Article 127 Schapovaloff Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mcguire Center for Lepidoptera and Biodiversity
Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens. -
Studies on Mycosis of Metarhizium (Nomuraea) Rileyi on Spodoptera Frugiperda Infesting Maize in Andhra Pradesh, India M
Visalakshi et al. Egyptian Journal of Biological Pest Control (2020) 30:135 Egyptian Journal of https://doi.org/10.1186/s41938-020-00335-9 Biological Pest Control RESEARCH Open Access Studies on mycosis of Metarhizium (Nomuraea) rileyi on Spodoptera frugiperda infesting maize in Andhra Pradesh, India M. Visalakshi1* , P. Kishore Varma1, V. Chandra Sekhar1, M. Bharathalaxmi1, B. L. Manisha2 and S. Upendhar3 Abstract Background: Mycosis on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), infecting maize was observed in research farm of Regional Agricultural Research Station, Anakapalli from October 2019 to February 2020. Main body: High relative humidity (94.87%), low temperature (24.11 °C), and high rainfall (376.1 mm) received during the month of September 2019 predisposed the larval instars for fungal infection and subsequent high relative humidity and low temperatures sustained the infection till February 2020. An entomopathogenic fungus (EPF) was isolated from the infected larval instars as per standard protocol on Sabouraud’s maltose yeast extract agar and characterized based on morphological and molecular analysis. The fungus was identified as Metarhizium (Nomuraea) rileyi based on ITS sequence homology and the strain was designated as AKP-Nr-1. The pathogenicity of M. rileyi AKP-Nr-1 on S. frugiperda was visualized, using a light and electron microscopy at the host-pathogen interface. Microscopic studies revealed that all the body parts of larval instars were completely overgrown by white mycelial threads of M. rileyi, except the head capsule, thoracic shield, setae, and crotchets. The cadavers of larval instars of S. frugiperda turnedgreenonsporulationand mummified with progress in infection. -
Contribution to the Knowledge of Pathogenic Fungi of Spiders In
Rev Argent Microbiol. 2017;49(2):197---200 R E V I S T A A R G E N T I N A D E MICROBIOLOGÍA www.elsevier.es/ram BRIEF REPORT Contribution to the knowledge of pathogenic fungi of spiders in Argentina. Southernmost record in the world a,∗ a a a Romina G. Manfrino , Alda González , Jorge Barneche , Julieta Tornesello Galván , b a Nigel Hywell-Jones , Claudia C. López Lastra a Centro de Estudios Parasitológicos y de Vectores (CEPAVE), UNLP-CONICET, La Plata, Argentina b Bhutan Pharmaceuticals Private Limited, Thimphu, Bhutan Received 23 February 2016; accepted 29 October 2016 Available online 23 March 2017 KEYWORDS Abstract The aim of this study was to identify entomopathogenic fungi infecting spiders Spiders; (Araneae) in a protected area of Buenos Aires province, Argentina. The Araneae species identi- Pathogens; fied was Stenoterommata platensis. The pathogens identified were Lecanicillium aphanocladii Fungi; Zare & W. Gams, Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, Hywel Jones & Biodiversity Samson and Ophiocordyceps caloceroides (Berk & M.A. Curtis). This study constitutes the south- ernmost records in the world and contributes to expanding the knowledge of the biodiversity of pathogenic fungi of spiders in Argentina. © 2016 Asociacion´ Argentina de Microbiolog´ıa. Published by Elsevier Espana,˜ S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/). PALABRAS CLAVE Aporte al conocimiento de los hongos patógenos de aranas˜ en Argentina. El registro Aranas;˜ más austral del mundo Patógenos; Hongos; Resumen El objetivo de este estudio fue identificar hongos entomopatógenos de aranas˜ en Biodiversidad un área protegida de la provincia de Buenos Aires, Argentina. -
Entomopathogenic Fungal Identification
Entomopathogenic Fungal Identification updated November 2005 RICHARD A. HUMBER USDA-ARS Plant Protection Research Unit US Plant, Soil & Nutrition Laboratory Tower Road Ithaca, NY 14853-2901 Phone: 607-255-1276 / Fax: 607-255-1132 Email: Richard [email protected] or [email protected] http://arsef.fpsnl.cornell.edu Originally prepared for a workshop jointly sponsored by the American Phytopathological Society and Entomological Society of America Las Vegas, Nevada – 7 November 1998 - 2 - CONTENTS Foreword ......................................................................................................... 4 Important Techniques for Working with Entomopathogenic Fungi Compound micrscopes and Köhler illumination ................................... 5 Slide mounts ........................................................................................ 5 Key to Major Genera of Fungal Entomopathogens ........................................... 7 Brief Glossary of Mycological Terms ................................................................. 12 Fungal Genera Zygomycota: Entomophthorales Batkoa (Entomophthoraceae) ............................................................... 13 Conidiobolus (Ancylistaceae) .............................................................. 14 Entomophaga (Entomophthoraceae) .................................................. 15 Entomophthora (Entomophthoraceae) ............................................... 16 Neozygites (Neozygitaceae) ................................................................. 17 Pandora -
ABSTRACTS Iguassu Falls 04-08 July 2016 GENERAL COORDINATION Paulo Henrique Gorgatti Zarbin – UFPR, Brazil
ABSTRACTS Iguassu Falls 04-08 July 2016 GENERAL COORDINATION Paulo Henrique Gorgatti Zarbin – UFPR, Brazil LOCAL ORGANIZING COMMITTEE (BRAZIL) Antonio Euzébio Goulart Santana – Universidade Federal de Alagoas, Brazil Camila Borges da Cruz Martins - Universidade Federal do Paraná, Brazil Carla Fernanda Fávaro - Universidade Estadual de Santa Cruz, Brazil José Mauricio Simões Bento – ESALQ/Universidade de São Paulo, Brazil Maria Fátima das G. F. da Silva – Universidade Federal de São Carlos, Brazil Miryan Denise Araújo Coracini - Universidade Estadual do Oeste do Paraná, Brazil ISCE REPRESENTATIVE Ann Marie Ray - Xavier University, USA Kenneth F. Haynes - University of Kentucky, USA Walter Soares Leal, University of California, USA ALAEQ REPRESENTATIVE Jan Bergmann - Pontificia Universidad Católica de Valparaiso, Chile Marcelo Gustavo Lorenzo - Fundação Oswaldo Cruz, Brazil Pablo Guerenstein - Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina SCIENTIFIC COMMITTEE Andrés Gonzáles Ritzel - Facultad de Química, Uruguay Angel Guerrero - Consejo Superior de Investigaciones Cientificas, Spain Alvin Kah Wei Hee - Universiti Putra Malaysia, Malaysia Baldwyn Torto - International Centre of Insect Physiology and Ecology, Kenya Christer Löfstedt - Lund University, Sweden Eraldo Rodrigues de Lima - Universidade Federal de Viçosa, Brazil Jeffrey Aldrich - University of California, USA Paulo Henrique Gorgatti Zarbin - UFPR, Brazil Stefano Colazza - Universita degli Studi di Palermo, Italy Stefan Schulz - Technische Universitat Braunschweig, -
Nomuraea Rileyi
Nomuraea rileyi (Hypocreales: Clavicipitaceae) in Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae in Brazil Author(s): Victor Hugo Duarte da Costa, Marcus Alvarenga Soares, Francisco Andrés Dimaté Rodríguez, José Cola Zanuncio, Isabel Moreira da Silva and Fernando Hercos Valicente Source: Florida Entomologist, 98(2):796-798. Published By: Florida Entomological Society https://doi.org/10.1653/024.098.0263 URL: http://www.bioone.org/doi/full/10.1653/024.098.0263 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Nomuraea rileyi (Hypocreales: Clavicipitaceae) in Helicoverpa armigera (Lepidoptera: Noctuidae) larvae in Brazil Victor Hugo Duarte da Costa1, Marcus Alvarenga Soares1,*, Francisco Andrés Dimaté Rodríguez2, José Cola Zanuncio2, Isabel Moreira da Silva3, and Fernando Hercos Valicente4 Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a prominent lation (Fig. 1) (Tang et al. 1999). After sporulation, spores were sampled polyphagous pest in many global agricultural systems. -
The Phylogenetic Placement of Hypocrealean Insect Pathogens in the Genus Polycephalomyces: an Application of One Fungus One Name
fungal biology 117 (2013) 611e622 journal homepage: www.elsevier.com/locate/funbio The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: An application of One Fungus One Name Ryan KEPLERa,*, Sayaka BANb, Akira NAKAGIRIc, Joseph BISCHOFFd, Nigel HYWEL-JONESe, Catherine Alisha OWENSBYa, Joseph W. SPATAFORAa aDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA bDepartment of Biotechnology, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan cDivision of Genetic Resource Preservation and Evaluation, Fungus/Mushroom Resource and Research Center, Tottori University, 101, Minami 4-chome, Koyama-cho, Tottori-shi, Tottori 680-8553, Japan dAnimal and Plant Health Inspection Service, USDA, Beltsville, MD 20705, USA eBhutan Pharmaceuticals Private Limited, Upper Motithang, Thimphu, Bhutan article info abstract Article history: Understanding the systematics and evolution of clavicipitoid fungi has been greatly aided by Received 27 August 2012 the application of molecular phylogenetics. They are now classified in three families, largely Received in revised form driven by reevaluation of the morphologically and ecologically diverse genus Cordyceps. 28 May 2013 Although reevaluation of morphological features of both sexual and asexual states were Accepted 12 June 2013 often found to reflect the structure of phylogenies based on molecular data, many species Available online 9 July 2013 remain of uncertain placement due to a lack of reliable data or conflicting morphological Corresponding Editor: Kentaro Hosaka characters. A rigid, darkly pigmented stipe and the production of a Hirsutella-like anamorph in culture were taken as evidence for the transfer of the species Cordyceps cuboidea, Cordyceps Keywords: prolifica, and Cordyceps ryogamiensis to the genus Ophiocordyceps. -
Article ISSN 1179-3163 (Online Edition)
Phytotaxa 379 (1): 066–072 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.379.1.6 Akanthomyces araneogenum, a new Isaria-like araneogenous species WAN-HAO CHEN1, 3, CHANG LIU2, YAN-FENG HAN3, JIAN-DONG LIANG1 & ZONG-QI LIANG3* 1Department of Microbiology, Basic Medical School, Guiyang University of Chinese Medicine, Guiyang, Guizhou 550025, China 2School of Pharmacy, Guiyang University of Chinese Medicine, Guiyang, Guizhou 550025, China 3 Institute of Fungus Resources, Guizhou University, Guiyang, Guizhou 550025, China * Corresponding author: [email protected] Abstract During a survey of araneogenous fungi from Guizhou Province, China, a new species, Akanthomyces araneogenum, was isolated from a spider, Araneus sp. It differs from other Akanthomyces species by its spider host, Isaria-like conidiogenous structure, and mostly globose and smaller conidia (1.6–2.2 μm). Multi-locus (ITS, LSU, RPB1, RPB2 and TEF) phylogenetic analysis confirmed that A. araneogenum is distinct from other species. The new species is formally described and illustrated, and compared with similar species. Keywords: Isaria-like, morphology, phylogeny, spider Introduction Araneogenous or araneopathogenic fungi are spider-pathogenic fungi (Evans & Samson 1987). They have distinctive bioactive compounds due to their specific nutritional preference and unique hosts that show great potential for applications in medicine and health (Humber 2008, Molnár et al. 2010, Chen et al. 2017). These bioactive compounds include cyclopeptides (Lang et al. 2005), alkaloids (Isaka et al. 2010, 2013, Fukuda et al. 2014), carboxamide derivatives (Helaly et al. 2017), and especially exo-biopolymers, which have great potential for application development (Madla et al. -
Interactions Between Fungal-Infected Helicoverpa Armigera and the Predator Chrysoperla Externa
insects Article Interactions between Fungal-Infected Helicoverpa armigera and the Predator Chrysoperla externa Pamella Mingotti Dias 1,* , Elisângela de Souza Loureiro 1,2 , Luis Gustavo Amorim Pessoa 2 , Francisco Mendes de Oliveira Neto 2 , Ricardo Alexandre de Souza Tosta 2 and Paulo Eduardo Teodoro 2 1 Graduate Program in Entomology and Biodiversity Conservation (PPGECB), Universidade Federal da Grande Dourados, Dourados MS 79.804-970, Brazil; [email protected] 2 Agronomy Universidade Federal of Mato Grosso do Sul (CPCS), Chapadão do Sul MS 79.560-000, Brazil; [email protected] (L.G.A.P.); [email protected] (F.M.d.O.N.); [email protected] (R.A.d.S.T.); [email protected] (P.E.T.) * Correspondence: [email protected] Received: 27 June 2019; Accepted: 6 September 2019; Published: 20 September 2019 Abstract: The aim of the present study was to evaluate the interactions between Chrysoperla externa (Hagen, 1861) and the eggs and first-instar larvae of Helicoverpa armigera (Hübner 1805) infected by entomopathogenic fungi. The H. armigera eggs and larvae were treated with sterile distilled water + 0.01% Tween 80 (T1, control), Beauveria bassiana (Bals.) Vuill (T2), Metarhizium anisopliae (Metsch.) Sorok (T3), or Metarhizium rileyi (Farlow) Samson. (T4) at different concentrations (1 107, × 1 108, and 1 109 con. mL 1). For each treatment, a single third-instar C. externa was offered prey × × − (a combination of 80 eggs and 50 first-instar H. armigera larvae) at 0, 24, and 48 h after inoculation. Ten trials were completed for each treatment, and the entire experiment was repeated three times. -
Book of Abstracts O
Asociación Latino Americana de Ecología Química Associação Latino Americana de Ecologia Química Latin American Association of Chemical Ecology Book of Abstracts October 23-26, 2018, Valparaíso, Chile O 5th Congress of the Latin American Association of Chemical Ecology (ALAEQ) October 23-26, 2018 Valparaíso, Chile Organized by Latin American Association of Chemical Ecology (ALAEQ) 2 TABLE OF CONTENTS Sponsors 4 Organizing Committee 5 Coordination Congress 5 Support Congress 5 Scientific Committee 6 Welcome Letter 7 Emergency plan infographic 8 Security zone 9 Program 13 Abstracts of Conferences 23 Abstracts of Symposiums 30 Abstracts of Oral Presentations 56 Abstracts of Posters 80 List of Authors 164 List of Participants 169 3 SPONSORS LINKS Website: www.alaeq5.ucv.cl Follow us: - 5th Congress ALAEQ - ALAEQ 4 ORGANIZING COMMITTEE Dr. Jan Bergmann – Pontificia Universidad Católica de Valparaíso, Chile. Dr. Eduardo Fuentes-Contreras – Universidad de Talca, Chile. Dra. Marcia González-Teuber – Universidad de Santiago de Chile, Chile. Dr. Cristian Villagra – Universidad Metropolitana de las Ciencias de la Educación, Chile. COORDINATION CONGRESS Dra. Waleska Vera Quezada – Universidad de Valparaíso, Chile. SUPPORT CONGRESS Abel Felipe de Oliveira Queiroz – PhD student of Chemistry and Biotechnology – Universidade Federal de Alagoas, Brazil. Claudio Navarro – Bach. of Education and Pedagogy in Biology in Natural Sciences – Universidad Metropolitana de las Ciencias de la Educación, Chile. Patricia Henríquez – M.Sc Entomology – Universidad Metropolitana de las Ciencias de la Educación, Chile. 5 SCIENTIFIC COMMITTEE Dra. Maria Sol Balbuena – Universidad de Buenos Aires, Argentina. Dra. Nancy Barreto – Corporación Colombiana de Investigación Agropecuaria, Colombia. Dra. Romina Barrozo – Universidad de Buenos Aires, Argentina. Dr. José Mauricio Simões Bento – Universidade de São Paulo, Brazil. -
Hydration Levels on Conidial Production of Metarhizium Rileyi (Ascomycota) in Solid Growing Medium
LOUREIRO, E. S.; PESSOA, L. G. A.; DIAS, P. M.; RIBEIRO, M. P.; TOSTA, R. A. S.; TEODORO, P. E. Hydration levels on conidial production of Metarhizium rileyi (Ascomycota) in solid growing medium. Revista de Agricultura Neotropical, Cassilândia-MS, v. 6, n. 3, p. 48-52, jul./set. 2019. ISSN 2358-6303. Hydration levels on conidial production of Metarhizium rileyi (Ascomycota) in solid growing medium pical o Elisângela de Souza Loureiro1, Luis Gustavo Amorim Pessoa1, Pamella Mingotti Dias2, 1 1 1 Neotr Muller De Paula Ribeiro , Ricardo Alexandre de Souza Tosta , Paulo Eduardo Teodoro 1 Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brasil. E-mail: [email protected], [email protected], [email protected], [email protected], cultura [email protected] 2 Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brasil. E-mail: [email protected] Agri de Received: 08/08/2018; Accepted: 30/05/2019. ABSTRACT This study aimed to evaluate the conidial production of Metarhizium rileyi in rice with different water volumes. Revista The bioassay was composed by completely randomized design (CRD), with four treatments (20, 30, 40 and 50 mL of distilled water), being added 100 g of rice thin and long, making a total of 10 plastic bags per treatment, which were autoclaved for 15 minutes at 1.0 atm pressure, to 120 ºC. After the cooling of the rice, were added in each plastic bag, 2.0 mL of suspension containing 1 × 108 conidia mL-1. Then the bags were incubated for ten days in a germination chamber (BOD type) at 25 °C (±1 °C), 80% (±10%) relative humidity and 12h photoperiod to promote conidial germination and growth of the fungus, being performed a mild agitation every two days. -
Nilton José Sousa
1 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE CIÊNCIAS FLORESTAIS NILTON JOSÉ SOUSA MEMORIAL DESCRITIVO Memorial Descritivo submetido à CPPD como parte do processo de Promoção Funcional da classe de Professor Associado IV para Titular. Resoluções no 10/14 e no 15/14 – CEPE CURITIBA 2020 2 Sumário 1. APRESENTAÇÃO.................................................................................................................... 3 2. DADOS PESSOAIS................................................................................................................... 3 3. FORMAÇÃO ACADÊMICA................................................................................................... 4 4. ATUAÇÃO PROFISSIONAL.................................................................................................. 4 5. ATIVIDADES DE ENSINO E ORIENTAÇÃO..................................................................... 5 5.1 Ensino de Graduação.............................................................................................................. 5 5.2 Ensino de Pós-Graduação.......................................................................................................6 5.3 Orietações e co-orientações de trabalhos concluídos........................................................... 6 5.4 Orientações e co-orientações em andamento........................................................................ 8 6. PRODUÇÃO INTELECTUAL............................................................................................