Abandoned Mine Lands Team Reference Notebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 8 Abandoned, Derelict Vehicles
Municipal Code – Village of Pingree Grove __________________________________________________________________________________ Title 7: Motor Vehicles and Traffic Chapter 8 – ABANDONED, DERELICT VEHICLES1 SECTIONS: 7-8-1: LEGISLATIVE FINDINGS AND DETERMINATIONS. 7-8-2: DEFINITIONS. 7-8-3: ABANDONMENT OF VEHICLE OR RETENTION OF DERELICT VEHICLE PROHIBITED. 7-8-4: PRESUMPTIONS. 7-8-5: REMOVAL OF VEHICLES; COSTS. 7-8-6: RECORDS OF TOWS. 7-8-7: RECORDS SEARCHES FOR OWNER. 7-8-8: RECLAMATION OF VEHICLE. 7-8-9: SALE OF VEHICLE. 7-8-10: OLDER VEHICLES. 7-8-11: ALTERNATE PROCEDURES. 7-8-12: RECORDS KEPT. 7-8-13: DISPOSITION OF PROCEEDS. 7-8-14: NONLIABILITY OF VILLAGE OR TOWING SERVICE. 7-8-1: LEGISLATIVE FINDINGS AND DETERMINATIONS: The village board members, in keeping with the policy of the Illinois general assembly, as found in section 5/4-301 of the Illinois vehicle code, finds and determines that: abandoned and derelict vehicles constitute a safety hazard and a public nuisance; are detrimental to the health, safety and welfare of the general public by harboring disease, providing breeding places for vermin, inviting plundering, creating fire hazards and presenting physical dangers to children and others; produce scenic blights which degrade the environment and adversely affect land values and the proper maintenance and continuing development of the state of Illinois and all of its subdivisions; represent a resource out of place and an energy loss to the Illinois economy and require state and local governmental attention, in conjunction with any federal governmental attention, in order to assure the expeditious removal and recycling of these abandoned and derelict vehicles. -
An Empirical Study on Laboratory Coke Oven-Based Coal Blending for Coking with Tar Residue, Chemical Engineering Transactions, 71, 385-390 DOI:10.3303/CET1871065 386
385 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 71, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Xiantang Zhang, Songrong Qian, Jianmin Xu Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-68-6; ISSN 2283-9216 DOI: 10.3303/CET1871065 An Empirical Study on Laboratory Coke Oven-based Coal Blending for Coking with Tar Residue Wenqiu Liu Hebei Energy College of Vocation and Technology, Tangshan 063004, China [email protected] Tar residue is the solid waste produced in coking plants or gas generators. Utilizing tar residue as additive in coal blending for coking is an effective approach for coal coking in our country, not only improving the yield and nature of coking products, but also realizing the recycling of tar residue. In this paper, tar residue is used as additive in coal blending for coking experiments, and combined with experiments on the crucible coke, small coke oven and industrial coke oven, the influences of the addition amount of tar residue on coke yield, coke reactivity and coke strength after reaction are further analyzed. As the experiment results reveal, compared to the experiment results of crucible coke and small coke ovens, the coke yield, coke reactivity and coke strength after reaction of industrial coke ovens are all bigger, leading to potential industrialization of coal blending for coking. Moreover, the influence of the amount of tar residue on the coal tar yield rate and gas yield is the same as that of coke reactivity and coke strength after reaction. 1. Introduction With the rapid development of economy, the fast growth of iron and steel industry has led China's coke industry to accomplish extraordinary achievements (Si et al., 2017). -
Raman Spectroscopy of Efflorescent
ASTROBIOLOGY Volume 13, Number 3, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.0908 Raman Spectroscopy of Efflorescent Sulfate Salts from Iron Mountain Mine Superfund Site, California Pablo Sobron1 and Charles N. Alpers2 Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage—Efflorescent sulfate minerals—Mars analogue—Iron Mountain—Laser Raman spectroscopy. Astro- biology 13, 270–278. 1. Introduction efflorescent sulfate minerals. This reconnaissance sampling resulted in characterization of the extremely acidic mine ron Mountain, California, is the host of massive sulfide waters (pH values from - 3.6 to + 0.5) and a variety of iron- Ideposits that were mined for copper, zinc, gold, silver, and sulfate efflorescent salts (Nordstrom and Alpers, 1999; pyrite (for sulfuric acid) between the early 1860s and the early Nordstrom et al., 2000). -
Coal Characteristics
CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal -
Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing by Joe Mellott
- 1 - Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing By Joe Mellott Coal tar remains a desired and strong source of technology within the roofing industry, as innovative coal tar products significantly reduce associated health hazards and environmental impact. To help you better understand the role that coal tar continues to play in the commercial roofing market, this article will explore: • The history of coal tar • Its associated hazards • Hot and cold coal tar adhesive technologies • Modified coal tar pitch membrane technologies • Coal tar’s sustainability attributes A Brief History of Coal Tar In order to understand what coal tar pitch is, it’s important to understand its origins and refinement methods. Coal tar can be refined from a number of sources including coal, wood, peat, petroleum, and other organic materials. The tar is removed by burning or heating the base substance and selectively distilling fractions of the burned chemical. Distillation involves heating the substance to a point where different fractions of the substance become volatile. The fractions are then collected by condensing the fraction at a specific temperature. A base substance can be split into any number of fractions through distillation. A good example of industrial distillation is the oil refining process. Through distillation, crude oil can be separated into fractions that include gasoline, jet fuel, motor oil bases, and other specialty chemicals. Fractionation or distillation is a tried-and-true method for breaking a substance into different parts of its composition. One of the first uses of coal tar was in the maritime industry. Trees stumps were burned and the tar fractions were collected through distillation of the tar. -
Iron Mountain Mine Superfund Site Long Term O&M Challenges
Iron Mountain Mine Superfund Site Long Term O&M Challenges August 12-14, 2014 James Sickles, U.S. EPA Region 9 National Conference on Mining-Influenced Waters: Approaches for Characterization, Source Control and Treatment Albuquerque,Long Term New O&M MexicoChallenges | 1 Iron Mountain Mine Site • Site Setting • Mining Impacts • Geologic Setting • Mining Chronology • Mining Processes • Site Remedial Components • O&M Challenges • Issues and the Future Long Term O&M Challenges | 2 Site Setting • Located 9 miles northwest of Redding, CA • Consists of more Iron Mountain Shasta Lake than a dozen sulfide mines Sacramento River • Covers approximately 4,400 acres, with over 2,500 feet of relief • Mines produced Spring Creek Reservoir silver, copper, zinc and pyrite Long Term O&M Challenges | 3 Mining Impacts • Fish kills in the Sacramento River • Open-air heap roasting and smelters stripped the land of vegetation for over 100 square miles along lower Spring Creek • Acid mine water seeping into the Sacramento River, created sediment deposits in Keswick Keswick Smelter Reservoir Operations 1895 - 1907 • Drinking water source for the city of Redding is the Sacramento River downstream Long Term O&M Challenges | 4 Mining Impacts • Mining influenced waters (MIW) with pH as low as -3.6 found in Richmond Mine workings • 10,000 pounds of iron, 650 pounds of copper, and 1,800 pounds of zinc were discharged per day prior to remediation • AMD entering Keswick Reservoir precipitated more than 200,000 cubic yards of metal rich sediment into the Spring Creek -
Highest Risk Abandoned, Lost and Discarded Fishing Gear
www.nature.com/scientificreports OPEN Highest risk abandoned, lost and discarded fshing gear Eric Gilman1*, Michael Musyl2, Petri Suuronen3, Milani Chaloupka4, Saeid Gorgin5, Jono Wilson1,6 & Brandon Kuczenski6 Derelict abandoned, lost and discarded fshing gear have profound adverse efects. We assessed gear-specifc relative risks from derelict gear to rank-order fshing methods based on: derelict gear production rates, gear quantity indicators of catch weight and fshing grounds area, and adverse consequences from derelict gear. The latter accounted for ghost fshing, transfer of microplastics and toxins into food webs, spread of invasive alien species and harmful microalgae, habitat degradation, obstruction of navigation and in-use fshing gear, and coastal socioeconomic impacts. Globally, mitigating highest risk derelict gear from gillnet, tuna purse seine with fsh aggregating devices, and bottom trawl fsheries achieves maximum conservation gains. Locally, adopting controls following a sequential mitigation hierarchy and implementing efective monitoring, surveillance and enforcement systems are needed to curb derelict gear from these most problematic fsheries. Primary and synthesis research are priorities to improve future risk assessments, produce the frst robust estimate of global derelict gear quantity, and assess the performance of initiatives to manage derelict gear. Findings from this frst quantitative estimate of gear-specifc relative risks from derelict gear guide the allocation of resources to achieve the largest improvements from mitigating adverse efects of derelict gear from the world’s 4.6 million fshing vessels. Over the past decade there has been increasing international recognition of the need for multilateral eforts to address transboundary adverse ecological and socioeconomic efects of abandoned, lost and discarded fshing gear (ALDFG), also called derelict fshing gear 1, 2. -
Spherical Graphite Produced by Waste Semi-Coke with Enhanced Properties As
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019 Spherical graphite produced by waste semi-coke with enhanced properties as anode material for Li-ion batteries Ming Shi, Zige Tai, Na Li, Kunyang Zou, Yuanzhen Chen, Junjie Sun, Yongning Liu* State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China *Corresponding author E-mail address: [email protected] Fax: +86 29 8266 3453; Tel: +86 29 8266 4602 Fig. 1 N2 absorption/desorption profiles of (a) pristine semi-coke (SC); (b) synthetic graphite without Si (PG); and (c) synthetic graphite with 10% Si at 2300 °C (SG). Table 1 The percentage of impurity of pristine SC and SG (10% Si at 2300 °C). Content percentage / wt % samples B Si Al Ca Fe K Na Mg SC <0.1 4.25 5.5 3.3 0.8 0.3 0.09 <0.1 SG <0.1 1.01 1.9 0.1 <0.1 0.02 0.03 <0.1 Table 2 The SG capacity values with that of similar materials published in the literature. Materials Specific Capacity Rate capability Cyclic retention Ref. [mA h g-1] [mA h g-1] Spherical graphite produced 347.06 at 0.05C 329.8 at 0.1C; 317.4 at 97.7% at 0.5C after This by waste semi-coke 0.5 C and 262.3 at 1C 700 cycles work Iron‐catalyzed graphitic 306 at 0.1C 150 at rate of 2C Over 90 % after 200 1 materials from biomass cycles Carbonaceous composites 312 at 0.2C 149 at 1 C; 78 at 5C - 2 prepared by the mixture of graphite, cokes, and petroleum pitch. -
LOST the Official Show Auction
LOST | The Auction 156 1-310-859-7701 Profiles in History | August 21 & 22, 2010 572. JACK’S COSTUME FROM THE EPISODE, “THERE’S NO 574. JACK’S COSTUME FROM PLACE LIKE HOME, PARTS 2 THE EPISODE, “EGGTOWN.” & 3.” Jack’s distressed beige Jack’s black leather jack- linen shirt and brown pants et, gray check-pattern worn in the episode, “There’s long-sleeve shirt and blue No Place Like Home, Parts 2 jeans worn in the episode, & 3.” Seen on the raft when “Eggtown.” $200 – $300 the Oceanic Six are rescued. $200 – $300 573. JACK’S SUIT FROM THE EPISODE, “THERE’S NO PLACE 575. JACK’S SEASON FOUR LIKE HOME, PART 1.” Jack’s COSTUME. Jack’s gray pants, black suit (jacket and pants), striped blue button down shirt white dress shirt and black and gray sport jacket worn in tie from the episode, “There’s Season Four. $200 – $300 No Place Like Home, Part 1.” $200 – $300 157 www.liveauctioneers.com LOST | The Auction 578. KATE’S COSTUME FROM THE EPISODE, “THERE’S NO PLACE LIKE HOME, PART 1.” Kate’s jeans and green but- ton down shirt worn at the press conference in the episode, “There’s No Place Like Home, Part 1.” $200 – $300 576. JACK’S SEASON FOUR DOCTOR’S COSTUME. Jack’s white lab coat embroidered “J. Shephard M.D.,” Yves St. Laurent suit (jacket and pants), white striped shirt, gray tie, black shoes and belt. Includes medical stetho- scope and pair of knee reflex hammers used by Jack Shephard throughout the series. -
NRT Abandoned Vessel Authorities and Best Practices Guidance 2020
ABANDONED VESSEL AUTHORITIES AND BEST PRACTICES GUIDANCE 2020 UPDATE VERSION 10 This page intentionally left blank ii ABANDONED VESSEL AUTHORITIES AND BEST PRACTICES GUIDANCE Table of Contents Executive Summary .................................................................................................................................... v Acknowledgements .................................................................................................................................... vi How to Use This Guidance ....................................................................................................................... vii Section 1.0 Definition of Terms .................................................................................................................. 1 Section 2.0 Background and Purpose ........................................................................................................ 5 2.1 Purpose ............................................................................................................................................. 5 2.2 Background ...................................................................................................................................... 5 2.3 Considerations and Assumptions ..................................................................................................... 6 Section 3.0 Initial Assessment .................................................................................................................... 7 3.1 Introduction ..................................................................................................................................... -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated `Omics' Technologies Permalink https://escholarship.org/uc/item/259113st Author Justice, Nicholas Bruce Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/259113st#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies By Nicholas Bruce Justice A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Mary Firestone Professor Mary Power Professor John Coates Fall 2013 Abstract Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies by Nicholas Bruce Justice Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Understanding how microorganisms contribute to nutrient transformations within their community is critical to prediction of overall ecosystem function, and thus is a major goal of microbial ecology. Communities of relatively tractable complexity provide a unique opportunity to study the distribution of metabolic characteristics amongst microorganisms and how those characteristics subscribe diverse ecological functions to co-occurring, and often closely related, species. The microbial communities present in the low-pH, metal-rich environment of the acid mine drainage (AMD) system in Richmond Mine at Iron Mountain, CA constitute a model microbial community due to their relatively low diversity and extensive characterization over the preceding fifteen years. -
CIA), Oct 1997-Jan 1999
Description of document: FOIA Request Log for the Central Intelligence Agency (CIA), Oct 1997-Jan 1999 Requested date: 2012 Released date: 2012 Posted date: 08-October-2018 Source of document: FOIA Request Information and Privacy Coordinator Central Intelligence Agency Washington, DC 20505 Fax: 703-613-3007 FOIA Records Request Online The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. 1998 Case Log Creation Date Case Number Case Subject 07-0ct-97 F-1997-02319 FOIA REQUEST VIETNAM CONFLICT ERA 1961 07-0ct-97 F-1997-02320 FOIA REQUEST PROFESSOR ZELLIG S. HARRIS FOIA REQUEST FOR MEETING MINUTES OF THE PUBLIC DISCLOSURE COORDINATING COMMITTEE 07-0ct-97 F-1997-02321 (PDCC) 07-0ct-97 F-1997-02322 FOIA REQUEST RE OSS REPORTS AND PAPERS BETWEEN ALLEN DULLES AND MARY BANCROFT 07-0ct-97 F-1997-02323 FOIA REQUEST CIA FOIA GUIDES AND INDEX TO CIA INFORMATION SYSTEMS 07-0ct-97 F-1997-02324 FOIA REQUEST FOR INFO ON SELF 07-0ct-97 F-1997-02325 FOIA REQUEST ON RAOUL WALLENBERG 07-0ct-97 F-1997-02326 FOIA REQUEST RE RAYMOND L.