Surface and Groundwater Pollution: the Invisible, Creeping Threat to Human Health
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene
Marine Geology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Invited research article Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene ⁎ Chang Liua, Peter D. Clifta,b, , Andrew Carterc, Philipp Böningd, Zhaochu Hue, Zhen Sunf, Katharina Pahnked a Department of Geology and Geophysics, Louisiana State University, Baton Rouge 70803, USA b School of Geography Science, Nanjing Normal University, Nanjing 210023, China c Department of Earth and Planetary Sciences, Birkbeck College, University of London, London WC1E 7HX, UK d Max Planck Research Group for Marine Isotope Geochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Germany e State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China f Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, China ARTICLE INFO ABSTRACT Keywords: The Pearl River and its tributaries drains large areas of southern China and has been the primary source of Zircon sediment to the northern continental margin of the South China Sea since its opening. In this study we use a Nd isotope combination of bulk sediment geochemistry, Nd and Sr isotope geochemistry, and single grain zircon U-Pb Erosion dating to understand the source of sediment in the modern drainage. We also performed zircon U-Pb dating on Provenance Eocene sedimentary rocks sampled by International Ocean Discovery Program (IODP) Expedition 349 in order to Pearl River constrain the source of sediment to the rift before the Oligocene. -
Landscape Analysis of Geographical Names in Hubei Province, China
Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors. -
Case Study: Pearl River Tower, Guangzhou, China
ctbuh.org/papers Title: Case Study: Pearl River Tower, Guangzhou, China Authors: Roger Frechette, Director of Sustainable Engineering, Skidmore, Owings & Merrill Russell Gilchrist, Director of Technical Architecture, Skidmore, Owings & Merrill Subjects: Architectural/Design Building Case Study Sustainability/Green/Energy Keywords: Embodied Energy Energy Consumption Façade Sustainability Publication Date: 2008 Original Publication: CTBUH 2008 8th World Congress, Dubai Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Roger Frechette; Russell Gilchrist ‘Towards Zero Energy’ A Case Study of the Pearl River Tower, Guangzhou, China Roger E. Frechette III, PE, LEED-AP1 and Russell Gilchrist, RIBA2 1Director of Sustainable Engineering, 2Director of Technical Architecture, Skidmore, Owings & Merrill, LLP, Chicago, IL, USA Abstract Architects and engineers have a significant responsibility to ensure that the design and execution of all new construction projects be of the ‘lightest touch’ in both energy consumption, real and embodied, to ensure the longevity of the precious natural resources remain on this planet. The goal to achieve ‘carbon neutrality’ is quite possibly the single most important issue facing architects and engineers today, given the empirical evidence that construction projects far outstrip both industry and transportation as the largest contributors to carbon emissions in the world. This paper will attempt to both define what is meant by ‘carbon neutral’ in the context of building design as well as using the case study to demonstrate how such an approach might be achieved it examines the challenges of achieving a net zero energy building, both from an energy consumption perspective as well as the embodied energy of the construction. -
Water Situation in China – Crisis Or Business As Usual?
Water Situation In China – Crisis Or Business As Usual? Elaine Leong Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 1 Water Situation In China – Crisis Or Business As Usual? Elaine Leong Supervisor at LiU: Niclas Svensson Examiner at LiU: Niclas Svensson Supervisor at Shell Global Solutions: Gert-Jan Kramer Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 2 This page is left blank with purpose 3 Summary Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes? This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation. -
Without Land, There Is No Life: Chinese State Suppression of Uyghur Environmental Activism
Without land, there is no life: Chinese state suppression of Uyghur environmental activism Table of Contents Summary ..............................................................................................................................2 Cultural Significance of the Environment and Environmentalism ......................................5 Nuclear Testing: Suppression of Uyghur Activism ...........................................................15 Pollution and Ecological Destruction in East Turkestan ...................................................30 Lack of Participation in Decision Making: Development and Displacement ....................45 Legal Instruments...............................................................................................................61 Recommendations ..............................................................................................................66 Acknowledgements ............................................................................................................69 Endnotes .............................................................................................................................70 Cover image: Dead toghrak (populus nigra) tree in Niya. Photo courtesy of Flickr 1 Summary The intimate connection between the Uyghur people and the land of East Turkestan is celebrated in songs and poetry written and performed in the Uyghur language. Proverbs in Uyghur convey how the Uyghur culture is tied to reverence of the land and that an individual’s identity is inseparable -
Ecosystem Service Assessment of the Ili Delta, Kazakhstan Niels Thevs
Ecosystem service assessment of the Ili Delta, Kazakhstan Niels Thevs, Volker Beckmann, Sabir Nurtazin, Ruslan Salmuzauli, Azim Baibaysov, Altyn Akimalieva, Elisabeth A. A. Baranoeski, Thea L. Schäpe, Helena Röttgers, Nikita Tychkov 1. Territorial and geographical location Ili Delta, Kazakhstan Almatinskaya Oblast (province), Bakanas Rayon (county) The Ili Delta is part of the Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site 2. Natural and geographic data Basic geographical data: location between 45° N and 46° N as well as 74° E and 75.5° E. Fig. 1: Map of the Ili-Balkhash Basin (Imentai et al., 2015). Natural areas: The Ramsar Site Ile River Delta and South Lake Balkhash Ramsar Site comprises wetlands and meadow vegetation (the modern delta), ancient river terraces that now harbour Saxaul and Tamarx shrub vegetation, and the southern coast line of the western part of Lake Balkhash. Most ecosystem services can be attributed to the wetlands and meadow vegetation. Therefore, this study focusses on the modern delta with its wetlands and meadows. During this study, a land cover map was created through classification of Rapid Eye Satellite images from the year 2014. The land cover classes relevant for this study were: water bodies in the delta, dense reed (total vegetation more than 70%), and open reed and shrub vegetation (vegetation cover of reed 20- 70% and vegetation cover of shrubs and trees more than 70%). The land cover class dense reed was further split into submerged dense reed and non-submerged dense reed by applying a threshold to the short wave infrared channel of a Landsat satellite image from 4 April 2015. -
Press Release Sutlej Textiles and Industries Limited
Press Release Sutlej Textiles and Industries Limited December 31, 2020 Ratings Bank Facilities Amount (Rs. crore) Rating Rating Action Revised from 757.04 CARE A; Stable (Single A; CARE A+; Stable (enhanced from Outlook: Long-term - Term Loan (Single A Plus; 688.34) Stable) Outlook: Stable) Revised from CARE A+; CARE A; Stable/CARE A1 Fund Based- LT/ST- Stable/CARE A1+ (Single A (Single A; Outlook: CC/ EPC/PCFC 600.00 Plus; Outlook: Stable/A Stable/A One) One Plus) 45.30 CARE A1 Revised from CARE A1+ Non-Fund Based-ST-LC/BG (enhanced from (A One) (A One Plus) 45.00) 1,402.34 (Rs. One thousand four hundred two crore Total thirty four lakh only) Proposed Commercial CARE A1 Revised from CARE A1+ 300.00 Paper Issue^ (A One) (A One Plus) ^Carved out of the sanctioned working capital limits of the company. Detailed Rationale and Key Rating Drivers The revision of ratings assigned to the bank facilities of Sutlej Textiles and Industries Limited (STIL) factor in the weakening of company’s credit profile in FY20 on account of deteriorating operational performance and H1FY21 on the wake of COVID-19 pandemic, delays and cost overruns in setting up the margin accretive green fiber plant, and lower than envisaged performance in home-textile division. The ratings continue to derive strength from strong business profile being amongst India’s well established players in the value added dyed spun yarn/specialty yarn segment and experienced management in the Textile industry (especially spinning segment). The ratings also factor in moderate debt coverage metrics and comfortable liquidity position. -
Climate Vulnerability in Asia's High Mountains
Climate Vulnerability in Asia’s High Mountains COVER: VILLAGE OF GANDRUNG NESTLED IN THE HIMALAYAS. ANNAPURNA AREA, NEPAL; © GALEN ROWELL/MOUNTAIN LIGHT / WWF-US Climate Vulnerability in Asia’s High Mountains May 2014 PREPARED BY TAYLOR SMITH Independent Consultant [email protected] This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of WWF and do not necessarily reflect the views of USAID or the United States Government. THE UKOK PLATEAU NATURAL PARK, REPUBLIC OF ALTAI; © BOGOMOLOV DENIS / WWF-RUSSIA CONTENTS EXECUTIVE SUMMARY .........................................1 4.2.1 Ecosystem Restoration ........................................... 40 4.2.2 Community Water Management .............................. 41 State of Knowledge on Climate Change Impacts .................. 1 4.3 Responding to Flooding and Landslides ....................... 41 State of Knowledge on Human Vulnerability ......................... 1 4.3.1 Flash Flooding ......................................................... 41 Knowledge Gaps and Policy Perspective .............................. 3 4.3.2 Glacial Lake Outburst Floods .................................. 42 Recommendations for Future Adaptation Efforts ................. 3 4.3.3 Landslides ............................................................... 43 4.4 Adaptation by Mountain Range ....................................... 44 Section I 4.4.1 The Hindu Kush–Karakorum–Himalaya Region -
Mapping the Plastic
Title: Mapping the Plastic Speaker: Simon Ironside Chair FIG Working Group 4.3 Date: 18 & 19 November 2019 1 Addressing the alarming problem of plastic pollution of our waterways Mapping the A surveyor’s perspective Plastic Simon Ironside Chair FIG Working Group 4.3 Plastic clogs up a waterway in Yangon, Myanmar. courtesy of Global New Light of Myanmar, 5 June 2018 Plastic Pollution Overview (Waterways) The Commonwealth Scientific and Industrial Research Organisation, Australia (CSIRO) • Yangtze River, Yellow Sea, Asia • Indus River, Arabian Sea, Asia • Yellow River (Huang He), Yellow Sea, Asia Top 10 river • Hai River, Yellow Sea, Asia • Nile, Mediterranean Sea, Africa systems • Meghna/Bramaputra/Ganges, Bay of Bengal, Asia contributing • Pearl River (Zhujiang), South China Sea/East Sea, Asia • Amur River (Heilong Jiang), Sea of Okhotsk, Asia to ocean • Niger River, Gulf of Guinea, Africa plastic • Mekong River, South China Sea/East Sea, Asia *Export of plastic debris by rivers into the sea - Authors: Christian Schmidt, Tobias Krauth, Stephan Wagner, Reprinted with permission from Environmental Science & Technology 2017, 51, 21, 12246-12253. Copyright 2017, American Chemical Society.` • While ocean plastic remains a daunting problem, this could be good news for the quest to control it. Export of plastic • These 10 waterways contribute between 88 and 95 percent of the total plastic load that oceans receive via debris by rivers rivers and would be good places to focus on better waste into the sea - management. Authors: Christian • The high fraction of a few river catchments contributing the vast majority of the total load implies that potential Schmidt, Tobias Krauth, mitigation measures would be highly efficient when Stephan Wagner applied in the high-load rivers • Reducing plastic loads by 50 percent in the 10 top-ranked rivers, would reduce the total river-based load to the sea by 45 percent. -
China's Looming Water Crisis
CHINADIALOGUE APRIL 2018 (IMAGE: ZHAOJIANKANG) CHINA’S LOOMING WATER CRISIS Charlie Parton Editors Chris Davy Tang Damin Charlotte Middlehurst Production Huang Lushan Translation Estelle With special thanks to China Water Risk CHINADIALOGUE Suite 306 Grayston Centre 28 Charles Square, London, N1 6HT, UK www.chinadialogue.net CONTENTS Introduction 5 How serious is the problem? 6 The problem is exacerbated by pollution and inefficient use 9 Technical solutions are not sufficient to solve shortages 10 What are the consequences and when might they hit? 14 What is the government doing? 16 What is the government not doing and should be doing? 19 Can Xi Jinping stave off a water crisis? 25 Global implications 28 Global opportunities 30 Annex - Some facts about the water situation in China 32 About the author 37 4 | CHINA’S LOOMING WATER CRISIS SOUTH-NORTH WATER TRANSFER PROJECT (IMAGE: SNWTP OFFICIAL SITE) 5 | CHINA’S LOOMING WATER CRISIS INTRODUCTION Optimism or pessimism about the future success of Xi Jinping’s new era may be in the mind of the beholder. The optimist will point to the Party’s past record of adaptability and problem solving; the pessimist will point out that no longer are the interests of reform pointing in the same directions as the interests of Party cadres, and certainly not of some still powerful vested interests. But whether China muddles or triumphs through, few are predict- ing that problems such as debt, overcapacity, housing bubbles, economic rebalancing, the sheer cost of providing social security and services to 1.4 billion people will cause severe economic disruption or the collapse of Chi- na. -
The Framework on Eco-Efficient Water Infrastructure Development in China
KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13 -
Mekong River Waters: Our Is Ours, Yours Is Ours Too
CENTRE FOR LAND WARFARE STUDIES ISSUE BRIEF No. 101 May 2017 Mekong River Waters: Our is Ours, Yours is Ours Too Praggya Surana is a Research Assistant at the Centre for Land Warfare Studies (CLAWS), New Delhi. She completed her BA, LLB (Hons.) from National Law School of India University, Bangalore. Her research interests include Chinese military modernization and political strategy. hina is the point of origin for over ten major China and the South-East Asian Nations trans-boundary rivers1 and shares 110 rivers The Mekong river is the longest river in South-East Asia and lakes which flow into 18 downstream and the twelfth longest in the world.7 The Lankang Jiang C 2 countries. China has 14 land neighbours out of which (as it is known in China) originates in the Tanggula Shan 13 are riparian neighbours.3 This upper riparian position Mountains of Tibet, and flows through the eastern part of gives it immense strategic power. It has not entered the Tibet Autonomous Region and the Yunnan province into a single water sharing agreement.4 After saturating before forming the international border between exploitation of its internal rivers, China has shifted Myanmar and Laos and then a large part of the border focus towards the trans-boundary rivers. Despite the between Laos and Thailand. After that, the river flows environmental backlash faced after the construction of through Laos, Cambodia, and Vietnam before draining the Three Gorges Dam on the Yellow River, it is going into the South China Sea. The river is often divided into ahead with