., qod Period after the Q mistaken for Write (“every other day”) (every other day) “I” and the “O” mistaken for “I” Trailing zero (X.0 mg) ** Decimal point is missed. Write X mg Lack of leading zero (.X mg) Decimal point is missed. Write 0.X mg MS Can mean morphine sulfate or Write “morphine sulfate” or magnesium sulfate “magnesium sulfate” MSO4 and MgSO4 Confused for one another Write “morphine sulfate” or “magnesium sulfate” ** Exception: A trailing zero may be used only where required to demonstrate the level of precision of the value being reported, such as for laboratory results, imaging studies that report size of lesions, or catheter/tube sizes.