Orion Flight Test 1 Press

Total Page:16

File Type:pdf, Size:1020Kb

Orion Flight Test 1 Press National Aeronautics and Space Administration Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC Orion Flight Test Contents Section Page Flight Overview ......................................................................................................... 1 Timeline Overview .................................................................................................... 2 Flight Profile .............................................................................................................. 8 Recovery Operations .............................................................................................. 11 Vehicle Components ................................................................................................14 Delta IV Heavy Rocket ............................................................................................ 19 Flight Objectives ..................................................................................................... 21 Flight Personnel ...................................................................................................... 22 Next Steps for NASA ............................................................................................... 25 Public Affairs Contacts ........................................................................................... 28 December 2014 i Orion Flight Test ii December 2014 Orion Flight Test Flight Overview Orion is NASA’s new spacecraft built to carry returning from lunar orbit – will provide the humans, designed to allow us to journey to most challenging test currently possible. destinations never before visited by humans, including an asteroid and Mars. On this The flight test will also validate systems uncrewed test flight, Exploration Flight such as Orion’s parachutes, avionics and Test-1, Orion will test systems critical to attitude control, and demonstrate major crew safety as it travels farther into space separation events such as the launch abort than any spacecraft built for humans has system jettison and the service module fairing traveled in more than 40 years. separation. All of these systems must perform flawlessly to guarantee safe, successful During the 4.5-hour flight, Orion will orbit missions in the future. Although they have Earth twice, covering more than 60,000 miles been tested extensively on the ground, the (96,600 kilometers) and reaching an altitude space environment cannot be replicated of 3,600 miles (5,800 kilometers) on the completely on Earth, and Exploration Flight second orbit. (The International Space Test-1 will provide critical data that will enable Station orbits Earth at an altitude of engineers to improve Orion’s design and approximately 260 miles, or 420 kilometers.) reduce risk for the astronauts it will carry That altitude will allow the spacecraft to return as NASA continues to move forward on its through the atmosphere at a speed human journey to Mars. of 20,000 mph (32,000 kph), which will generate temperatures near 4,000 degrees Although Orion is a NASA program, Fahrenheit (2,200 degrees Celsius) on Orion’s Exploration Flight Test-1 is managed heat shield. Those temperatures – about 80 and led by Orion prime contractor percent as hot as Orion would experience Lockheed Martin and launch on a United Launch Alliance Delta IV Heavy rocket. December 2014 Flight Overview 1 Orion Flight Test Timeline Overview Preflight: L-3 hours 30 minutes – Flight Control Team on Console in Mission L-8 hours 15 minutes – Control, Houston Mobile Service Tower First Motion - The NASA flight control team overseeing - The gantry used to access the vehicle as Orion’s flight from Houston takes over from it was being readied for launch begins to the pre-launch flight control team that has move away from the rocket. been making preparations for launch. L-4 hours 35 minutes – L-2 hours 35 minutes – Fueling Readiness Polls NASA TV Coverage Begins - United Launch Alliance launch team will L-1 hour 55 minutes – poll its members to decide whether to begin Landing Weather Briefing fueling the rocket with liquid hydrogen and liquid oxygen. - The National Oceanic and Atmospheric Administration’s Space Flight Meteorology L-4 hours 30 minutes – Group in Mission Control, Houston, briefs Delta IV Heavy Fueling Begins the Flight Control Team on weather - The Delta IV Heavy boosters begin to be conditions at the splashdown point filled with liquid hydrogen and liquid oxygen. in the Pacific Ocean. 2 Timeline Overview December 2014 Orion Flight Test L-0 hours 30 minutes – L-0 hours 8 minutes – Launch Weather Briefing Orion on Internal Power - The 45th Space Wing Operations Group - Orion begins using power from its own Weather Squadron at Cape Canaveral Air batteries rather than external power. Force Station briefs the United Launch L-0 hours 8 minutes – Alliance’s Delta Launch Team on weather Delta Go or No-go Poll for Launch conditions at the launch site. - The United Launch Alliance launch L-0 hours 19 minutes – conductor polls the Delta Launch Team for Terminal Countdown Hold a final go or no-go for launch of the Delta IV - The Orion launch countdown enters a Heavy that will carry Orion into space. 15-minute hold at the T-4 minute mark, L-0 hours 4 minutes – during which time the final go or no-go Terminal Countdown Begins polls are conducted. - The final built-in hold ends, and the clock L-0 hours 16 minutes – begins counting down the final minutes Orion Go or No-go Poll for Launch before launch. - The Lockheed Martin mission manager polls L-0 hours 0 minutes – the Mission Management Team for a final go Liftoff! or no-go for Orion’s launch. - Orion launches into space on its first flight test! December 2014 Timeline Overview 3 Orion Flight Test Flight: L+5 minutes 33 seconds – Stage 1 Separation L+1 minute 23 seconds – Max Q - The first stage of the Delta IV Heavy separates from the rest of the vehicle, while - Orion and the Delta IV Heavy experience the the second stage continues on with Orion. maximum dynamic pressure during ascent. L+5 minutes 49 seconds – L+1 minute 25 seconds – Second Stage Ignition #1 Mach 1 - The second stage of the Delta IV Heavy - Orion and the Delta IV Heavy reach the begins an 11-minute, 50-second engine speed of sound. burn to continue Orion’s ascent. L+3 minutes 56 seconds – L+6 minutes 15 seconds – Port and Starboard Common Booster Service Module Fairing Separation Cores Jettisoned - The three 13x14-ft. fairing panels that have - The boosters on either side of the rocket provided structural support and protected are released after their engines cut off at the service module through the first minutes the 3 minute, 56 second mark. of flight are pushed away from the vehicle L+5 minutes 30 seconds – to reduce Orion’s weight. Core Common Booster Core MECO - The main engines cut off on the remaining booster core. 4 Timeline Overview December 2014 Orion Flight Test L+6 minutes 20 seconds – L+2 hours 0 minutes 09 seconds – Launch Abort System Jettison SECO #2 - The system that would be used to pull future - The Delta IV Heavy second stage completes Orion crews away from their rocket during its engine burn, sending Orion on its way an emergency is jettisoned once Orion is to its peak altitude of 3,600 miles (5,800 safely through the most dynamic portion kilometers). of its launch. L+2 hours 05 minutes – L+17 minutes 39 seconds – Entering First High Radiation Period Secondary Engine Cutoff (SECO) #1 - Orion enters the first of two periods of - The Delta IV Heavy second stage engine intense radiation in the lower Van Allen Belt. shuts down as Orion arrives at its initial Its cameras are turned off during this period orbit, 115 x 552 miles (185 by 888 to protect them from damage. kilometers) above Earth. L+2 hours 20 minutes – L+1 hour 55 minutes 26 seconds – Leaving High Radiation Period Second Stage Ignition #2 - Orion rises above the most intense area of - The second stage of the Delta IV Heavy radiation it will travel through. Its cameras begins a 4-minute, 45-second engine burn are turned back on. to push Orion farther into orbit. December 2014 Timeline Overview 5 Orion Flight Test L+2 hours 40 minutes – L+3 hours 30 minutes – Reaction Control System Activation Entering Second High Radiation Period - The engines that will steer Orion once it has - Orion re-enters the area of intense radiation separated from the Delta IV Heavy second in the lower Van Allen Belt, this time going stage are activated. down instead of up. Its cameras will again L+3 hours 05 minutes – be turned off for protection. Peak Altitude L+3 hours 57 minutes 11 seconds – - Orion reaches its highest altitude of the Crew Module Translation Burn flight, 3,600 miles (5,800 kilometers) above - Orion’s reaction control system engines fire Earth and farther than any vehicle built for for 10 seconds to initiate its return to Earth. humans has been in more than 40 years. L+4 hours 05 minutes – L+3 hours 09 minutes – Leaving High Radiation Period Maneuver to Crew Module/Service Module - Orion falls below the most intense area Separation Attitude of radiation it will travel through. Its cameras - Orion moves into position for the separation are turned back on. of its service module and the Delta IV Heavy L+4 hours 13 minutes 35 seconds – second stage. Entry Interface L+3 hours 23 minutes 41 seconds – - Orion reaches the upper limits of Earth Crew Module/Service Module Separation atmosphere, which generates heat as - The Orion crew module separates from its Orion passes through it at
Recommended publications
  • The Surrender Software
    Scientific image rendering for space scenes with the SurRender software Scientific image rendering for space scenes with the SurRender software R. Brochard, J. Lebreton*, C. Robin, K. Kanani, G. Jonniaux, A. Masson, N. Despré, A. Berjaoui Airbus Defence and Space, 31 rue des Cosmonautes, 31402 Toulouse Cedex, France [email protected] *Corresponding Author Abstract The autonomy of spacecrafts can advantageously be enhanced by vision-based navigation (VBN) techniques. Applications range from manoeuvers around Solar System objects and landing on planetary surfaces, to in -orbit servicing or space debris removal, and even ground imaging. The development and validation of VBN algorithms for space exploration missions relies on the availability of physically accurate relevant images. Yet archival data from past missions can rarely serve this purpose and acquiring new data is often costly. Airbus has developed the image rendering software SurRender, which addresses the specific challenges of realistic image simulation with high level of representativeness for space scenes. In this paper we introduce the software SurRender and how its unique capabilities have proved successful for a variety of applications. Images are rendered by raytracing, which implements the physical principles of geometrical light propagation. Images are rendered in physical units using a macroscopic instrument model and scene objects reflectance functions. It is specially optimized for space scenes, with huge distances between objects and scenes up to Solar System size. Raytracing conveniently tackles some important effects for VBN algorithms: image quality, eclipses, secondary illumination, subpixel limb imaging, etc. From a user standpoint, a simulation is easily setup using the available interfaces (MATLAB/Simulink, Python, and more) by specifying the position of the bodies (Sun, planets, satellites, …) over time, complex 3D shapes and material surface properties, before positioning the camera.
    [Show full text]
  • Validation of Wind Tunnel Test and Cfd Techniques for Retro-Propulsion (Retpro): Overview on a Project Within the Future Launchers Preparatory Programme (Flpp)
    VALIDATION OF WIND TUNNEL TEST AND CFD TECHNIQUES FOR RETRO-PROPULSION (RETPRO): OVERVIEW ON A PROJECT WITHIN THE FUTURE LAUNCHERS PREPARATORY PROGRAMME (FLPP) D. Kirchheck, A. Marwege, J. Klevanski, J. Riehmer, A. Gulhan¨ German Aerospace Center (DLR) Supersonic and Hypersonic Technologies Department Cologne, Germany S. Karl O. Gloth German Aerospace Center (DLR) enGits GmbH Spacecraft Department Todtnau, Germany Gottingen,¨ Germany ABSTRACT and landing (VTVL) spacecraft, assisted by retro-propulsion. Up to now, in Europe, knowledge and expertise in that field, The RETPRO project is a 2-years activity, led by the Ger- though constantly growing, is still limited. Systematic stud- man Aerospace Center (DLR) in the frame of ESA’s Future ies were conducted to compare concepts for possible future Launchers Preparatory Program (FLPP), to close the gap of European launchers [2, 3], and activities on detailed inves- knowledge on aerodynamics and aero-thermodynamics of tigations of system components of VTVL re-usable launch retro-propulsion assisted landings for future concepts in Eu- vehicles (RLV) recently started in the RETALT project [4, 5]. rope. The paper gives an overview on the goals, strategy, and Nevertheless, validated knowledge on the aerodynamic current status of the project, aiming for the validation of inno- and aerothermal characteristics of such vehicles is still lim- vative WTT and CFD tools for retro-propulsion applications. ited to a small amount of experimental and numerical inves- Index Terms— RETPRO, retro-propulsion, launcher tigations mostly on lower altitude VTVL trajectories, e. g. aero-thermodynamics, wind tunnel testing, CFD validation within the CALLISTO project [6, 7, 8]. Other studies were conducted to analyze the aerothermodynamics of a simplified generic Falcon 9 geometry during its re-entry and landing 1.
    [Show full text]
  • Report Resumes
    REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U.
    [Show full text]
  • Reusable Launch Vehicle Technology Program{
    Acta Astronautica Vol. 41, No. 11, pp. 777±790, 1997 # 1998 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0094-5765(97)00197-5 0094-5765/98 $19.00 + 0.00 REUSABLE LAUNCH VEHICLE TECHNOLOGY PROGRAM{ DELMA C. FREEMAN{ JR. and THEODORE A. TALAY} NASA Langley Research Center, Hampton, Virginia 23681-0001, USA R. EUGENE AUSTIN} NASA Marshall Space Flight Center, Marshall Space Flight Center, Alabama 35812-1000, USA (Received 25 April 1997) AbstractÐIndustry/NASA reusable launch vehicle (RLV) technology program eorts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Signi®cant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and oper- ational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 ¯ight systems and associated technology programs. It addresses the speci®c technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propul- sion, and subsystem operability enhancements. The recently concluded DC-XA test program demon- strated some of these technologies in ground and ¯ight tests. Contracts were awarded recently for both the X-33 and X-34 ¯ight demonstrator systems. The Orbital Sciences Corporation X-34 ¯ight test ve- hicle will demonstrate an air-launched reusable vehicle capable of ¯ight to speeds of Mach 8.
    [Show full text]
  • 1 Practical Rendezvous Scenario For
    PRACTICAL RENDEZVOUS SCENARIO FOR TRANSPORTATION MISSIONS TO CIS-LUNAR STATION IN EARTH–MOON L2 HALO ORBIT Naomi Murakami(1), Satoshi Ueda(1), Toshinori Ikenaga(1), Maki Maeda(1), Toru Yamamoto(1), and Hitoshi Ikeda(1) (1)Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan (1)+81-50-3362-3725, [email protected] Abstract: Plans to establish a new international space station in the vicinity of the Moon have drawn attention as a potential gateway for future missions. Assuming that such a station will be constructed, various rendezvous missions will be performed, including logistics flight and crew transportation missions. In the low Earth orbit (LEO), many logistics flight missions have been performed, such as the H-II Transfer Vehicle (HTV) and the Automated Transfer Vehicle (ATV) missions for the International Space Station (ISS), and rendezvous operation technology has been well established. However, in cis-lunar orbits, the dynamics of relative motion are different from those in LEOs, and the GPS- based navigation scheme, which is the key navigation method in LEO rendezvous missions, cannot be applied. Hence, a different type of rendezvous scheme is necessary for application to rendezvous missions in cis-lunar orbits. In this study, we suggest a practical rendezvous scenario for logistics flight missions to the future cis-lunar space station in the Earth–Moon L2 halo orbit and clarify the problems and requirements regarding guidance, navigation, and control (GN&C) for cis-lunar rendezvous. Keywords: Rendezvous, Cis-lunar station, Earth–Moon L2 halo, GN&C. 1. Introduction The updated Global Exploration Roadmap delivered by the International Space Exploration Coordination Group (ISECG) outlines strategies for human and robotic exploration to the Moon, asteroids, and Mars [1].
    [Show full text]
  • Orion First Flight Test
    National Aeronautics and Space Administration orion First Flight Test NASAfacts Orion, NASA’s new spacecraft Exploration Flight Test-1 built to send humans farther During Orion’s flight test, the spacecraft will launch atop a Delta IV Heavy, a rocket built than ever before, is launching and operated by United Launch Alliance. While into space for the first time in this launch vehicle will allow Orion to reach an altitude high enough to meet the objectives for December 2014. this test, a much larger, human-rated rocket An uncrewed test flight called Exploration will be needed for the vast distances of future Flight Test-1 will test Orion systems critical to exploration missions. To meet that need, NASA crew safety, such as heat shield performance, is developing the Space Launch System, which separation events, avionics and software will give Orion the capability to carry astronauts performance, attitude control and guidance, farther into the solar system than ever before. parachute deployment and recovery operations. During the uncrewed flight, Orion will orbit The data gathered during the flight will influence the Earth twice, reaching an altitude of design decisions and validate existing computer approximately 3,600 miles – about 15 times models and innovative new approaches to space farther into space than the International Space systems development, as well as reduce overall Station orbits. Sending Orion to such a high mission risks and costs. altitude will allow the spacecraft to return to Earth at speeds near 20,000 mph. Returning
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • This Boeing Team's Skills at Producing Delta IV Rocket Fairings Helped
    t’s usually the tail end of the rocket that gets all the early atten- other work. But they’d jump at the chance to work together again. tion, providing an impressive fiery display as the spacecraft is Their story is one of challenges and solutions. And they attribute hurled into orbit. But mission success also depends on what’s their success to Lean+ practices and good old-fashioned teamwork. Ion top of the rocket: a piece of metal called the payload fairing “The team took it upon themselves to make an excellent that protects the rocket’s cargo during the sometimes brutal ride product,” said program manager Thomas Fung. “We had parts to orbital speed. issues and tool problems, but the guys really stepped up and took “There’s no room for error,” said Tracy Allen, Boeing’s manu- pride and worked through the issues.” facturing production manager for a Huntington Beach, Calif., team The aluminum fairing team went through a major transition that made fairings for the Delta IV. The fairing not only protects the when Boeing merged its Delta Program with Lockheed Martin’s payload from launch to orbit but also must jettison properly for Atlas Program to form United Launch Alliance in 2006. deployment of the satellite or spacecraft. “There were a lot of process changes in the transition phase Allen and his colleagues built the 65-foot-long (20-meter-long) because we were working with a new company,” Fung said. “We aluminum isogrid fairings for the Delta IV heavy-lift launch vehicle. had part shortages because of vendor issues, and that caused The design was based on 41 similar fairings Boeing made for the an impact to the schedule.
    [Show full text]
  • Concept Study of a Cislunar Outpost Architecture and Associated Elements That Enable a Path to Mars
    Concept Study of a Cislunar Outpost Architecture and Associated Elements that Enable a Path to Mars Presented by: Timothy Cichan Lockheed Martin Space [email protected] Mike Drever Lockheed Martin Space [email protected] Franco Fenoglio Thales Alenia Space Italy [email protected] Willian D. Pratt Lockheed Martin Space [email protected] Josh Hopkins Lockheed Martin Space [email protected] September 2016 © 2014 Lockheed Martin Corporation Abstract During the course of human space exploration, astronauts have travelled all the way to the Moon on short flights and have logged missions of a year or more of continuous time on board Mir and the International Space Station (ISS), close to Earth. However, if the long term goal of space exploration is to land humans on the surface of Mars, NASA needs precursor missions that combine operating for very long durations and great distances. This will allow astronauts to learn how to work in deep space for months at a time and address many of the risks associated with a Mars mission lasting over 1,000 days in deep space, such as the inability to abort home or resupply in an emergency. A facility placed in an orbit in the vicinity of the Moon, called a Deep Space Transit Habitat (DSTH), is an ideal place to gain experience operating in deep space. This next generation of in-space habitation will be evolvable, flexible, and modular. It will allow astronauts to demonstrate they can operate for months at a time beyond Low Earth Orbit (LEO). The DSTH can also be an international collaboration, with partnering nations contributing elements and major subsystems, based on their expertise.
    [Show full text]
  • Lunar Programs
    LUNAR PROGRAMS NASA is leading a sustainable return to the Moon Aerospace is partnered with NASA to with commercial and international partners to return humans to the Moon in every expand human presence in space and gather phase and journey, including the: new knowledge and opportunities. In 2017, Space › Planning and supporting the Policy Directive-1 called for a renewed emphasis on first lifecycle review of the commercial and international partnerships, return Gateway Initiative of humans to the Moon for long-term exploration and utilization followed by human missions to Mars. › Design, systems engineering and Aerospace is partnered with NASA in this endeavor integration, and operational concepts and is involved in every phase and journey. of the EVA system Artist’s conception of a gateway habitat. Image credit: NASA Humans must return to the moon for long-term › Ground testing of the NEXTStep deep exploration and utilization of deep space, but lunar space habitat module prototypes exploration is more than a stepping stone to Mars missions. The phased plan includes › Design and test of the Orion sending missions to the moon and cislunar space for exploration and study, and the capsule avionics construction of the Deep Space Gateway, a space station intended to orbit the moon. Aerospace provides support to these missions in areas such as systems engineering and integration, program management, and various subsystem expertise. Current Lunar Programs GATEWAY INITIATIVE NASA’s Gateway is conceived to be an exploration and science outpost in orbit around the moon that will enable human crewed missions to both cislunar space and the moon’s surface, meet scientific discovery and exploration objectives, and demonstrate and prove enabling technologies through commercial and international partnerships.
    [Show full text]
  • A Review of Current Research in Subscale Flight Testing and Analysis of Its Main Practical Challenges
    aerospace Article A Review of Current Research in Subscale Flight Testing and Analysis of Its Main Practical Challenges Alejandro Sobron * , David Lundström and Petter Krus Department of Management and Engineering, Division of Fluid and Mechatronic Systems, Linköping University, SE-58183 Linköping, Sweden; [email protected] (D.L.); [email protected] (P.K.) * Correspondence: [email protected]; Tel.: +46-1328-1893 Abstract: Testing of untethered subscale models, often referred to as subscale flight testing, has traditionally had a relatively minor, yet relevant use in aeronautical research and development. As recent advances in electronics, rapid prototyping and unmanned-vehicle technologies expand its capabilities and lower its cost, this experimental method is seeing growing interest across academia and the industry. However, subscale models cannot meet all similarity conditions required for simulating full-scale flight. This leads to a variety of approaches to scaling and to other alternative applications. Through a literature review and analysis of different scaling strategies, this study presents an overall picture of how subscale flight testing has been used in recent years and synthesises its main issues and practical limitations. Results show that, while the estimation of full-scale characteristics is still an interesting application within certain flight conditions, subscale models are progressively taking a broader role as low-cost technology-testing platforms with relaxed similarity constraints. Different approaches to tackle the identified practical challenges, implemented both by the authors and by other organisations, are discussed and evaluated through flight experiments. Citation: Sobron, A.; Lundström, D.; Keywords: subscale flight testing; similarity; scale model; remotely piloted aircraft; demonstration; Krus, P.
    [Show full text]
  • + Part 10: Test and Evaluation
    10. Test and Evaluation 10.1 Approach Architecture Design, Development, Test, and Evaluation (DDT&E) schedule, costs, and risk are highly dependent on the integrated test and evaluation approach for each of the major elements. As a part of the Exploration Systems Architecture Study (ESAS), a top-level test and evaluation plan, including individual flight test objectives, was developed and is summarized in this section. The test and evaluation plan described here is derived from the Apollo Flight Test Program of the 1960s. A more detailed test and evaluation plan will be based on detailed verification requirements and objectives documented in specifications and verification plans. In order to support schedule, cost, and risk assessments for the reference ESAS architecture, an integrated test and evaluation plan was developed to identify the number and type of major test articles (flight and ground) and the timing and objectives of each major flight test, including facilities and equipment required to support those tests. This initial plan is based on the Apollo Program and the ESAS Ground Rules and Assumptions (GR&As)—including the human- rating requirements from NASA Procedural Requirements (NPR) 8705.2A, Human-Rating Requirements for Space Systems. 10. Test and Evaluation 645 10.2 Ground Rules and Assumptions ESAS GR&As establish the initial set of key constraints to testing. Although all ESAS GR&As are considered, the specific ones listed below are particularly significant, as they deal with schedule and testing/qualification assumptions. • The crew launch system shall facilitate crew survival using abort and escape. There will be three all-up tests of the Launch Abort System (LAS).
    [Show full text]