Effects of Compositional Variation on the Crystal Structures Of

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Compositional Variation on the Crystal Structures Of American Mineralogist, Volume 73, pages 798-808, 1988 Effects of compositionalvariation on the crystal structuresof pyroxmangite and rhodonite LrNoa R. hncxxny Corning GlassWorks, SullivanPark FR-51, Coming, New York 14831,U.S.A. Cn.q.RLrs W. BunNrr.qlr Department of Earth and Planetary Sciences,Harvard University, Cambridge,Massachusetts 02138, U.S.A. Ansrnlcr As adjacent members of the pyroxene-pyroxenoid polysomatic series, constructed of fragments of the wollastonite (W) and pyroxene (P) structures,pyroxmangite (WPP) and rhodonite (WP) possessvery similar structureswith comparablesite distortions and cation ordering patterns. The two structuresrespond quite similarly to cation substitutions. Oc- tahedral and tetrahedral distortions generally lessenand the silicate chains straighten as larger cations substitute for smaller. Both structures exhibit limited stepwiseordering of cations over the octahedral sites,with large cations preferentially entering the sites on the edgesof the octahedralbands. Detailed structural responsesto cation substitution generally parallel those observedin pyroxenes. The characteristics of the inner octahedral sites strongly influence several structural parameters,including the sizesand configurations ofthe outer polyhedra. There is, how- ever, no well-defined mean cation size limit that differentiatesrhodonite from pyroxman- gite from pyroxene. Structural parametersfor both rhodonite and pyroxmangite structures changesmoothly with composition and produce only minor structural adjustments.These adjustments,however, produce localized higher-energystructural configurationsthat clus- ter at the boundariesbetween the W and P modules of the structures.Such configurations include a strongly kinked tetrahedral chain, short Si-Si distances,and a highly distorted octahedron. In contrast, the P-P boundary in pyroxmangite is virtually distortion-free. Concentrationsof strain energyat W-P boundaries likely play a major role in controlling phasetransformations in this system. INrnooucrroN structed by appropriately stackingthese wollastonite (W) Pyroxenesand anhydrous pyroxenoids have the gen- and pyroxene (P) modules, thereby deriving wollastonite eral chemical formula MSiO3, where M most commonly (W), rhodonite (WP), pyroxmangite (WPP), ferrosilite III is Ca, Mg, Fe, and Mn. Their structuresconsist of single (WPPP), and pyroxene (P). The structures of rhodonite chains of silicate tetrahedra arrangedin layers parallel to (n: 5) and pyroxmangite (n : 7) areillustrated in Figure (100) that alternate with layers containing bands of di- l. Bustamite, another three-repeatpyroxenoid, is based valent cation octahedra;oxygen atoms are approximately on a different linkage ofoctahedral and tetrahedral layers closest packed (Prewitt and Peacor, 1964). The various and thereforeis not a member of this series.This concept structuresdiffer in the periodicity of the tetrahedralchain is discussed more fully by Koto et al. (1976) and by and in the correspondingarrangement of the octahedrally Thompson (1978). coordinated cations. In this manner they constitute a A number of workers have addressedthe observed structural seriesthat has been classifiedaccording to the temperature,pressure, and compositional stability limits number n of tetrahedrabetween ofsets that intemrpt py- that exist for each pyroxenoid structure (e.g., Akimoto roxene-likechain configurations(Liebau, 1962).Pyrox- andSyono, 19721'Ito,l972;MareschandMottana, l9T6; ene representsone end member of this structuralseries: Ohashi and Finger, 1978;Brown et al., 1980).Akimoto a pyroxenoid with no offsets(n: oo). and Syono (1972) determined that a pyroxenoid of When the entire structural configuration of octahedral MnSiO. composition undergoessuccessive polymorphic bands and tetrahedral chains is considered, these struc- transformations from rhodonite to pyroxmangite to cli- tures are seento constitute a polysomatic series,which is nopyroxene and ultimately to garnet-type structures as defined as a group of distinct structures constructed of pressureincreases at constanttemperature. A similar trend different numbers of slablike portions of end-member is observedwith respectto composition: As mean cation structures-in this case,of wollastonite and clinopyrox- size decreases,structures with increasing n predominate. ene. All members of the pyroxenoid seriesmay be con- These observations raise an intriguing question: Can 0003-004x/88/0708-0798$02.00 798 PINCKNEY AND BURNHAM: PYROXMANGITE AND RHODONITE 799 TreLe 1. Crystal-structurerefinements of pyroxmangiteand rhodonite Symbol Composition Samole source Reference Pyroxmangites CWB-P (Feo&Cao,3Mno@Mgoor)Sioo Apollo11 site. Burnham(1971) Roth-P (MnolsMgo6s)SiOg Synthetic-- D. Rothbard(unpub.) FH-P (Mno51Mgo€)Siog Synthetic" Fingerand Hazen(1978) ntro (Mno@FeooTMgo @Cao@)SiO3 Japant Ohashiand Finger(1975) AJ-P (Mnor?Mgoozoaool)SiOg Japantf Pinckneyand Burnham(1988) Nar-P MnSiO. Synthetic+ Naritaet al. (1977) Rhodonites FH-R (Mno6rMgo ss)SiO3 Synthetic.- Fingerand Hazen(1978) MT-R (Mno665Mgo 315)Si03 Synthetic.- Murakamiand Tak6uchi(1979) Peac-R (Mno75Mgo rscao 1o)SrO3 Balmat,NY$ Peacoret al. (1978) OF-R (Mnosr Feo oTMgo o6Cao ou)Siog Japanf Ohashiand Finger(1975) Nar-R MnSiO3 Syntheticf Naritaet al. (1977) ' Lunarmicrogabbro. " Synthesizedby J. lto. t Taguchimine: regionally metamorphosed manganese ore deposit. tt Aiiro mine:mineralized manganese ore lens in chert. + Synthesizedby Akimotoand Syono(1972). $ Metamorphosedsedimentary evaporite sequence. the phaserelationships be readily understood in terms of though this correlation was briefly examined by Mura- structural attributes identifiable in each phase?The sta- kami and Tak6uchi (1979), the exact nature ofthe rela- bility of micas, for example, is related to the geometric tionship has not been defined. Nor has there been any fit of the octahedral and tetrahedral sheets(Hazen and systematic study, similar to the plT oxene studies of Ohashi Wones, 1972, 1978); if the octahedral layer becomesso et al. (1975) and Ribbe and Prunier (1971), regardingthe large that normal tetrahedral rotations and polyhedral specific efects of compositional variation, temperature, distortions can no longer compensatefor it, then the sheet or pressureon these crystal structures. silicate will be renderedless stable relative to alternative This paper examinesthe effectsof compositional vari- structures.We might anticipate that there could be sim- ation on the crystal structuresof pyroxmangite and rho- ilar constraints inherent in the linkages ofthe octahedral donite, concentratingprimarily on Mn-Mg substitutions. bands and tetrahedral chains ofpyroxenoids. Becausethere is substantial compositional overlap be- tween the Mn-Mg pyroxmangite and rhodonite stability Pntvrous woRK fields along the MgSiOr-MnSiO, join, thesecompositions Although the chemical and structural relations among are particularly suitable for examining any developing the pyroxeneshave been studied intensively (e.g., Cam- structural instabilities. Accordingly, data from previous eron and Papike, l98l), analogousstudies for the pyrox- crystal-structure refinements of pyroxmangite and rho- enoids are relatively scarce. Ohashi and Finger (1975) compared the structures of pyroxmangite and rhodonite and noted the close topologic and configurational corre- spondencebetween certain cation polyhedra in the two structures.Ohashi and Finger (1978) studied the role of the octahedral cations in the crystal chemistry of the three- tetrahedral repeat hydrous and anhydrous pyroxenoids and demonstrated that the different stacking configura- tions oftetrahedral and octahedral layers determine the resulting cation-ordering patterns and limit the extent of solid solution. Very little has been written, however, concerning the relationship between bulk composition and structural stability of the intermediate pyroxenoids. Liebau (1962) noted that the chain configuration in pyroxenoids is ap- parently a function ofthe averagesize ofthe octahedrally coordinated cations. More specifically,based on the ob- servation (e.g., Freed and Peacor, 1967) that pyroxene stability dependson the relative size of the Ml octahe- Rhodonite Pyroxmongite dron, Tak6uchi (1977) suggestedthat the sizesof the cat- Fig. l. Projections ofthe rhodonite and pyroxmangite struc- ions in the inner Ml-like octahedra of pyroxenoids are tures onto (100). Octahedral(M) sitesin both structuresare iden- primarily responsible for their relative stabilities. Al- tified by number. After Ohashi and Finger (1975). 800 PINCKNEY AND BURNHAM: PYROXMANGITE AND RHODONITE donite (listed in Table l) have been assessedalong with Site those from a new refinement of a nearly pure MnSiO, Occupancy' pyroxmangite. Data for pyroxferroite (Burnham, l97l) are also included in the analysis. We employ the CI setting for the pyrxoxenoids; data Ml(3,4) taken from previous refinementsbased on the PI setting have beenconverted into their CI equivalents.The series ofAppendix TablesAl through A,5compiles selecteddata for pyroxmangite and rhodonite taken or calculatedfrom the crystal-structurerefinements listed in Table l. Srnucrunq.L vARIATToNS M6(2) Cell expansion For the most part, the pyroxmangite and rhodonite Mg structures respond very similarly to compositional vari- Mn ation. Cell parameters of both structures, for example, increasefairly smoothly with the substitution of Mn for Mg, although small amounts of Ca presentin natural rho- M5.M7 donites cause marked increasesin the a and D cell di- mensrons.
Recommended publications
  • Download the Scanned
    THn AMERICex N{INERALocIST JOURNAL OF THE MINERALOGICAL SOCIETY OF'AMERICA Vol. 21 MAY, 1936 No. 5 PYROXMANGITE, NEW LOCALITY: IDENTITY OF SOBRALITE AND PYROXMANGITE E. P. HBxoERSoN,U. S. IVationolMuseum, AND Jrwor,r, J. Glass, U. S. GeologicalSuraey.r Tanr-r or ConrBNrs t. Summary zlJ 2 Introduction. 274 3. Description of mineral 275 Physical properties 275 Optical properties Chemical composition 278 Alteration 279 4 Pyroxmangite from Iva, South Caiolina 279 5. Identity of sobralite with pyroxmangite 280 6. X-ray powder photographs 286 7. Relationship of pyroxmangite to rhodonite 287 1. Suruuanv The discovery of a new locality for pyroxmangite provided material for a rather complete study of this little-known triclinic manganese and iron pyroxene, and established Idaho as a second occurrenceof the mineral in America. Physical, optical, chemical, and *,-ray properties of the new mineral show close agreement with those of the mineral from the original locality atlva, South Carolina. The indices of refraction are slightly lower in the Idaho material, due probably to a correspondingly Iower iron content. A careful study of the mineral from Sweden, called sobralite, revealed its identity with pyroxmangite, a name which has four years'priority over sobralite. A comparative study of pyroxmangite with rhodonite (both iron-rich and iron-poor varieties) shows distinct differencesin the birefringence and axial angle. X-ray patterns indicate a structural differencebetween the two minerals that, in the light of our present knowledge, justifies the retention of both mineral species.A com- plete structural analysis, however, may be necessary to establish the definite relationship of pyroxmangite to rhodonite.
    [Show full text]
  • Petrology of Mn Carbonate–Silicate Rocks from the Gangpur Group, India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eprints@NML Journal of Asian Earth Sciences 25 (2005) 773–780 www.elsevier.com/locate/jaes Petrology of Mn carbonate–silicate rocks from the Gangpur Group, India B.K. Mohapatraa,*, B. Nayakb aRegional Research Laboratory (CSIR), Bhubaneswar 751 013, India bNational Metallurgical Laboratory (CSIR), Jamshedpur 831 007, India Received 11 April 2003; revised 6 February 2004; accepted 21 July 2004 Abstract Metamorphosed Mn carbonate–silicate rocks with or without oxides (assemblage I) and Mn silicate–oxide rocks with minor Mn carbonate (assemblage II) occur as conformable lenses within metapelites and metacherts of the Precambrian Gangpur Group, India. The petrology of the carbonate minerals: rhodochrosite, kutnahorite, and calcite that occur in these two assemblages is reported. Early stabilisation of spessartine, aegirine, quartz, and carbonates (in a wide solid solution range) was followed by pyroxmangite, tephroite, rhodonite through decarbonation reactions. Subsequently, jacobsite, hematite, braunite, hollandite and hausmannite have formed by decarbonation–oxidation processes during prograde metamorphism. Textural characteristics and chemical composition of constituent phases suggest that the mineral assemblages reflect a complex ! w relationship between protolithic composition, variation of XCO2 ( 0.2 to 0.3) and oxygen fugacity. A variation of XCO2 and fO2 would imply internal buffering of pore fluids through mineral reactions that produced diverse assemblages in the carbonate bearing manganiferous rocks. A minor change in temperature (from around 400 to 450 8C) does not appear to have had any major influence on the formation of different mineral associations. q 2004 Elsevier Ltd.
    [Show full text]
  • The Anorthic Iron-Manganese Silicate, Pyroxmangite Has Now Been Recognisedfrom Four Localities: Iva (South Carolina); Tunaberg and Vester Silvberg, Sweden;Idaho
    PYROXMANGITE FROM INVERNESS-SHIRE, SCOTLAND . C. E. Trr,rov, Cambridge,England.. ' The anorthic iron-manganese silicate, pyroxmangite has now been recognisedfrom four localities: Iva (South Carolina); Tunaberg and Vester Silvberg, Sweden;Idaho. At the Swedish localities the mineral was originally described under the name of sobralite (Palmgren l9I7), but the comparative studies of Henderson and Glass (1936) have shown that sobralite has so closeagree- ment in optical characters with the previously described pyroxmangite that the identity of these two minerals can be regarded as established. The discovery of a further occurrence of pyroxmangite among the Lewisian rocks of Scotland has provided additional data on this inter- esting mineral. Frc. 1. Pyroxmangite-grunerite-garnet schist, Glen Beag, Glenelg, Inverness-shire. The constituents visible are pyroxmangite (most abundant), grunerite and magnetite. Spessartine-alamandine is present in adjacent portions of the slice. 26 diams. The Lewisian inlier of Glenelg, fnverness-shire contains among its para-gneissesa group of manganiferous eulysites and related grunerite schists (Tilley 1936), and from one outcrop of these latter rocks both pyroxmangite and rhodonite are now recorded. The pyroxmangite forms an important constituent of a manganiferous 720 IOURNAL MINEK LOGICAL SOCIETV OF AMEKICA 721 schist interbedded with a series of para-gneisses comprising biotite epidote gneisses,amphibole schists and lensesof limestone in the gorge of Glen Beag, Glenelg (1" sheet 71, GeologicalSurvey Scotland). The rock type with which the pyroxmangite is more intimately associated is a grunerite garnet schist carrying in placesveins of rhodonite up to 1 " in width. The constituent minerals of the principal band of rock are grunerite, manganiferous garnet, magnetite, pyroxmangite together with accessoryhedenbergite, iron hypersthene and pyrrhotite (Fig.
    [Show full text]
  • PETROGENETIC GRIDS from EXPERIMENTAL DATA in the SYSTEM Mn-Si-C-O-H
    Revista Brasileira de GeQcitncias Volume 4, 1974 15 PETROGENETIC GRIDS FROM EXPERIMENTAL DATA IN THE SYSTEM Mn-Si-C-O-H TJERK PETERS*, JOSE VICENTE VALARELLI**, and MARIA ANGELA F. CANDIA** ABSTRACT Experimental data in the system Mn-Si-C-O-H are reviewed and equations for equilibrium reactions among common manganese 'minerals are given. With these equa­ tions T -log f 02 diagrams were constructed, that can be used as petrogenetic grids to evaluate the physical-chemical conditions during the metamorphism of manganese protores. The strong influence of the composition of the fluid phase on the equilibrium temperatures is emphasized. Applications to some natural metamorphic Mn-deposits are shown. RESUMO A reuniao de trabalhos experimentais envolvendo equilibrio entre minerais de man­ ganes e de curvas teoricas de dados termodinamicoe referentes ao sistema Mn-Si-G--O--'-H, fornece uma visne do conjunto das parageneses mineral6gicas possiveis de serem encontradas em protominerioa e .minerios metam6rficos naturals. Neste trabalho sao fornecidos diagramas isobaricos em funcao de temperatura e fugacidade de oxigenio de onde se tiram informacoes sobre 0 campo de estabilidade dos minerais de manganes mais comuns desse sistema. Au-aves desses diagramas podem-se interpretar as condicoes fisico-quimicae reinantes ou trans­ corridas durante 0 metamorfismo, dando-se enfase a influencia da composicao da fase fluida (C02 , 02 e H 20, por exemplo) no deslocamento dos equilibrios. Sao dados exemplos de aplicacao desses diagramas c~m base nos dados existentes sobre as pa­ rageneses de dais dep6sitos de manganes: Morro da Mina (Lafaiete, MG) e Maran (Bahia). INTRODUCTION Experimental data at elevated pressures and temperatures for systems containing manganese are rather scarce, although manganese is a common element in most natural rocks.
    [Show full text]
  • University of Nevada Reno F|F0(5 J M L the Qalera Vein System
    f|f0(5 5 j m l University of Nevada Reno The qalera Vein System, Orcopampa District, Southern Peru: Association of Tectonism, Magmatism and Hydrothermal Activity in the Formation of a Bonanza Ag-Au Deposit A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology by Peter Craig Gibson <n Donald C. Noble, Dissertation Advisor December 1992 The dissertation of Peter Craig Gibson is approved: Dr. Donald C. Noble, Dissertation Advisor Dr. Robert J. Watters,, Departin'rtment Chair f <t. /Les, 0 Dr. Kenneth W. Hunter, Dean, Graduate School University of Nevada Reno December 1992 11 FRONTISPIECE View of Orcopampa pueblo, looking northwest, with the mine facilities in the foreground. The concentrator and tailings dam are in the lower left part of the photo. The low hills behind Orcopampa are composed of Quaternary lava. iii ACKNOWLEDGMENTS Financial support for field work was provided by Compama de Minas Orcopampa S.A. and grants from the Geological Society of America. Laboratoiy work was partly funded by an allotment grant from the Mackay Minerals Resources Research Institute during the early stages of the study. Certain observations during the latter stages of work were made as a consultant to Cia. de Minas Orcopampa S.A. V. R. Eyzaguirre graciously allowed time for preparation of parts of the manuscript during work for Alta Tecnologia e Inversiones Minera Metalurgica S.A. (ATIMMSA). This study would not have been possible without the logistical aid and other support provided by the personnel of Compama de Minas Buenaventura S.A. (CMBSA), and particularly by Alberto Benavides Q., Raul Benavides G., Jorge Benavides A., Mario Palla P., Oscar Mayta T., and others of the Buenaventura Group.
    [Show full text]
  • And Rhodonite (Mnsi03)
    -..- American Mineralogist, Volume 80, pages 560-575, 1995 Heat capacities and thermodynamic properties of braunite (Mn7Si012) and rhodonite (MnSi03) RICHARD A. ROBIE, J. STEPHEN HUEBNER, BRUCE S. HEMINGWAY U.S. Geological Survey, 959 National Center, Reston, Virginia 22092, U.S.A. ABSTRACT The heat capacities, C~, of synthetic rhodonite (MnSi03) and braunite (Mn7Si012) have been measured by adiabatic calorimetry from 6 to -350 K. The heat capacity of braunite was also measured to -900 K by differential scanning calorimetry. Braunite exhibits a X-peak (paramagnetic to antiferromagnetic transition) in C~ in the temperature region 93.4-94.2 K. Rhodonite did not show the expected peak in C~ characteristic of the co- operative ordering of the Mn2+ spins at temperatures above 6 K. At 298.15 K the standard molar entropy of rhodonite is 100.5 :t 1.0 and that of braunite is 416.4 :t 0.8 J/(mol. K). For rhodonite, .:lrHO(MnSi03, 298.15 K) is -1321.6 :t 2.0 kJ/ mol. For braunite, the value for .:lrHO(Mn7Si012' 298.15 K), -4260 :t 3.0 kJ/mol, was obtained by considering both calorimetric and phase-equilibrium data. Our heat capacity and entropy values were combined with existing thermodynamic data for MnCO" C02' Si02, MnO, and Mn304 in a "third-law" analysis of several phase equilibrium studies and yielded .:lrGO(MnSi03, 298.15 K) = -1244.7 :t 2.0 kJ/mol and .:lrGO(Mn7SiO'2' 298.15 K) = - 3944.7 :t 3.8 kJ/mol from the elements. A revised petrogenetic grid for the system Mn-Si-O-C at 2000 bars is presented and is consistent with both thermochemical values and occurrence of natural assemblages.
    [Show full text]
  • KANOITE, (Mnh , Mg)2[Si206], a NEW CLINOPYROXENE in the METAMORPHIC ROCK from TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN
    The Geological Society of Japan JOURNAL OF THE GEOLOGICAL SOCIETY OF JAPAN, VoL 83, No.8, p. 537-542, August 1977 H KANOITE, (Mn , Mg)2[Si20 6], A NEW CLINOPYROXENE IN THE METAMORPHIC ROCK FROM TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN HIDEO KOBAYASHI* Abstract Kanoite, (Mn2+, Mgh[Si20 6], a new clinopyroxene, is monoclinic, P21/c, ao= 9.739 A, bo=8.939A, co=5.260A, p=108.56°, Z=4. The strongest diffractions in the X-ray powder pattern are 3.211(100)(220), 3.021(90)(221), 2.921(80)(311), 2.910(90)(310), 2.493 (40) (002), 1.627(40) (531). Electron microprobe and supplementary wet chemical analyses gave Si02 50.20, Al20 3 0.04, Fe20 3 0.39, FeO 2.64, MnO 31.19, MgO 15.08, CaO 0.57, Na20 0.03, K 20 0.03, total 100.17%. It is optically biaxial positive, 2V=40°-42°, refractive indices ns a= 1.715(2), p= 1.717(2), Y= 1.728(2); optical orientation b=Y, cl\Z= +42°. Colourless in thin section. It is light pinkish brown in fresh colour and with a vitreous luster. Streak white. Cleavage {1I0} perfect. Hardness(Mohs) =6. Density 3.66 g/cm3 (meas.); 3.60 g/cm3 (calc.). Polysynthetic twin on {lOO} is common. It occurs as minute grains intergrown with manganoan cummingtonite in metamorphosed manganese ore enclosed in a quartz-rich biotite-garnet gneiss exposed as a reef at the seashore near Tatehira, Oshima Peninsula, Hokkaido. The name is for Dr. Hiroshi KANO, Professor ofPetrology, Akita University, for his geological and petrographical contributions to metamorphic rocks in Japan especially those forming the basement ofJapanese Islands.
    [Show full text]
  • Pyroxmangite: a High-Pressure Single-Crystal Study
    American Mineralogist, Volume 93, pages 1921–1928, 2008 Pyroxmangite: A high-pressure single-crystal study P.F. ZANA ZZ I ,1,* F. NESTOLA ,2 S. NA ZZ ARENI ,1 AND P. COMODI 1 1Dipartimento di Scienze della Terra, Università di Perugia, Piazza Università, 06100 Perugia, Italy 2Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, 35137 Padova, Italy ABSTRA C T We present the results of a single-crystal X-ray diffraction structural study on pyroxmangite in a diamond-anvil cell up to 5.6 GPa. The sample comes from Yokone-Yama, Awano Town, Tochigi Prefecture, Japan. Crystals are triclinic, centrosymmetric, with composition [Mn0.576(2)Fe0.284(5) Ca0.044(3) Mg0.089(2)]Si1.003(4)O3. Structure refinements were performed with intensity data collected at 1.24 and 3.57 GPa on a CCD-equipped diffractometer. Lattice parameters were accurately measured with the point-detector mounted on the same instrument. The bulk modulus of pyroxmangite fitting data to a second-order Birch-Murnaghan equation of state is K0 = 109.6(7) GPa. Axial compressibility values were βa = 2.2(1), βb = 3.3(1), and βc = 2.6(1) 10–3 GPa–1 showing slightly anisotropic behavior, with the most compressible direction along the b axis, as commonly found in the related family of pyroxene. Silicon tetrahedra are almost incompressible in the pressure range investigated. M polyhedra are more compressible: the volume change is smaller in the more regular octahedra M1–M4 (–3.3%) and greater in the more irregular polyhedra M5–M7 (–5.2%). Owing to the different contraction of Si tetrahedra and cation polyhedra, the sevenfold tetrahedral chains in pyroxmangite must kink to avoid misfit between chains and octahedral bands.
    [Show full text]
  • List of Mineral Symbols
    THE CANADIAN MINERALOGIST LIST OF SYMBOLS FOR ROCK- AND ORE-FORMING MINERALS (January 1, 2021) ____________________________________________________________________________________________________________ Ac acanthite Ado andorite Asp aspidolite Btr berthierite Act actinolite Adr andradite Ast astrophyllite Brl beryl Ae aegirine Ang angelaite At atokite Bll beryllonite AeAu aegirine-augite Agl anglesite Au gold Brz berzelianite Aen aenigmatite Anh anhydrite Aul augelite Bet betafite Aes aeschynite-(Y) Ani anilite Aug augite Bkh betekhtinite Aik aikinite Ank ankerite Aur auricupride Bdt beudantite Akg akaganeite Ann annite Aus aurostibite Beu beusite Ak åkermanite An anorthite Aut autunite Bch bicchulite Ala alabandite Anr anorthoclase Aw awaruite Bt biotite* Ab albite Atg antigorite Axn axinite-(Mn) Bsm bismite Alg algodonite Sb antimony Azu azurite Bi bismuth All allactite Ath anthophyllite Bdl baddeleyite Bmt bismuthinite Aln allanite Ap apatite* Bns banalsite Bod bohdanowiczite Alo alloclasite Arg aragonite Bbs barbosalite Bhm böhmite Ald alluaudite Ara aramayoite Brr barrerite Bor boralsilite Alm almandine Arf arfvedsonite Brs barroisite Bn bornite Alr almarudite Ard argentodufrénoysite Blt barylite Bou boulangerite Als alstonite Apn argentopentlandite Bsl barysilite Bnn bournonite Alt altaite Arp argentopyrite Brt baryte, barite Bow bowieite Aln alunite Agt argutite Bcl barytocalcite Brg braggite Alu alunogen Agy argyrodite Bss bassanite Brn brannerite Amb amblygonite Arm armangite Bsn bastnäsite Bra brannockite Ams amesite As arsenic
    [Show full text]
  • Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na 3Mn3ti0.25Si8o20(OH)2 10H2O, Opens up New Chemistry
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07.
    [Show full text]
  • Mn-Fe SPINELS and SILICATES Ln MANGANESE-RICH ROCKS FROM
    701 The Canndian M ineralo g is t Vol.36, pp. 701-7ll (1998) Mn-Fe SPINELSAND SILICATESlN MANGANESE-RICHROCKS FROM THE OSSA-MORENAZONE, SOUTHERN IBERIAN MASSIE SOUTHWESTERN SPAIN ruANJIMENEZ-MILLANI Depaftamcnto de Geologfu Facaltad de Ciencias Experitnentales, Universidad de Jada Campus Universitario, E-23071 Jadn, Spain NICOLAS VELILLA Departamento de Mineralttgta y Petolog{q Facultad de Ciencias, tlniversidad de Granada, E-18002 Granada, Spain AssrRAcr Manganese-rich rocks occur in a greenschist-facies volcano-sedimentary complex of the Ossa-MorenaZnte, in the Iberian Massif' southwestern Spain. Four unusually Fe-rich manganese associations containing Mn-Fe spinels and silicates have been idenffied: f) magnetite + pyroxmangite + spessartine + quartz, tr) manganian jacobsite + pyroxma-ngite + aegirine + quartz, IIf jacobsite + pyroxmangite + tephroite + spessartine + rhodochrosite, and IV) manganoan magnetite + rhodonite + ferroan tephoite + spessartine+ rhodochrosite. Major compositional variations of these minerals are complex functions of several factors. Oxygen fugacity determines the Fe content of pyroxenoids in such a way that it is very low in the pyroxmangite of associations bearing Mnk spinels (<0.4 7o FeSiO3) and reaches 307o FeSiO3 in associations with Fe2+-dominantspinels. The presence of tephroite indicates X(CO) values lower than 0.2, a condition that evolved toward higher values, as indicated by poikilslln5l5 of rhodonite. The most important effect of the whole-rock composition is the crystallization of tephroite in rocks with a Mn:Si ratio higher than l.7.Lncal Ca availability determines the crystallization of rhodonite or pyroxmangite. In rocks with a low Mn:Fe ratio, the formation of tephroite is favored only when the accompanying pyroxenoid is rhodonite.
    [Show full text]
  • Nchwaningite, Mn~+Si03(OH)2'H20, a New Pyroxene-Related Chain Silicate from the N'chwaning Mine, Kalahari Manganese Field, South Africa
    American Mineralogist. Volume 80, pages 377-386, 1995 Nchwaningite, Mn~+Si03(OH)2'H20, a new pyroxene-related chain silicate from the N'chwaning mine, Kalahari manganese field, South Africa DANIEL NYFELER, THOMAS ARMBRUSTER Laboratorium rur chemische und mineralogische Kristallographie, Universitiit Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ROGER DIXON Museum of the Geological Survey, PB X1l2, 0001 Pretoria, South Africa VLADIMIR BERMANEC Department of Mineralogy and Petrology of Faculty of Science, University of Zagreb, Demetrova I, 41000 Zagreb, Croatia ABSTRACT Nchwaningite, Mn~+ Si03(OH)2' H20, is an orthorhombic chain silicate [space group Pea2" Z = 4, a = 12.672(9), b = 7.217(3), e = 5.341(2) A], occurring as aggregates shaped like pin cushions, together with calcite, bultfonteinite, and chlorite at N'chwaning mine, located in the Kalahari manganese field, northern Cape Province, South Africa. The ag- gregates consist of light brown, transparent needles, which average 1.0 x 0.1 x 0.05 mm in size. Nchwaningite is named after the mine N'chwaning II, where it was found first. Nchwaningite is biaxially negative with the refractive indices ex= 1.681(2), fJ = 1.688(2), b, Y = a, Z = c. Nchwaningite 'Y= 1.690(2), 2 ~ = 54.4(4)°. The optical orientation is X = has two perfect cleavages parallel to (010) and (100). The calculated density is 3.202 glcm3. The chemical composition, as determined by electron microprobe analyses, indicates mi- nor substitutions of Mg for Mn. The crystal structure, including H positions, was solved and refined from X-ray single- crystal data to R = 2.14%, Rw = 2.91%.
    [Show full text]