Changes in Extreme Precipitation Across 30 Global River Basins

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Extreme Precipitation Across 30 Global River Basins water Article Changes in Extreme Precipitation across 30 Global River Basins Xin Feng 1, Zhaoli Wang 1,2, Xushu Wu 1,2,* , Jiabo Yin 3, Shuni Qian 3 and Jie Zhan 4 1 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; [email protected] (X.F.); [email protected] (Z.W.) 2 State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China 3 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; [email protected] (J.Y.); [email protected] (S.Q.) 4 China Water Resources Pearl River Planning Surveying & Designing Co., LTD., Guangzhou 510640, China; [email protected] * Correspondence: [email protected] Received: 8 May 2020; Accepted: 25 May 2020; Published: 27 May 2020 Abstract: Extreme precipitation can cause disasters such as floods, landslides and crop destruction. A further study on extreme precipitation is essential for enabling reliable projections of future changes. In this study, the trends and frequency distribution changes in extreme precipitation across different major river basins around the world during 1960–2011 were examined based on two of the latest observational data sets respectively collected from 110,000 and 26,592 global meteorological stations. The results showed that approximately a quarter of basins have experienced statistically significant increase in maximum consecutive one-day, three-day and five-day precipitation (RX1day, RX3day and RX5day, respectively). In particular, dramatic increases were found in the recent decade for the Syr Darya River basin (SDR) and Amu Darya River basin (ADR) in the Middle East, while a decrease in RX3day and RX5day were seen over the Amur River basin in East Asia. One third of basins showed remarkable changes in frequency distributions of the three indices, and in most cases the distributions shifted toward larger amounts of extreme precipitation. Relative to the subperiod of 1960–1984, wider range of the three indices over SDR and ADR were detected for 1985–2011, indicating intensification along with larger fluctuations of extreme precipitation. However, some basins have frequency distributions shifting toward smaller amounts of RX3day and RX5day, such as the Columbia River basin and the Yellow River basin. The study has potential to provide the most up-to-date and comprehensive global picture of extreme precipitation, which help guide wiser public policies in future to mitigate the effects of these changes across global river basins. Keywords: extreme precipitation; trend; frequency distribution change; global river basins 1. Introduction Flood, landslide and soil erosion triggered by extreme precipitation are among the major hazards that pose threats to society and the environment [1–7]. The understanding of extreme precipitation features is beneficial for the forecasting and management of these hazards. However, extreme precipitation is becoming substantially more intense and unpredictable, with larger fluctuations than the past largely due to climate change, and it always displays high spatiotemporal heterogeneity [8–11]. Exploring extreme precipitation behaviors across various regions enables a comprehensive understanding of how it changes in space and time under the changing environment [12,13]. Water 2020, 12, 1527; doi:10.3390/w12061527 www.mdpi.com/journal/water Water 2020, 12, 1527 2 of 12 A variety of literatures have revealed extreme precipitation changes at different spatial scales. Alexander et al. (2006) examined global trends and probability distributions of extreme precipitation, showing that extreme precipitation has increased on the whole for the 20th century, but the probability distribution of maximum one-day precipitation (RX1day) does not exhibit remarkable changes [11]. Asadieh and Krakauer (2014) analyzed trends in global extreme precipitation and found that both observations and models show generally upward trends in extreme precipitation since the beginning of 1900s, and the changes for tropic regions are the largest [14]. Through using a global atmospheric model for forecasting of extreme precipitation, Akio et al. (2016) showed that RX1day and maximum five-day precipitation (RX5day) are increasing even though the mean precipitation is decreasing [15]. Shi and Durran (2016) held the viewpoint that, in mountainous regions, the sensitivity of extreme precipitation to global warming is lower than in oceanic regions or plains [16]. Zhang and Zhou (2019) stated that, for global monsoon regions, extreme precipitation is on the rise and its correlation with warming climate is distinctive [17]. Regionally, in North America, a study has revealed a strong relationship between extreme precipitation and hurricane activities based on a 25-year observational analysis [18]. Costa and Soares (2007) assessed the uncertainty of spatiotemporal interpolation of an extreme precipitation index using the southern region of continental Portugal as an example and made conclusions of a higher spatial continuity of extreme precipitation but a weaker relationship between altitude and the index in recent decades [19]. Vyshkvarkova and Voskresenskaya (2018) pointed out an abnormal phenomenon over the southern Russia where the wetting trend is negligible, not necessarily following the global overall upward trend of extreme precipitation [20]. A similar phenomenon is found for the Northwestern Highlands of Ethiopia, where evidence of increasing extreme precipitation is lacking [21]. Over eastern Asia, Gayoung et al. (2018) projected the average and extreme precipitation intensity in Korea in future and found an increased intensity for the future period 2021–2100 compared to the present [22]. For China, there are also many studies regarding extreme precipitation across different regions. For example, Wu et al. (2016) investigated extreme precipitation characteristics over 11 basins in China and revealed strengthened RX1day in the Liaohe River Basin (LB) together with strengthened RX5day in the Songhua River Basin [23]. Another example is the study of Wang et al. (2015) which explored seasonal extreme precipitation changes over the arid regions of northwest China [24]. In India, Gupta and Jain (2020) discovered that the annual total precipitation is decreasing, while extreme precipitation shows an opposite trend [25]. Although the aforementioned studies provide beneficial information on extreme precipitation features, most of them are regional and their conclusions may not completely agree because of the use of varying indices, data sets, methodologies and study periods. Compared to regional studies, global studies enable a direct comparison of extreme precipitation characteristics across different regions and can provide a large-scale picture of extreme precipitation characterization [26,27]. However, there are relatively few global-scale literatures at present and, more importantly, the existing studies seldom investigate extreme precipitation characteristics (e.g., frequency or probability distributions) from different subperiods, but rather, from the whole period of record, which hampers the formulation of integrated information regarding changing properties of extreme precipitation under the backdrop of climate change. Furthermore, there is no systematic study of extreme precipitation over various river basins worldwide. From the hydrological perspective, flood analyses rely on precipitation conditions within a basin rather than in a region, country, or continent [28]. The lack of sufficient knowledge on extreme precipitation over different basins across the globe has restricted governors or river managers from making flood adaptations and mitigation strategies appropriate to each basin. To overcome the shortage, we set out to reveal trends and frequency distribution changes in extreme precipitation across different major river basins globally. Our study aims to draw the most up-to-date and comprehensive global picture of extreme precipitation at the basin scale which would be beneficial for river flood managements over different basins around the world. Water 2020, 12, 1527 3 of 12 2. Materials and Methods 2.1. Sourced Data and Global Basins Daily precipitation data used in this study came from two sources; one is the data covering 1929–present generated from more than 110,000 meteorological stations around the world, which were obtained from the National Oceanic and Atmospheric Administration (https://www.ncei.noaa. gov/data/global-summary-of-the-day/archive/), and the other is the data for the period 1929–2017 obtained from the National Climate Data Center GSOD dataset produced by the National Centers for Environmental Information, covering 26,592 stations globally (https://www.ncdc.noaa.gov/). Most of the analyses in the current study were based on the first data set and the second data set was served as the complementary one; if there is no data from the first data set for a specific basin, or the data are less sufficient than the GSOD data set, then the GSOD data are used instead. Meanwhile, before the data were used, a quality control procedure was applied, including examination of internal consistency, and suspected and erroneous data. To reduce errors caused by insufficient sampling and record length, we chose 9181 stations with near-continuous (less than 10% of missing data each year) observations during 1960–2011 in which the missing data are minimum. There are a wide range of river basins around the world and
Recommended publications
  • Water Situation in China – Crisis Or Business As Usual?
    Water Situation In China – Crisis Or Business As Usual? Elaine Leong Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 1 Water Situation In China – Crisis Or Business As Usual? Elaine Leong Supervisor at LiU: Niclas Svensson Examiner at LiU: Niclas Svensson Supervisor at Shell Global Solutions: Gert-Jan Kramer Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 2 This page is left blank with purpose 3 Summary Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes? This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation.
    [Show full text]
  • Without Land, There Is No Life: Chinese State Suppression of Uyghur Environmental Activism
    Without land, there is no life: Chinese state suppression of Uyghur environmental activism Table of Contents Summary ..............................................................................................................................2 Cultural Significance of the Environment and Environmentalism ......................................5 Nuclear Testing: Suppression of Uyghur Activism ...........................................................15 Pollution and Ecological Destruction in East Turkestan ...................................................30 Lack of Participation in Decision Making: Development and Displacement ....................45 Legal Instruments...............................................................................................................61 Recommendations ..............................................................................................................66 Acknowledgements ............................................................................................................69 Endnotes .............................................................................................................................70 Cover image: Dead toghrak (populus nigra) tree in Niya. Photo courtesy of Flickr 1 Summary The intimate connection between the Uyghur people and the land of East Turkestan is celebrated in songs and poetry written and performed in the Uyghur language. Proverbs in Uyghur convey how the Uyghur culture is tied to reverence of the land and that an individual’s identity is inseparable
    [Show full text]
  • Ecosystem Service Assessment of the Ili Delta, Kazakhstan Niels Thevs
    Ecosystem service assessment of the Ili Delta, Kazakhstan Niels Thevs, Volker Beckmann, Sabir Nurtazin, Ruslan Salmuzauli, Azim Baibaysov, Altyn Akimalieva, Elisabeth A. A. Baranoeski, Thea L. Schäpe, Helena Röttgers, Nikita Tychkov 1. Territorial and geographical location Ili Delta, Kazakhstan Almatinskaya Oblast (province), Bakanas Rayon (county) The Ili Delta is part of the Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site 2. Natural and geographic data Basic geographical data: location between 45° N and 46° N as well as 74° E and 75.5° E. Fig. 1: Map of the Ili-Balkhash Basin (Imentai et al., 2015). Natural areas: The Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site comprises wetlands and meadow vegetation (the modern delta), ancient river terraces that now harbour Saxaul and Tamarx shrub vegetation, and the southern coast line of the western part of Lake Balkhash. Most ecosystem services can be attributed to the wetlands and meadow vegetation. Therefore, this study focusses on the modern delta with its wetlands and meadows. During this study, a land cover map was created through classification of Rapid Eye Satellite images from the year 2014. The land cover classes relevant for this study were: water bodies in the delta, dense reed (total vegetation more than 70%), and open reed and shrub vegetation (vegetation cover of reed 20- 70% and vegetation cover of shrubs and trees more than 70%). The land cover class dense reed was further split into submerged dense reed and non-submerged dense reed by applying a threshold to the short wave infrared channel of a Landsat satellite image from 4 April 2015.
    [Show full text]
  • The Framework on Eco-Efficient Water Infrastructure Development in China
    KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13
    [Show full text]
  • Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China
    water Article Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China Xiaoyu Zhao 1, Dengfeng Liu 1,* , Xiu Wei 1,2, Lan Ma 1, Mu Lin 3, Xianmeng Meng 4 and Qiang Huang 1 1 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China; [email protected] (X.Z.); [email protected] (X.W.); [email protected] (L.M.); [email protected] (Q.H.) 2 Hydrology and Water Resources Bureau of Henan, Yellow River Conservancy Commission, Zhengzhou 450000, China 3 School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China; [email protected] 4 School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; [email protected] * Correspondence: [email protected] Abstract: The Han River is the water source of the South-to-North Water Diversion Project and the “Han River to Wei River Water Diversion Project” in China. In order to ensure that the water quality and quantity are sufficient for the water diversion project, the natural forest protection project, river chief system and other measures have been implemented in the Han River by the government. Citation: Zhao, X.; Liu, D.; Wei, X.; At the same time, several large reservoirs have been built in the Han River basin and perform the Ma, L.; Lin, M.; Meng, X.; Huang, Q. functions of water supply and hydropower generation, which is an important type of clean power.
    [Show full text]
  • Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform
    water Article Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform Jiahao Chen 1,2 , Tingting Kang 1,2, Shuai Yang 1,2, Jingyi Bu 1,2 , Kexin Cao 1,2 and Yanchun Gao 1,* 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.C.); [email protected] (T.K.); [email protected] (S.Y.); [email protected] (J.B.); [email protected] (K.C.) 2 College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-6488-8991 Received: 6 July 2020; Accepted: 6 October 2020; Published: 11 October 2020 Abstract: The Tarim River Basin (TRB), located in an arid region, is facing the challenge of increasing water pressure and uncertain impacts of climate change. Many water body identification methods have achieved good results in different application scenarios, but only a few for arid areas. An arid region water detection rule (ARWDR) was proposed by combining vegetation index and water index. Taking computing advantages of the Google Earth Engine (GEE) cloud platform, 56,284 Landsat 5/7/8 optical images in the TRB were used to detect open-surface water bodies and generated a 30-m annual water frequency map from 1992 to 2019. The interannual changes and trends of the water body area were analyzed and the impacts of climatic and anthropogenic drivers on open-surface water body area dynamics were examined.
    [Show full text]
  • Taking Stock of Integrated River Basin Management in China Wang Yi, Li
    Taking Stock of Integrated River Basin Management in China Wang Yi, Li Lifeng Wang Xuejun, Yu Xiubo, Wang Yahua SCIENCE PRESS Beijing, China 2007 ISBN 978-7-03-020439-4 Acknowledgements Implementing integrated river basin management (IRBM) requires complex and systematic efforts over the long term. Although experts, scientists and officials, with backgrounds in different disciplines and working at various national or local levels, are in broad agreement concerning IRBM, many constraints on its implementation remain, particularly in China - a country with thousands of years of water management history, now developing at great pace and faced with a severe water crisis. Successful implementation demands good coordination among various stakeholders and their active and innovative participation. The problems confronted in the general advance of IRBM also pose great challenges to this particular project. Certainly, the successes during implementation of the project subsequent to its launch on 11 April 2007, and the finalization of a series of research reports on The Taking Stockof IRBM in China would not have been possible without the combined efforts and fruitful collaboration of all involved. We wish to express our heartfelt gratitude to each and every one of them. We should first thank Professor and President Chen Yiyu of the National Natural Science Foundation of China, who gave his valuable time and shared valuable knowledge when chairing the work meeting which set out guidelines for research objectives, and also during discussions of the main conclusions of the report. It is with his leadership and kind support that this project came to a successful conclusion. We are grateful to Professor Fu Bojie, Dr.
    [Show full text]
  • Coal, Water, and Grasslands in the Three Norths
    Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2.
    [Show full text]
  • Recent Developments in the Application of Water Resource Dispatching Systems in China
    water Article Recent Developments in the Application of Water Resource Dispatching Systems in China Xinfeng Xiang 1, Lingzhong Kong 2, Huaiwei Sun 3, Xiaohui Lei 4,*, Ji Liang 3 and Yueqiang Li 5 1 Business school of Hohai University, Hohai University, Nanjing 210098, China; [email protected] 2 College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; [email protected] 3 School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430072, China; [email protected] (H.S.); [email protected] (J.L.) 4 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China 5 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-882-067-56 Abstract: This paper addresses recent developments in the application of water Resource dispatching systems (WRDSs) in China. Through a survey of watershed managers and a literature analysis, it was found that water diversion projects should be the top priority of water resource management by considering the recovery construction of water diversion projects. Case studies of WRDSs in the South-to-North Water Diversion (SNWD) and Pearl River Basin are discussed in this article. The results show that total water consumption management (WCM), water quality monitoring and management (WQMM), minimum discharge flow management (MDFM), and water dispatch management (WDM) modules should be considered in WRDSs. Finally, strategies and needs for resolving water resource management problems are discussed, along with other applications of WRDSs in China.
    [Show full text]
  • Water Scarcity and Allocation in the Tarim Basin: Decision Structures and Adaptations on the Local Level Niels THEVS
    ● ● ● ● Journal of Current Chinese Affairs 3/2011: 113-137 Water Scarcity and Allocation in the Tarim Basin: Decision Structures and Adaptations on the Local Level Niels THEVS Abstract: The Tarim River is the major water source for all kinds of human activities and for the natural ecosystems in the Tarim Basin, Xin- jiang, China. The major water consumer is irrigation agriculture, mainly cotton. As the area under irrigation has been increasing ever since the 1950s, the lower and middle reaches of the Tarim are suffering from a water shortage. Within the framework of the Water Law and two World Bank projects, the Tarim River Basin Water Resource Commission was founded in 1997 in order to foster integrated water resource manage- ment along the Tarim River. Water quotas were fixed for the water utili- zation along the upstream and downstream river stretches. Furthermore, along each river stretch, quotas were set for water withdrawal by agricul- ture and industry and the amount of water to remain for the natural ecosystems (environmental flow). Furthermore, huge investments were undertaken in order to increase irrigation effectiveness and restore the lower reaches of the Tarim River. Still, a regular water supply for water consumers along the Tarim River cannot be ensured. This paper thus introduces the hydrology of the Tarim River and its impacts on land use and natural ecosystems along its banks. The water administration in the Tarim Basin and the water allocation plan are elaborated upon, and the current water supply situation is discussed. Finally, the adaptations made due to issues of water allocation and water scarcity on the farm level are investigated and discussed.
    [Show full text]
  • Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000–2016
    Innovative water resources management – understanding and balancing interactions between humankind and nature Proc. IAHS, 379, 287–292, 2018 https://doi.org/10.5194/piahs-379-287-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016 Jinkai Luan1, Dengfeng Liu1,2, Lianpeng Zhang1, Qiang Huang1, Jiuliang Feng3, Mu Lin4, and Guobao Li5 1State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China 2Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3Shanxi Provincal Water and Soil Conservation and Ecological Environment Construction Center, Taiyuan 030002, China 4School of statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China 5Work team of hydraulic of Yulin City, Yulin 719000, China Correspondence: Dengfeng Liu ([email protected]) Received: 29 December 2017 – Revised: 25 March 2018 – Accepted: 26 March 2018 – Published: 5 June 2018 Abstract. Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin.
    [Show full text]
  • Sustainable Management of River Oases Along the Tarim River (Sumario) in Northwest China Under Conditions of Climate Change
    Earth Syst. Dynam., 6, 83–107, 2015 www.earth-syst-dynam.net/6/83/2015/ doi:10.5194/esd-6-83-2015 © Author(s) 2015. CC Attribution 3.0 License. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change C. Rumbaur1, N. Thevs2,18, M. Disse1, M. Ahlheim3, A. Brieden4, B. Cyffka5, D. Duethmann6, T. Feike7, O. Frör8, P. Gärtner9, Ü. Halik5, J. Hill10, M. Hinnenthal4, P. Keilholz1, B. Kleinschmit9, V. Krysanova11, M. Kuba5, S. Mader10, C. Menz11, H. Othmanli3, S. Pelz3, M. Schroeder6, T. F. Siew12, V. Stender6, K. Stahr3, F. M. Thomas10, M. Welp13, M. Wortmann11, X. Zhao3, X. Chen14, T. Jiang15, J. Luo16, H. Yimit17, R. Yu14, X. Zhang14, and C. Zhao14 1Technical University Munich, Munich, Germany 2Ernst Moritz Arndt University of Greifswald, Greifswald, Germany 3University of Hohenheim, Hohenheim, Germany 4Universität der Bundeswehr Muenchen, Munich, Germany 5Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany 6GFZ German Research Centre for Geosciences, Potsdam, Germany 7Federal Research Centre for Cultivated Plants, Kleinmachnow, Germany 8Universität Landau, Landau, Germany 9Technical University Berlin, Berlin, Germany 10University of Trier, Trier, Germany 11Potsdam Institute for Climate Impact Research, Potsdam, Germany 12Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany 13Eberswalde University for Sustainable Development, Eberswalde, Germany 14Xinjiang Institute of Geography and Ecology, Chinese Academy of Sciences, Urumqi, China 15National Climate Center, Beijing, China 16Research Center for China’s Borderland History and Geography, Chinese Academy of Social Sciences, Beijing, China 17Xinjiang Normal University, Urumqi, China 18World Agroforestry Center, Bishkek, Kyrgyzstan Correspondence to: C. Rumbaur ([email protected]) and N.
    [Show full text]