The DAS December Swap Meet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
Mars Reconnaissance Orbiter
Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
2021 Transpacific Yacht Race Event Program
TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs . -
Mro High Resolution Imaging Science Experiment (Hirise)
Sixth International Conference on Mars (2003) 3287.pdf MROHIGHRESOLUTIONIMAGINGSCIENCEEXPERIMENT(HIRISE): INSTRUMENTDEVELOPMENT.AlanDelamere,IraBecker,JimBergstrom,JonBurkepile,Joe Day,DavidDorn,DennisGallagher,CharlieHamp,JeffreyLasco,BillMeiers,AndrewSievers,Scott StreetmanStevenTarr,MarkTommeraasen,PaulVolmer.BallAerospaceandTechnologyCorp.,PO Box1062,Boulder,CO80306 Focus Introduction:Theprimaryfunctionalre- Mechanism PrimaryMirror quirementoftheHiRISEimager,figure1isto PrimaryMirrorBaffle 2nd Fold allowidentificationofbothpredictedandun- Mirror knownfeaturesonthesurfaceofMarstoa muchfinerresolutionandcontrastthanprevi- ouslypossible[1],[2].Thisresultsinacam- 1st Fold erawithaverywideswathwidth,6kmat Mirror 300kmaltitude,andahighsignaltonoise ratio,>100:1.Generationofterrainmaps,30 Filters cmverticalresolution,fromstereoimages Focal requiresveryaccurategeometriccalibration. Plane Theprojectlimitationsofmass,costand schedulemakethedevelopmentchallenging. FocalPlane SecondaryMirror Inaddition,thespacecraftstability[3]must Electronics TertiaryMirror SecondaryMirrorBaffle notbeamajorlimitationtoimagequality. Thenominalorbitforthesciencephaseofthe missionisa3pmorbitof255by320kmwith Figure1Cameraopticalpathoptimizedforlowmass periapsislockedtothesouthpole.Thetrack Integration(TDI)tocreateveryhigh(100:1)signalnoise velocityisapproximately3,400m/s. ratioimages. HiRISEFeatures:TheHiRISEinstrumentperformance Theimagerdesignisanall-reflectivethreemirrorastig- goalsarelistedinTable1.Thedesignfeaturesa50cm matictelescopewithlight-weightedZeroduropticsanda -
CONSTELLATION BOÖTES, the HERDSMAN Boötes Is the Cultivator Or Ploughman Who Drives the Bears, Ursa Major and Ursa Minor Around the Pole Star Polaris
CONSTELLATION BOÖTES, THE HERDSMAN Boötes is the cultivator or Ploughman who drives the Bears, Ursa Major and Ursa Minor around the Pole Star Polaris. The bears, tied to the Polar Axis, are pulling a plough behind them, tilling the heavenly fields "in order that the rotations of the heavens should never cease". It is said that Boötes invented the plough to enable mankind to better till the ground and as such, perhaps, immortalizes the transition from a nomadic life to settled agriculture in the ancient world. This pleased Ceres, the Goddess of Agriculture, so much that she asked Jupiter to place Boötes amongst the stars as a token of gratitude. Boötes was first catalogued by the Greek astronomer Ptolemy in the 2nd century and is home to Arcturus, the third individual brightest star in the night sky, after Sirius in Canis Major and Canopus in Carina constellation. It is a constellation of large extent, stretching from Draco to Virgo, nearly 50° in declination, and 30° in right ascension, and contains 85 naked-eye stars according to Argelander. The constellation exhibits better than most constellations the character assigned to it. One can readily picture to one's self the figure of a Herdsman with upraised arm driving the Greater Bear before him. FACTS, LOCATION & MAP • The neighbouring constellations are Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo, and Ursa Major. • Boötes has 10 stars with known planets and does not contain any Messier objects. • The brightest star in the constellation is Arcturus, Alpha Boötis, which is also the third brightest star in the night sky. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
THE CASE of the HERBIG F STAR SAO 206462 (HD 135344B)A,B,C,D,E,F
The Astrophysical Journal, 699:1822–1842, 2009 July 10 doi:10.1088/0004-637X/699/2/1822 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REVEALING THE STRUCTURE OF A PRE-TRANSITIONAL DISK: THE CASE OF THE HERBIG F STAR SAO 206462 (HD 135344B)a,b,c,d,e,f C. A. Grady1,2,3, G. Schneider4,M.L.Sitko5,6,19, G. M. Williger7,8,9, K. Hamaguchi10,11,3, S. D. Brittain12, K. Ablordeppey6,D.Apai4, L. Beerman6, W. J. Carpenter6, K. A. Collins7,20, M. Fukagawa13,H.B.Hammel5,19, Th. Henning14,D.Hines5,R.Kimes6,D.K.Lynch15,19,F.Menard´ 16, R. Pearson15,19,R.W.Russell15,19, M. Silverstone1, P. S. Smith4, M. Troutman12,21,D.Wilner17, B. Woodgate18,3, and M. Clampin18 1 Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002, USA 2 ExoPlanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771, USA 3 Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD, USA 4 Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA 5 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA 6 Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011, USA 7 Department of Physics, University of Louisville, Louisville, KY 40292, USA 8 Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218-2686, USA 9 Department of Physics, The Catholic University of America, Washington, DC 20064, USA 10 CRESST, X-Ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 11 Department of Physics, University -
Astronomy Targets: September 2018 Unless Stated Otherwise, All Times Are for Mid-Month, for Birmingham UK and Are GMT+1
Astronomy targets: September 2018 Unless stated otherwise, all times are for mid-month, for Birmingham UK and are GMT+1. Rise & set times are for 20 degrees above horizon. Dark & light times are nautical twilight times (Sun 12 degrees below horizon) and astronomical darkness (Sun 18 degrees below horizon). © Andrew Butler, 2018. Sun and Moon data sourced from US Naval Observatory. Sun times Monday date Sunset Naut Astro Astro Naut Sunrise Moon Moon % Dark Dark Light Light 03/09/18 1951 2110 2158 0416 0504 0623 2353 → 40% 10/09/18 1935 2052 2137 0433 0518 0635 2% 17/09/18 1918 2033 2117 0448 0531 0647 ← 2346 60% 24/09/18 1902 2016 2057 0502 0544 0658 1916 → 100% Calendar 9 Sep New Moon 24 Sep Full Moon Planets Cygnus Sunset-0300, best 2210 Mars (low at Sunset) Emmission nebulae: Jupiter (low at Sunset) NGC6888 Crescent Nebula Saturn (low at Sunset) NGC6960 Veil Nebula Uranus (2230-Sunrise) IC5070 Pelican Nebula Neptune (2130-0330) IC7000 (C20) North American Nebula Planetary nebulae: Ursa Major Sunset-0150 IC5146 (C19) Cocoon Nebula Planetary nebula: M97 Owl Nebula NGC6826 Blinking Nebula Galaxies: NGC7008 Fetus Nebula M81 Bode’s Galaxy & M82 Cigar Galaxy Open clusters: M101 Pinwheel Galaxy M29 M108 M39 M109 NGC6871 Multiple star: Mizar & Alcor ζ-UMa (zeta-UMa) 3 white NGC6883 NGC6910 Rocking Horse Cluster Canes Venatici Sunset-2130 Galaxy: NGC6946 (C12) Fireworks Galaxy Globular cluster: M3 Multiple stars: Galaxies: Albireo β-Cyg (beta-Cyg) gold & blue M51 Whirlpool Galaxy 61-Cyg orange & red M63 Sunflower Galaxy M94 Delphinus Sunset-0240, -
Deep Sky Challenge
The Night Sky in January, 2018 Welcome to another year! Now we have turned the corner and the nights are drawing out more rapidly. On January 1st, the Sun will set at 16:01 but by January 31st it will be setting at 16:50! The Earth will be at perihelion on January 3rd when it will be at its closest to the Sun. It seems odd that the weather is at its coldest when the Earth is closest to the Sun, but this is because the tilt of the Earth’s axis has the biggest effect on the weather and, in winter, it is tilted away from the Sun. The start of this year is unusual since there will be three consecutive “supermoons”. A supermoon occurs when the Moon is particularly close to the Earth in its elliptical orbit. It is a full Moon which looks exceptionally large and beautiful. A supermoon occurred on December 3rd but the skies in the UK weren’t very clear. However, our friend Clive Manvell had the good fortune to be on a boat in the Pacific near the Solomon Islands at the time. He sent us the following image: Clive took this image with a Canon EOS 5D Mark IV camera, hand held in the dark on a boat. His camera settings were shutter speed 1/1000 sec, f/5.6, ISO 400 and the focal length of the lens was 400mm. He used a fast shutter speed because of the movement of the boat. You can tell that this image was taken in a different part of the world since the Moon’s features are in different positions from the way we see them. -
The Night Sky This Month
The Night Sky (June 2019) BST (Universal Time plus one hour) is used this month . The General Weather Pattern June is usually the driest month of the year. Inland, however, cumulous clouds can develop to great heights giving way to thunder storms which signal the end of a dry spell. Here in Wales a coastal fog can sometimes mar an evening. Temperatures are usually above 10 ºC at night, but always prepare for the worst. Should you be interested in obtaining a detailed weather forecast for observing in the Usk area, log on to https://www.meteoblue.com/en/weather/forecast/seeing/usk_united-kingdom_2635052 Other locations are available. Earth (E) The ecliptic is low throughout the night in June and the first half of July. Since the Moon and planets appear to closely follow this path, they will be found low in the night sky too, causing problems for observers combating astronomical twilight and the murk and disturbance of a thicker atmosphere at that elevation. Consequently, planets do not present themselves at their best at this time. However, if that is where they are situated we must make the best of it. In keeping with the equation of time the latest sunset is on the 25th June this year, and the earliest sunrise is on the 18th June. The summer solstice, when daylight lasts longest, is at 15:55 on the 21st June, and darkness is short-lived here in South Wales. Technically, astronomical twilight exists when the centre of the Sun is less than 18º below the horizon. Conditions apply as to the use of this matter. -
An Implementation Concept for the ASPIRE Mission
An Implementation Concept for the ASPIRE Mission. W. D. Deininger* ([email protected]), W. Purcell,* P. Atcheson,*G. Mills,* S. A Sandford,** R. P. Hanel,** M. McKelvey,** and R. McMurray** *Ball Aerospace & Technologies Corp. (BATC) P. O. Box 1062 Boulder, CO, USA 80306-1062 **NASA Ames Research Center Moffett Field, CA, USA 94035 Abstract—The Astrobiology Space Infrared Explorer complex and tied to the cyclic process whereby these (ASPIRE) is a Probe-class mission concept developed as elements are ejected into the diffuse interstellar medium part of NASA’s Astrophysics Strategic Mission Concept (ISM) by dying stars, gathered into dense clouds and studies. 1 2 ASPIRE uses infrared spectroscopy to explore formed into the next generation of stars and planetary the identity, abundance, and distribution of molecules, systems (Figure 1). Each stage in this cycle entails chemical particularly those of astrobiological importance throughout alteration of gas- and solid-state species by a diverse set of the Universe. ASPIRE’s observational program is focused astrophysical processes: hocks, stellar winds, radiation on investigating the evolution of ices and organics in all processing by photons and particles, gas-phase neutral and phases of the lifecycle of carbon in the universe, from ion chemistry, accretion, and grain surface reactions. These stellar birth through stellar death while also addressing the processes create new species, destroy old ones, cause role of silicates and gas-phase materials in interstellar isotopic enrichments, shuffle elements between chemical organic chemistry. ASPIRE achieves these goals using a compounds, and drive the universe to greater molecular Spitzer-derived, cryogenically-cooled, 1-m-class telescope complexity.