CEA-N-2548 (E)

-Note CEA-N-2548 (E)

Centre d'Etudes Nucléaires de Saclay Institut de Recherche Technologique et de Développement Industriel Division d'Etudes de Séparation Isotopique et de Chimie Physique Département de Physico-Chimie Service de Physico-Chimie des Matériaux Section de Physico-Chimie des Solides

DATA AND PROPERTIES OF ALUMINATE y LiAt02

par

Charles DENUZIERE, Nicole ROUX

'Janvier 1988- Note ŒA-N-2548 (E) DESCRIPTION-MATIERE (mots ci thasaunisSIDON/INIS) m français en anglais

COMPOSES DU LITHIUM LITHIUM COMPOUNDS ALUMINATES ALUMINATES COUCHES FERTILES BREEDING BLANKETS DONNEES COMPILEES COMPILED DATA JIFFUSIVITE THERMIQUE THERMAL DIFFUSIVITY CONDUCTIVITE THERMIQUE THERMAL CONDUCTIVITY CHALEUR SPECIFIQUE SPECIFIC HEAT CONDUCTIVITE ELECTRIQUE ELECTRIC CONDUCTIVITY EXPANSION THERMIQUE THERMAL EXPANSION STRUCTURE CRISTALLINE CRYSTAL STRUCTURE MODULE DE YOUNG YOUNG MODULUS RESISTANCE A LA COMPRESSION COMPRESSIVE STRENGTH DURETE HARDNESS CHOC THERMIQUE THERMAL SHOCK FLUAGE CREEP DIAGRAMMES DE PHASE PHASE DIAGRAMS ENTHALPIE ENTHALPY ADSORPTION ADSORPTION EAU WATER HELIUM HELIUM COMPATIBILITE COMPATIBILITY ALLIAGE- Ni61 Cr22 Mo9 Nb4 Fe3 ALLOY-Ni61 Cr22 Mo9 Nb4 Fe3 ACIER-Cr17Ni12Mo3 STEEL Cr17Ni12Mo3 ALLIAGES A BASE DE TITANE TITANIUM BASE ALLOYS ALLIAGES D' ALUMINUM ALLOYS ALLIAGES D'ETAIN TIN ALLOYS ALLIAGES DE ZIRCONIUM ZIRCONIUM ALLOYS ACIERS FERRITIQUES FERRITIC STEELS EFFETS DES RAYONNEMENTS RADIATION EFFECTS GONFLEMENT SWELLING GROSSISSEMENT OU GRAIN GRAIN GROWTH PRODUITS DE FILIATION DAUGHTER PRODUCTS ACTIVATION ACTIVATION TRITIUM TRITIUM DIFFUSION DIFFUSION POINTS DE FUSION MELTING POINTS TENSION DE VAPEUR VAPOR PRESSURE DEPENDANCE EN TEMPERATURE TEMPERATURE DEPENDENCE STABILITE STABILITY NOTE CEA-N-2S48 (E) - Chartes DENUZIERE, Nicole ROUX

"PROPRIETES DE L'ALUMINATE DE LITHIUM >T LiAl02".

Sommaire - Dans ce rapport sont rassemblées et analysées les données de la littérature jusqu'au 1er juillet 1984, concernant les propriétés de l'aluminate de lithium t LiAlO , utiles pour l'étude de ce composé comme matériau de couverture tritigène pour réacteur de fusion.

1988 121p.

Commissariat à l'Energie Atomique - Franc?.

NOTE CEA-N-2548 (E) - Charles DENUZIERE, Nicole ROUX

"DATA AND PROPERTIES OF LITHIUM ALUMINATE S LiAl02".

Summary - In this report are gathered and analysed the literature data until july 1st, 1^84,

concerning the properties of lithium aluminate X LiAl02 relevant for the investigation of this compound as a tritium breeding material for a fusion reactor blanket.

1988 121 p.

Commissariat h l'Energie Atomique - France. - Note CEA-N-2548 (E) -

Centre d'Etudes Nucléaires de Saclay Institut de Recherche Technologique et de Développement Industriel Division d'Etudes de Séparation Isotopique et de Chimie Physique Département de Physico-Chimie Service de Physico-Chimie des Matériaux Section de Physico-Chimie des Solides

DATA AND PROPERTIES OF LITHIUM ALUMINATE 7 LiA102

par

Charles DENUZIERE, Nicole ROUX NOTE

This work was completed in november 1984. Sone relevant data, presented in the progress report of the European Fusion Technology program are not included because of too late receptior

The :r ormation is available in the report referenced EURFU/XII - 849/rT-BM1 : The development and testing of ceramic bre der materials. Nevertheless, a few results, recently obtained in CEA/OE ICP and which fill up a gap in literature have been included altt >ugh not yet published. THIS WORK HAS BEEN PREPARED FOR THE NET TEAM UNDER CONTRACT N° 161 / 84-5 / FU-F /NET PRELIMINARY REMARK

As stated in the contract, the purpose of this work is to provide a compilation of the available properties and experimental knowledge on lithium aluminate, LiAlOp, relevant for the use of this ceramic as a breeding material for a fusion reactor blanket. As also requested, an additional aim is to attempt a critical analysis of the data. This latter task can only be achieved if the reliability of the data can be assessed. Data on chemical compounds .in the solid state require, to be reliable, to be deduced from determinations performed on pure and structurally well-defined samples. The first requirement is rather obvious to experimentalists and is either met, in the literature reviewed here, or otherwise specified. The second is not as well recognised and generally not satisfied by experimentalists. Consequently without a detailed characterization of the test materials, interpretation and appreciation of results is hardly possible. Textural characterization, for instance, is of special concern in the present case, since most investigations on LiAlCU as a breeding material, are carried out on materials exhibiting porosity. Properties of specific interest in this study are greatly dependent on this parameter. Another fact therein related, is that discrepancies observed in some blatant cases may partly be explained by lacking or incomplete characterizations. CONTENTS

PHYSICAL PROPERTIES

DENSITY p

THERMAL DIFFUSIVITY p

SPECIFIC HEAT p

THERMAL CONDUCTIVITY p . Experimental results . Correlations

ELECTRICAL RESISTIVITY p

MELTING POINT p

THERMAL EXPANSION p

CRYSTALLOGRAPHIC DATA p . Crystal Structure . Stability region of a, 0, y forms

MECHANICAL PROPERTIES

YOUNG'S MODULUS p

ULTIMATE COMPRESSIVE STRENGTH p

HARDNESS p

THERMAL CREEP p

THERMAL SHOCK THERMODYNAMIC PROPERTIES

THERMODYNAMIC DATA p. 43 . Enthalpy of formation . Enthalpy of decomposition . Thermodynamic tables

VAPOUR PRESSURES p. 49

THERMAL STABILITY p. 57

SOLUBILITY OF ISOTOPES p. 58

PHASE DIAGRAMS p. 59 . Equilibrium diagram of the LiAlOp-Al-O., system . Estimated pressure - temperature diagram

INTERACTION WITH STRUCTURAL MATERIALS AND COOLANTS

ADSORPTION OF WATER p. 64

INTERACTION WITH WATER p. 66

INTERACTION WITH HELIUM AND AIR p. 67

COMPATIBILITY WITH AUSTENITIC AND FERRITIC STEELS p. 68

COMPATIBILITY WITH BERYLLIUM p. 71 IRRADIATION EFFECTS

EFFECTS OF IRRADIATION ON PHYSICAL AND MECHANICAL PROPERTIES, SWELLING, SINTERING CHARACTERISTICS, RESIDUAL TRITIUM p. 73

ACTIVATION PRODUCTS p. 80

TRITIUM DIFFUSIVITY p. 90

REFERENCES p. i02 FIGURES

1 Thermal diffusivity of y LiAlO- [4]

2 Thermal diffusivity of y LiA102 [4]

3 Specific heat [13]

4 Thermal conductivity [13]

5 Electrical resistivity [4]

6 Thermal expansion [13]

7 X-ray diffraction of the a, 8, y forms of LiA102 [2] [3] [19]

8 Dilatometric analysis curve [19]

9 Differential thermal analysis curve [19]

10 Stability of a, g forms to allotropie transformation into

YLiA102 [23]

11 Ultrasound velocity as a function of porosity [25]

12 Young's modulus versus porosity for y LiAlO- [25]

13 Ultimate compressive strength versus porosity and grain diameter [25] [29]

14 Ultimate compressive strength versus temperature [25] [29]

15 Thermal creep versus time [4]

16 BARIN-KNACKE thermodynamic tables [7] 17 JANAF's thermodynamic tables for solid LiA102 [8] [10]

18 JANAF's thermodynamic tables for liquid LiA102 [8] [10]

19 Op, Li, LiO, Li20 partial pressures versus temperature [31]

20 Comparative results of Li partial pressure over Y LiAlOp in a platinum Knudsen cell [13]

21 Li partial pressures over Y LiAlO- in Knudsen cells of different metals [38]

22 Li partial pressures over Y LiAlOp in the presence of stainless steel, its components and other metals [38]

23 Equilibrium diagram of the LiAlOp-Al-Og system [19]

24 Estimated pressure - temperature diagram for LiAlO» [11]

25 Weight gain of various LiAlO- samples exposed to air at room temperature [4]

26 Swelling under neutron irradiation versus grain diameter [25]

27 Size variations of samples under radiation [50]

28 Irradiation - induced swelling [51]

29 Irradiation - induced grain growth [51]

30 Potentially important activation chains with aluminum [53]

31 Potentially important activation chains with [53]

32 Activation products of aluminum [53] 33 Activation products of oxygen [53]

34 Tritium diffusion coefficients for LiAlOp according to OKULA and SZE [55]

35 Tritium diffusion coefficients for LiAlCL according to [56]

36 Data on tritium diffusion coefficients and activation energy for

LiA102

37 Tritium diffusion coefficient for LiAICL versus temperature

38 Tritium diffusion coefficients in LiAlCL [39] 1

PHYSICAL PROPERTIES 2

THEORETICAL DENSITY

Three crystalline varieties of LiAICL have been described. The corresponding densities, calculated from X-ray data, have been reported in several studies and revised.

References [1][2][3] give the following values of density :

a LiA102 d = 3.403

8 LiA102 d = 2.679 Relation 1 Y LiAlO, d = 2.615 3

THERMAL DIFFUSIVITY

B. RASNEUR et al [4] give results of thetmal diffusivity measurements performed in a helium atmosphere, using the laser pulse technique.

. Figure 1 shows the thermal diffusivity of y LiAlCL versus temperature in a heating-cooling cycle. The sample characteristics are :

phase Y LiA102

porosity 0.225 mean pore radius 0.035 y grain diameter 0.36 u

Figure 2 shows the results of three measurements, carried out in a different experiment on a sample with ^/ery similar characteristics

phase Y LiA102 porosity 0.24 mean pore radius 0.035 u grain diameter 0.33 y

From these three measurements, thermal diffusivity may be described as follows

a = -0.543 In _L_ relation 2 1800

_x 2 —1 a : thermal diffusivity in 10 m s t : temperature in °C 25°C < t < 600°C J . «3

4.5

4.8 ru

o 3. J

>»3.0

a» | §2.5 u. u. Q \ _,2.0 \ LU o r Ê 1.5 J =&*^*. C/~* 1.2 S>^ ^^ "- "^ 6 ^^ ~ m -

0.0 8 100 200 300 400 500 600 708 860 980 1080 TEMPERATURE IN °C

Figure 1 - THERMAL OIFFUSIVITY OF Y LiA10? [4] 5

o e

oc O =3 O h- 2 2

UJ o .*' o A

.* CNJ o < —I >- o u. o

c _ o

Co

P i /

/ 4- I CM <1)

m C\J

.s 2ui g_0T NI AlIAISndJia 1VWH3H1 6

SPECIFIC HEAT

The specific heat has been determined by :

. CHR1STENSEN [5] : see figure 3 - t:ie LiAlCL sample may have been not pure (mixed phase) - a drop calorimetry method was used for the measurement - the equation obtained is :

Cp = 0.335 + 4.39.10~5T - 9.10.103T"2 relation 3 298 < T < 1800 K

Cp in Kcal/Kg °K T in°K

. G. W. HOLLENBERG [6] : see figure 3 - the sample was pure YLiAlO- - a DSC-II Scanning calorimeter was used - the equation obtained is :

Cp = 0.250 + 9.6.10"5T - 4.3.103T"2 relation 4 398°K < T < 700°K

Cp in cal/g °K T in°K

. 8. RASNEUR et al [4] The measurements were performed on variously textured samples. Values above 400°C are consistent with one another , but differences of about 25% with respect to the average for different texture categories are not explained. 7

In a sample of porosity 22% and grain diameter 0.43u the vaiuss obtaired are as follows :

400°C : 0.330 cal/g°C 500°C : 0.348 cal/g°C 600°C : 0.365 cal/g°C 700°C : 0.383 cal/g°C

These results are fairly close to those of CHRISTENSEN as shown on figure 3 on which they have been added.

. Molar specific heat values are given by BARIN-KNACKE [7] (see figure 13) and in the JANAF tables [8] [10] (see figures 16 and 17). These tables give very similar results for the same temperatures to the above mentioned measurements.

. H. J. BYKER et al [11] give a molar specific heat equation based on the BARIN-KNACKE values :

Cp = 24,35106 + 0.0040882(T - 1000) relation 5

- 0.83333.10~6(T - 1000)2

800 < T < 1800 K

Cp in cal.mol" K~ T in°K Within the range considered the curve obtained merges with that of CHRISTENSEN.

In conclusion, above 400°C the CHRISTENSEN's and RASNEUR's results ire similar and relation 5 may be adopted ; at temperature below 400°C some uncertainty remains in the light of HOLLENBERG's results. TEMPERATURE

i -1

Ç=T£E =^ 'J.

=3= i » ' I ' i

1 -H-+ 1 -H- - -H- fcfcr =S I 1 i , l ! ? 5 -H-t- 5 I I 1 Tt 4—t- T-r +*- 32 PC 3S ±r±- -n- i I "-t t? î± lu. -H- T-+- =S^ •M- I i* 3 LECEND 50 -rrr •HoaCHRISTENSEN et a 1.1 -H-+sten- t 3o s H0LLENBERG I l I î I x±•t rM j +-r -G- _

0 100 200 300 400 SO0 «0 700 000 '.100 TEMPERATURE CO

Figure 3 - SPECIFIC HEAT OF Y LiAI02 [13] (+ RASNEUR'S POINTS) 9

THERMAL CONDUCTIVITY

Experimental results

The thermal conductivity values of figure 4 are given by :

- W. E. GURWELL [12]

. using a mixture of 50 to 75 % y LiAI02 and 50 to 25 %aLiA102 . density : 88.5 % theoretical density The atmospheric environment is not specified.

- 6. W. H0LLENBER6 [6]

Using a yLiAlO- sample : . of high purity . density 83.8 % theoretical density . grain size < 1 y Measurements were made in a helium environment.

- B. RASNEUR [4] gives thermal conductivity results calculated from thermal diffusivity and specific heat values determined on pure yLiAIOp samples of 0.22 porosity and 0.43 y grain diameter, in a helium environment. The same discrepancy as in the specific heat values is therefore observed. Mean values are as follows:

temperature diffusivity specific heat the.-mal conductivity umV1 cal/g°C W/m°C

400°C 0.75 0.330 2.1 500°C 0.67 0.348 2 600°C 0.60 0.365 1.9 10

Correlations

Several correlations have been proposed :

- on the basis of W. E. GURWELL's results :

from [13] : K = 3.59 - 6.85.10"3T + t.02.10"5T2 relation 6 100 < T < 827°C K in W/m°C T in °celsius Beyond 300°C the corresponding curve is divergent, ascending with respect to the experimental curve.

p We propose the equation (with a regression coefficient R = 1)

K = 5.73 - 0.59 In T relation 7

100 < T < 650°C

K in W/m°C T in ° celsius

- on the basis of G. W. HOLLENBERG's results :

from [13] : K = 5.75 - 1.79.10"2T + 3.41.10~5T2 relation 8

100 < T < 600°C

K in W/m°C T in °celsius Beyond 200°C, the corresponding curve diverges from the experimental cune.

We propose the equation (with a regression coefficient 0.98)

K = 9.71 - 1.20 In T relation 9

100°C < T < 500°C

K in W/m°C T in °celsius 11

General formulation

Results from W. E. GURWELL, G. W. HOLLENBERG, B. RASNEUR cannot be compared since the porosity of the samples on which the measurements were performed is different : 0.115, 0.162, 0.22 respectively. Porosity has to be taken into account in the expression of the thermal conductivity. A. ABDOU et al [15] first proposed an equation of the form

K = K + 1 " P relation 10 0 1 + BP

In fact, this equation does not fit the experimental results and has been changed by D. L. SMITH et al [14] for

K = 0.0147 + JL£L LJLI _— relation 11 T 1 + (1.95 - 7.10T)P

K in watt/cm °K. T in °K This equation was derived from the results of W. E. GURWELL.

Relation 11 fits to within 20 % the results of the three authors. 12

TEMPERATURE (T) 300 MO «00 TOO SCO WO 1000

300 330 TEMPERATURE

Figure 4 - THERMAL CONDUCTIVITY OF Y LiAlOp [13] (+ RASNEUR'S POINTS) 13

ELECTRICAL RESISTIVITY

The electrical resistivity of Y LiAlOp has been determined with a spot megohmeter by F. KLEIN [16]. The results are as follows :

T °C 100 200 300 400 500 600

13 p ohm-cm 9.10IJ 9.1012 3.75 109 3.107 2.1 106 4.5 105

However the samples used were not pure. Since the electrical resistivity is highly sensitive to impurities the results must be treated with all due reserve.

B. RASNEUR et al [4] give results of electrical resistivity measured

on pure Y LiA102 with the following characteristics :

. porosity : 0.259 . grain diameter : 0.42 M

5 In 0.5 10 Pa of Helium, results are as follows :

p ohm-cm TEMPERATURE °C 1 KHz 5 KHz

600 ° 6.23 103 5.93 103 500 ° 2.2^ io4 2.24 104 400 ° 1.31 105 1.34 105 300 ° 1.26 106 1.34 106 200 ° 3.49 107 3.93 107 14

The results are plotted on figure 5 under the form log a T as a i function of — T

o : conductance in Œ"1 cm" T in °K

There is a difference of several orders of magnitude with the results of F. KLEIN, which may be assigned to the difference in purity. 15

1 -

- 2 m

3 -

S _ A O H ^ I c: 0 -5K c

t-ia

o

I000°K 667°K 500° K 400°K 333°K i i * 10 15 20 25 30 10* T°K

Figure 5 - ELECTRICAL RESISTIVITY p OF LIA102 [4] 16

MELTING POINT OF LiAIOg

T = 1883 + 15 °K [10] relation 13

Melting heat AH = 21 + 2 Kcal/mole 17

THERMAL EXPANSION

Measurements ha«e been carried out by :

- F. A. HUMMEL [17] The sample used was not pure Y LiAlCL as shown by X-ray diffraction which indicated a second phase, possibly LiAlcCL. the thermal expansion coefficient is :

a = 12.4 10~6 °C~1 relation 14

25°C < T < 1000°C

- This result is confirmed by Y. S. T0UL0UKIAN [18].

- F. KLEIN [16], using a sample of particle size between 40M and 250u found that :

. thermal expansion is reversible . the expansion curves between 25 and 1100°C are two straight-line segments of similar slope, the change in slope occuring at 400 + 5°C.

Two coefficients are determined, somewhat inaccurately since the sample measured was not pure :

a, (25 - 400°C) = 1.05 + 0.05 10"5 °C"1 relation i5 a, (400 - 1100°C) = 1.1 + 0.05 10~5 °C"1 18

- G. W. HOLLENBERG [6] used a sample of pure Y LiA102. Purity was verified by X-ray.

. density 85 % theoretical density . grain size < 1 u

Data were obtained with a Theta dilatometer and closely matched the values presented by HUMMEL.

Both data can be described by the equation of [13] :

LTE % = 3.750 10"4 + 9.604 10'4T + 2.48 10"7T2 relation 16 100°C < T < 900°C

See figure 6 from [13], the thermal expansion curve versus temperature.

This relation may therefore be adopted. 19

TEMPERATURE (T)

400 909 OOfl TEMPERATURE (T)

Figure 6 - THERMAL EXPANSION OF Y LiAlO,,, COMPARISON WITH

LiAl508 [13] 20

CRYSTALLOGRAPHIC DATA

Crystal structure

X-ray data have been determined by several authors. 3 crystalline phases are reported :

a phase rhombohedric [19] hexagonal [20]

3 phase monoclinic [1][21] orthorhombic [2]

Y phase tetrahedric [19] tetragonal [3]

Corresponding lattice parameters, oensity, space group, number of atoms per unit cell are given.

A critical analysis was carried out by SUITER [13]. For the present work, it was revised and supplemented by P. CHARPIN [24],

The following table may finally be adopted. 21

a phase [20] 8 phase [2] Y phase [3]

Density (g/cm3, 298°K) 3.403 2.679 2.615

Lithium atom density

3 0.26 (g/cm ) 0.38 0.27

Crystal structure hexagonal orthorhombic tetragonal

0 Lattice parameters (A) a = 2.801 a = 5.283 a = 5.169 c = 14.216 b = 6.305 c = 6.268 c = 4.908

o Atomic distance (A) Li - 0 2.12 2.00 Al - 0 1.90 1.76

Space group R 3m Pna21 P 0r P 41212 432,2

Number of molecules Z = 3 Z = 4 Z = 4 per unit cell

Atoms per unit cell Li 3 4 4 Al 3 4 4 0 6 8 8 22

Figure 7 shows X-ray diffraction of u, S, y forms of LiA102 [20] [2] [3].

Stability region of a, B,Y form

. a-y forms :

According to A. M. LEJUS [19], the a-y transformation takes place at 900°C. A very large volume change is observed at the same time, in agreement with that calculated from crystallographic constants.

°3J Molecular volume ctLiAlO, : 32.205 A 2 o- J Molecular volume yLiAI02 : 42.210 A dV ~30% [22]

This transformation is revealed by differential dilatometric analysis (see figure 8 showing the amplitude of the a-y transformation anomaly at 900°C) and by differential thermal analysis (see figure 9 where a sharp endothermal peak at 900°C is observed). This temperature is confirmed by P. A. FINN [23].

The a-y transformation is a sluggish, irreversible structural rearrangement that can occur anywhere between 600 °C and 900 °C depending upon the rate of heating, time at temperature, and character of starting powder [13].

In theory, the a-y transformation is reversible, but this is only achieved under special conditions :

- mechanical stress of the y form at room temperature, by lenqthy crushing then annealing at 500°C ;

- compression at 850°C and 35 «bar of the yLiAIOp phase and quenching at room temperature [20]. 23

Figure 7 - X-RAY DIFFRACTION OF a, B, y, OF LiA102 [20], [2], [3]. 24

The stability region of the i-Y forms may be illustrated according to [16] as follows :

•*M30O#C \ I I • • ! •• T ! I • 5°I * I • I <* j_ ; Y t 25

. î form :

C. H. CHANG and J. I. MARGRAVE [21] synthesized =LiA102 at 370°C and 18 Kbars pressure as did K. DORHOFER [2] in order to reindex the powder diffraction pattern. Although this phase was stable at room temperature, subsequent heating to 710°C in air brought about an irreversible transformation to Y LiAI0~.

P. A. FINN [23] has studied the stability of the ot, 3 forms as a function of time, temperature and environment. The results are summed up in figure 10.

The 3-Y transformation in air thus takes place in less than 24 h within the 757°C-837°C range.

The temperature of transformation is lower when is present. 26

Al I •

0.1

0 -

900 Te

Figure 8 - DILATOMETRIC ANALYSIS CURVE OF Y LiAlOp [19] DATA AND PROPERTIES OF LITHIUM ALUMINATE LiAlO

November 1984

C. DENUZIERE DESICP/Plerrelatte - B. P. 171 - 30200 Bagnols-sur-Ceze

N. ROUX DESICP/Saclay - 91191 Gif-sur-Yvette cedex

Note 84 / 039 THIS WORK HAS BEEN PREPARED FOR THE NET TEAM UNDER CONTRACT N° 161 / 84-5 / FU-F /NET 27

exothermal

endothermai

T*. 300 600 900

Figure 9 - DIFFERENTIAL THERMAL ANALYSIS CURVE OF Y LiAlOp [19] 28

Phyticol characteristics of unrrcaftd LiAIO*

Surface Partiel* am dimension Alio trop* tn'/c) Partiel* shap« i«m) m-UMOt 60 Clumos of small parucies

The stobility of a» and 5-LiAIO; to allotropie transformation ta ->-LiAIO;

Alio» Temp Tim* trop* Environment CK) thr) Product

Air. 1110 «4 a Air 1210 40 7 Air. Li/K* 17$ 24 Yiaui', aim*)* HCH». LL'K 575 ISO aimaj.-yiai;* QOuLVYL 975 442 a COu IMK. 975 1062 T Air 1030 23 J Air 1110 24 y.0

' U/K * 62 avo LLCOi - 39 m/o K.CO» (55 w/o). 'ma • major •m» m mtamra

* HCH • U:, Hj-2Q

Figure 10 - STABILITY OF a, 6 FORMS TO ALLOTROPIC TRANSFORMATION

INTO Y LiA103 [233 29

MECHANICAL PROPERTIES 30

YOUNG'S MODULUS

- B. RASNEUR [25] measured Young's modulus on samples of various porosities. The Young's modulus E was obtained from the ultra-sound velocity C (1 MHz) by the formula :

2 E = pC , with p the apparent density.

C is a linear function of porosity, independent of grain diameter (figure 11) C = 12(0.7 - e) relation 17 with C in Km s

The Young's modulus versus porosity is plotted in figure 12 and compared with that obtained for alumina ; the following relation may be deduced :

E = 144 p (1 - e)(0.7 -e)2 relation 18

E in GPa Po = 2.615 g cm"3

- W. E. GURWELL E26] [27] quoted by [28] gives the following Young's modulus values for 2 porosities e = 0.16 E = 5.65 GPa e = 0.137 E = 5.93 GPa These values are very low compared with those of B. RASNEUR (e = 0.15, E = 97 GPa)

The value E = 52 GPa for e = 0.254 obtained from the ultra-sound velocity method by 8. RASNEUR is in good agreement with 50.5 GPa measured by the resonance frequency method, on an identical sample. Due to this consistency, more confidence may be placed in B.RASNEUR's results than in GURWELL's ones. \,

!..

6000

e

" 4000 o LU a o to ?000

0.1 0.2 0.3 0.4 POROSITY e

Figure 11 - ULTRA-SOUNDS VELOCITY C VERSUS POROSITY e IN LiA102 [25] 32

YOUNG'S MODULUS E

120 G?a

• ix

t so

• 40

- 20

% THEORETICAL DENSITY 0, 3 ;,3

POROSITY 3,5 0,4 0,3 0,2

Figure 12 - YOUNG'S MODULUS VERSUS POROSITY FOR yLiAI02 [25] 33

ULTIMATE COMPRESSIVE STRENGTH

B. RASNEUR [25] [29] studied the ultimate compressive strength on pure Y LiAlOp samples with various porosities and grain sizes

. at room temperature, the ultimate compressive strength c.s versus porosity e and grain diameter d is represented by the expression :

1l3e C.S = ^-~2 —e- relation 19

C.S in GPa d in micron figure 13 represents the iso-compressive strength curves in the porosity grain diameter diagram ;

. As a function of temperature relation 19 becomes :

-10 e „nn C.S = 2-rjT In h^L relation 20

C.S in GPa d in micron T in °Kelvin

The ultimate compiassive strength is plotted versus temperature on 34

- W. E. GURWELL [26] [27] quoted by [28] found the following results as a function of porosity. The grain diameter of the material is not taken into consideration and temperature is not mentioned but may be assumed to be room temperature.

C. S. C. S. C. S. C. S. e e £ £ MPa MPa MPa MPa

0.187 46.? 0.16 119.4 0.282 12.6 0.269 10.6

0.2 59.6 0.137 136 0.267 9.4 0.261 12.8

0.174 76.8 0.139 101.6 0.268 11.4

These values, somewhat scattered, are much lower than those reported by B. RASNEUR. General tendency matches B. RASNEUR's findings i.e the ultimate compressive strength varies inversely with porosity. POROSITV E

*».o*. o. 1 <),', lo so GRAIN DIAMETER IN y en Figure 13 - ULTIMATE COMPRESSIVE STRENGTH VERSUS POROSITY AND GRAIN DIAMETER [29] 36

300

û.

I 200 V)

GO GO UaJ a. *^. S • • ° 100 UJ'

i I u- 500° 1000° TEMPERATURE IN °C Figure 14 - ULTIMATE COMPRESSIVE STRENGTH VERSUS TEMPERATURE

FOR LiA102 OF 0.25 POROSITY AND 0.42y GRAIN DIAMETER [25] 37

û. o CM 300 C9 Z UJ ce. 200 u o o O o O y UJ ° - S "V ce a. 0 op ; § 100 o o ' 2 .•!

* ' • •••*• i-j. 0.1 10" 1.10" T°K

Figure 14 - ULTIMATE COMPRESSIVE STRENGTH VERSUS

TEMPERATURE FOR LiAI02 0F 0.25 POROSITY AND 0.42p GRAIN DIAMETER [25] 38

HARDNESS

F. KLEIN [16] measured the hardness of sintered Y LiA109 with a microhardness technique.

Microhardness was tested on samples obtained from powder of particle size 63u - 80 u and 24 hours sintering, in the range 100Q°C-12500C, 2 under pressures 0.5 to 10 T/cm .

The results are very scattered but the order of magnitude given is 12 to 20 Kg/mm2. 39

THERMAL CREEP

Results are given by B. RASNEUR et al [4] of measurements carried out at 700°C for 2 stress values 80 MPa and 100 MPa on cylindrical samples (10 mm diameter, 15 mm height) with the following characteristics :

. porosity : 0.25 . grain size : 0.42 u . pore radius : 0.047 u . ultimate compressive strength at 700°C 115 MPa

For the period of time explored, the following formulas may be deduced from the experimental results

- for a 80 MPa stress :

creep =— = -0.004529 In — relation 21 L 29

60 h < t < 1800 h

- for a 100 MPa stress :

— = -0.01354 In -L relation 22 L 72 200 h < t < 800 h

The results are plotted on the curves of figure 15. 80 MPa STRESS

** tOO MPa STRESS a. oce

0 500 tooo 1500 2000 o TIME IN HOURS

Figure 15 - THERMAL CR^EP OF LiA102 [4] AT 700 °C 41

THERMAL SHOCK

B. RASNEUR [4] gives results of thermal shock experiments carried out in helium by transfering between furnaces at various temperatures samples with the following characteristics :

- YLiAlOp : pure

- porosity : 0.265

- pore radius : 0.047 u

- grain diameter : 0.39 y

Conditions and observations :

- extreme temperatures 300 and 900°C (sample core temperatures 380 and 850°C) : the sample breaks ;

- extreme temperatures 400 and 800CC (core temperatures 450 and 750°C) : no change is observed. When subjected afterwards to the conditions of the first test, the sample remains intact but breaks when tested at 300-1100°C. 42

THERMODYNAMIC PROPERTIES THERMODYNAMIC DATA

Enthalpy of formation

- KOEHLER et al [9] give

. from oxides- :

VzLi20(c) + y*Al203 = LiA102(c) AH298°K = ~12-95 Kcal/mole

from elements

Li(c) + Al(c) + 02(g) = LiA102(g) AH298°K = "284.3 Kcal/mole

- K. W. CHASE et al [10] give

. from elements :

AH298°K = ~284-1 1 1 ^cal/mole

These values are in quite good agreement wi

- S. AR0NS0N [30] :

. from elements :

AH = -284.4 Kcal/mole 44

- IKEDA et ai [31] give

. from oxides :

Li20(c) + YA1203(C)* 2 7LiA102(c) AH298°K = ~106-3 KJ/niole

GUGGI et al [39] give

. from oxides :

AH298°K = "104-7 KJ/mole

These values are in good agreement.

Enthalpy of decomposition [31]

aH°298= 399 ± T2 Kj/raole relation 24 or 95.4 + 3 Kcal'/mole

for the decomposition reaction :

LiA102(c.1) = 0.78 Li(g) + 0.008 LiO(g)

+ 0.008 Li20(g) + 0.19 02 + 0.20 LiAl50g(c)

The equilibrium constant KT of this reaction is :

103 log KT = -(21.03 + 0.44)X lf-+ (6.45 + 0.01). relation 25 1723°K < T < 1923°K 45

Thermodynamic tables

- BARIN-KNACKE [7] see figure 16

- JANAF [8] [10] see figures 17 and 18

- D. J. SUITER [13] derives the following relations from [8] and [10] :

S°298 15= 12-75 cal/deg-mole relation 26

1 2 S°T - S°298 15 K = (cal/mole-K) = -1.972 X 10 + 7.836 X 10" T - 4.445 X 10'5T2 + 1.143 X 10"8T3 relation 27 for T = 300 - 1400 K

U v H - H (Kcal/mole) = 4 161 + 1 028 X 10 T T 298 15 K " - ' ' + 1.358 X 10"5T2 ••• 4.219 X 10"9T3 relation 28 for T = 300 - 1400 K

1 3 - (G°T - H°298 15)/T (cal/mole-K) = 1.159 X 10 - 2.789 X 10" T + 2.342 X .0"5T2 - 9.165 X 10"9T3 relation 29 VITHXU* M.UHÎÎ11TE

»K6S

SOV. C*> 22.069 2.«07 -5.977 291-1143

VIS CP 21. 1113- 220»

»*!$£ O tT 211.234 set. 29* 14.212 > 794.33 12.75 -214.131 300 14.390 '284.388 12.451 -231.155 299.949 488 19. «.94 -232.489 11.337 -235.704 154.388 SCO 21.132 -298.453 22.518 -291.7*1 127.537 «00 22.153 •274.283 24.529 -294.2C1 137.177 T30 22.444 '274.829 33.882 -297.831 52.758 180 23.441 -273.711 33.894 -388.114 82.819 988 23.947 -271.348 35.818 -383.448 73.744 1000 24.378 -244.924 34.434 -387.354 67.182 24.773 '244.444 48.774 -311.329 61.442 nao 25.142 '243.978 42.944 -315.587 57.449 1200 25.494 •251.43» 44. 974 -315.985 53.784 1300 25.134 •254.171 44.174 -324.494 50.443 14 80 24.144 '254.271 41.478 -329.274 47.982 1588 24.487 '253.539 SB.3S9 -334.229 45.448 1888 24.404 '253.924 51.994 -339.3*7 43.432 1788 27.117 53.525 -344.423 41.149 •244.278 -345.117 1S88 27.37V -244.817 54.753 48.524 18(3 3.184 4. 57.948 LZ3 1883 21.888 -244.317 -349.117 48.524 54.128 -358.104 48.2T7 1988 21.808 '233.448 59.284 2888 21.888 •237.540 -355.971 34.994 48.238 -341.943 37.473 2188 21.808 •235.448. 41.207 2288 21.888 • 233.340 -344.815 34.544

6. Symbols and abbreviations used in the tables

A,8,C,D: temperature coefficient» in UQ: "liquid pheso" the equation* for the molar U»: dacimaj lojanthm of the haat CP and the dacimaj vapour praaaurt P in Torr logarithm of the vapour tP»A10-T"'.Blo»T. pressure IP • C10"3T.D CP: molar haat in cal mol * MPT: melting point ui K decree"' P: vapour pressure in Torr CPtA. B- XO'h » C lO5!"2. RANGE: temperature range for tha • DlO-V intarpolatton formulaa for BPT: normal boillnj point in K CP and LP in K 8T: S function, REF. : "literature reference*" l(T) » -!03 C(T)/4.573T S: antropy in cal mol" decree" SEC. "decomposition" SOL: "solid phase" OPT: thermal oecompositijn tem- SOU A: » phaaa (A : », 9 : J, C : », paratura in K D: I, '.. A2: a2) G: free enthalpy m kcal mol'' 1 SPT: normal suBlimanof, tempera- sura in K H: 1 enthalpy in kcal mol* T: temperature m K L: haat of tranaformation in TPT: allotropie transformation kcal mol"' temperature in K

Figure 16 - BARIN-KNACKE THERMODYNAMIC TABLES FOR LiA102 AILI02

Lithium AluminaU ( L1AI Og ) UTMIVM «UMIMTI llUIO.k» ICIIITALI tfV • II.III! (Crystal) GFW - 65.9193

^>iA»l . kia>»< »."» «V r -te-w—vi •T- r« «Mr ter *-»•» • •0» .•M <«>!•••* • * **• . ft!. M» . m »«» IwMailt la • Itll I II t «Ma* • III • II k«l/aal IM 4.1*# 1 !.«»! Il • Il - 1. Ill tl* tit .tit ttt.ttt IM il 4*1 1.11» 14. M» - 1. mit* • Itl. lit • ii«. tit lit.*»! 1»» i*. • M II. Ml II • Il M» » It* IM • •**.itt 1*1. II* - " Blf« ajf tarât,»»?») M* i» III U.tt» II •Il tit It» 1*1 i«* •M l«*.t»l t . . «M |t.«M •(.•Il II 411 l.ll» It* II* i*« ttf 1**. til ft» kaa* at fataatlaa *f UAlt,<«l I» •»l»M«t aatarUaat». Ci.kll. «J» —t*r** la. ta* tl IM II.»»» l« »l» t. - It» «1* • it* **l 111.14* »»• - - IM«I »f f-;-««•• af UMItlll la NCIt««». TkU valtta, -a».t » t.tl kaal/aal, aaa walMl «Ilk a.»»r«4 »••<• .» «M II. 1*1 lt.»«l I» 4M • tl* . II» tit . m. •It tl. «11 «alalia* »f Altai» la HtllM» •*« UCIIal la NC|«.«> 111. Ta«M •»••• *r* •aaklM4< «a «In « Ma-},, • ••••» • • •!« It! Il Ml It.tll II III l.lll It» •tl I«I «It If.tit kaal/aal l*r •M •1 •«41 ll.lll 1* M* It Itl - It» III * MI 4*1 M* M» 414 til » It» «II * »M 14» *•.*«* »ï. II.IM II II •I.tl* AIUI • UCK«I • 1».» I, III • LUltytl • 1/1 ty»> • •*••"•» a,»faa,l. MM 14 M* M. «Il II. Ml IKIM - Itl. Ml • lll.tll It.ttl * * CMklaU* tata r«Nli .Itk nlM l.r iMf}, (UCI, a» <«>. «Mf llici-ll.i »,»» W. •"*" »'"i'tt«V' •' «J» - «•»«••" IIM l« II* «•.Ml l« «1* II • *l . - 1*4 •»» , III Ml 41. Itl ( |H «M* It 1*1 ti.nl I*.»*» t* 1*1 1*4 4*4 III II» 4t.4t« «N/^tUAlt,, a» • -II».1, I t.t kaal/Ml. IIM II ««.•«I Il .141 II • I* - It* 44* - II* 1*1 l».4l* KM 1*. **•1»* II.MI II «4* - It* It» • III Itl II. Mt Or»»» •« al. IJI Hmn< «M ka»« »t Mlallaa af UAIt,««l la «lasl «a4 «aMIaaa tkl» kail all» Ik* »«« af im M »«.»»» «1* II. - •II - I** Mt •«• «».»lt 1* •«« - 1*1. * It.tll aalutlaa at U,«lt> wl *»,«,•• H,»'*' •••••tlttl I» •'» »">i»» • ••••• • » *»""' '•' *** '••••"••M |ra<»i* I4M 1* «M »*-»!« II 1*1 ' M 41* . • •* Ml .. IM 141 II.4IC U,tt.l • M,»,!!, al - IUUO,(.» im 1* Ml »•-«»• »» • Il II Ml • II* IM - 1*» III It.»»» -..M,.*.'*.. -i CaahlalM lalt Mat alia •*;„(»].»,, tl • -»©•.• M*I/MI «al Uf {..M.t, *» • -1*1.1 ka.l/aal If.) m «lirai*!* talj,, «.m fit m "i •JW.I IUUI,, al • -!»».! • I kaal/aal la «aaa a ra»aaal allk-tka fara«r »!«*>. "a ka»« aaaalM « oalaa ar •••«.I I I »«.l/~l •Mroi* "Ifctttai I» - M.1*1 1* • 1* «Mil1 «14 »l*. »i» IIl»I W l*.l«» ( - - »»* far WW},, jjtUAl»,, «I. IIM !•.•«( II. Ml I» *«• «4 III . Ill »*• , II» .411 II.Ill IIM i* «I II • t* 41 II* III Itl l«» ll.*l« 0*» ««.*«» «t - m - liât a* «a .1*1 M .*•* «II - II* «** - • It l«l Kill l»tl i» .It» »l.»ll »».»»» M III - lit Ml » 1*1 III 11.11» IIM ll.*«t 41.411 49 411 II III * III «11 - III • It Il.t44 I— taaaaralara,IHI Miaalllaa Mva *»•» miml k* >la| «21 fit* ll-lll I. lalKalrr M*«nra>«ai« lira» ularlaalryl ka»a W.a aat* a» Oa-l«iaa«»a al al. «|> la Ik* raa|» III III! I. Ta»« l«a ••<• a» «•<• *«r>» mil la ^ «»M I* • •<• ll.lll . «1.1*4 •«.III . • 14 ttt . lit .III II.I*» Ira» •*.•«• 14.Ill «1.14 1 II III « II* 1*1 •» (II It* t.tll C» at III ». M ItaaalllM* a«r« 4*IM«*4 la tllkar *l»Jr. Tka «alrail I* «*fla«* fraa C| aaa M ••lr»»al<1l<* .f • M* i» ttt tl.M* 4» «Il «I .441 Itl .14* III .«It t.11» » • «.It glkka/aal. l*M M •*.1*1 «t. Il* •41 - 1*1 111 - Itl «tl l.tll f| MM • <• 44 .IM •• - - II ••• «I.I4I 1* Ml - Ml III - t« til I.tl* HiniM ttu «•Ml at al. <|> niid t »*rl*t af I* aalllai talal Mitartmalt M ILUt, la atilik lk*r ««««ralaat Ta • till t II ». Taa kaal a» faalaa la aaitaalaf ay aaalanr «Itk «lallar «aaaatatt*.

llhrtBTH I. t. r. Caaa>lla, i- «Mr. Cfcaa. Ma. JJ, till OHM. I. J. ». Caatalla, .1. tear. Chaa. *M. I|, •«>• llllll. I. JMUT TkaioaaaaaUal t»kla»i UCllal Ml*. I-IC-II. ». «. t. >«U. tor. tit. Taak. Mala 1T»-I «IIMI. I. r. «nil, t. tVUtlt M« C. M»rata, IMlMr M***r«fc ItilUal* l»»arl •< III/11/I/AM» III*. JAJUT Tkaraaakaaiaal Taklaai al » lal Ufa l-lt-ll| U,t l«| a»IM l-ll-l». I. | ) I. (. *. «I«|, t. M*v. Ckaa. fa*., XI, III» llllll. I. ». ». CVrltluiu, «. C. Caaaar uA I. I. I.H«», V. ». tar. "l«»» aa»l. Ia»».«. JHJ lllltl. ». I. ». tUml, I. I. ». tatlr* ant ». aatrlaf, t. »>«r. C»rM. *•»., «J. ••• »»•'•• *» ^j : TABLES (SOLID LiAlOg) [8] [10] AILiOo Lithiu* Aluninate (LtAlOp)

UWIIM 4UMIMH tU«lt(| (liqui d) GFW - 65.3193 «rv # II.H4I

llllfïl il *îii.»» * «»•••»• • •••• «ikM/Mi -—»»•••»•" t."« V r -«c*-w«^r •r-ir-. •vr tor U>t> ""ill.Il ' «•»«•••»• • «Il kctl/Ml • f • IMI • |» I »•»•• • III I || k*4|/M| ImN <*• 14.M* ii.«ï* ii.*i* .**• - 144.114 - 114.141 1*4.1*1 M* 14.1*1 ii.ti* 1I.W4 .*>• - 144.141 . 11«.*44 1*1.Ml ItU-tUxaults 4M •*.»»• II.«M 11.141 i.itt - }»*. 41* »»».»»» !•».»*« «M 11.11* il.M* >.*i* - 1*1.114 » I4I.I4I I*l.4|l TM *Hf2HIUM0,, tl . .,»,,„ i (.1 k..WM| ,. »•.*!» - t*n*tltm af liw *ry*«*l. II» 4441 .1 4M Il.lt> II.Ill 11.114 *.*I4 - 141.111 . 141.44» «».»»• IM il.m «4.»4I 11.1*4 - 141.44» • 111.14* I«.*4I *M »».»41 «l.ll* •4-1*1 I*.4»*.!•4• - 144.411 •. 111.4*1 tl III 4M Il.*«4 44.4» M. «Il 11.411 - 144. 444 • II*.44* 4».VI» l*M 1».I4* 41.4*4 IJ.44» •1.144 - 144.1*1 iK.in » «.*« - m to, u4,t HM it.lH 4».*l* 11.14* ll.*»l - 14».Ill . ll».lli »».4II un l».l«» II.*** «t.* 14 >*.I4I - 14*.41» II».14* 14.1*1 ..M r «.^.'../"•rirk.V' , r •• "" - ** "•-• «•••- • its» M-»«l I4.*t* 14.411 II.4I1 - 14*.44» - ll#.ll» 11.411 l«M »«.*«• »».»•• II.14* I4.*l« • 141.4*1 1*4.114 11.114 IIM >|.*4* II.IU I4.*I4 14.114 • 144.41* - 1*1.444 II.4II - •Hl'tr* tt» 144* Il.*•• 4».»»l 4*. 141 11.411 • 144.«Il . 141.44* II.**» II4C M.*«* 4».tO| «1.411 11.414 - IS*.1*1 . 141.111 14. IM »4* ll«l«,(i) <4kl* far titilla. ".•V. ...ihtfk... .r.l»!..•>.».. •»!« 44.*l» ""» «*:«'. ..ium I4IM*M ll.Mt mu41.401 41.141 «t.\mm •• 14*HI.«I. IMl - m.m I*.»»l*.»H* «IM Il .M* 4».Ml 44.111 «.•.411 • 144.*1* . UI.IM 11.1*4 »M U-M* IC.HI 41.141 n.»n - 144.»4| » |4I.*«« II.»** II*» II. M* IJ.II» «».»!« M. Ml - 141.4*1 « •14.«Il •4.II* «4M II.*** 11.41» 4*.4M »*.*•» - »»!.»»» '- IAI.4U • 1.144 tie* M. M» 14.«41 l*.4>* »i.••* - 1*1.•»• - 141.»l« 11.»»» •4** •t.04* 14.141 11.111 44.414 • I4*.4I| , • II.»»* •l.ll* IIM M.**C II. 4M «l.ll» »l.*t» - 114.»»! - HI.I«I •*.»•» l*M II.*»* 11.14* tl.114 »*-»l* - It». Il* . 114.444 «.lit I4M II.*** 14.441 *».I4I, >4.*l« - III.lit - 111.114 «.III »»*4 >I.*M 4*. 114 «». • •*' 11.114 • ••».**< l»l.*M 1.*»»

oo Figure 18 - JANAF'S THERMODYNAMIC TABLES (LIQUID UAIOQ) [8] [10] 49

VAPOUR PRESSURES

- Y. IKEDA et al [31] have measured the vapour pressures over

YliA102 pellets obtained by sintering at 100O°C for 10 hours m vacuum. The Y LiAlO^ phase was checked by X-ray analysis. The sublimation measurements were carried out with a modified Hitachi RMU-K mass spectrometer combined with a radiation heated Knudsen cell assembly. Results are described by the following equations and plotted on figure 19 with comparison with other authors ones.

. For Y LiA102 (solid) :

103 log Pn = -(20.69 + 0.14)X — +(10.39 + 0.01) relation 30 u2 T

(1723 - 1923 K)

103 log P. .n = -(23.58) + 0.16)X — +(10.56 + 0.01) relation 31 LI2U T

(1850 - 1923 K)

3 log Puo = -(22.04 + 0.15) X — +(9.78+0.01) relation 32 T (1640 - 1923 K)

103 log Pu = -(20.23 + 0.08) X — +(11.17+0.01) relation 33 T (1480 - 1723 K) 50

log P. . = -(21.45 + 0.10) x — + (11.86 + 0.01) relation 34

Li - T -

(1723 - 1923 K)

. For molten LiAlQ- : 3 log P. . = -(22.22 + 0.05) X — + (12.32 * Q.0U relation 35

Li - T

(1923 - 2020 K)

Pressures are expressed in Pa.

P P P T Li U0 Li20 L2 (K) (Pa) (Pa) (Pa) (Pa)

1500 4.75 X 10"3 1.20 X 10~5 6.79 X 10"6 3.89 X 10"4 1600 3.36 X 10"2 1.01 X 10~4 6.64 X 10~5 7.88 X 10"-3 1700 1.88 X 10~1 6.61 X 10"4 4.95 X 10~4 1.67 X 10"2 1800 8.95 X 10"1 3.36 X 10~3 2.82 X 10"3 7.69 X 10"1 1900 3.78 1.54 X 10"2 1.44 X 10"2 3.21 X 1Q~] 51

>900* 1700* tSOQK —I

UAIO:

IKtDA HHQENMUNO — GUGG4«t«

U,0.

10 5*. 5« , 6.2 6.6 1.0 lOyT(R) Temperature variation of partial pressures ont LiAlOi; (o) symbols represent the values in the higher cemperanire region and (X) symbols in the lower temperature region; (*) symbols were rejected for the least squares fitting. ( ) measurement. ( ) calculation. ( ) Hilden- orand and ( ) Guggs et il.

Figure 19 - TEMPERATURE VARIATION OF PARTIAL PRESSURES OVER LiAlO., [31] 52

The lithium vapour pressure over Y LiAKL has been measured in a platinum Knudsen cell by various authors : H. R. IHLE etal [32] reported by [33], D. GUGGI [34], D. POPKOV and G. SEMONOV [35] reported by [13], A. N. NESMEIANOF [36] reported by Z. V. ERSHOVA et al [37].

The latter gives the equation :

lo9 p,tm = " -^ x 1°3 + 5-22 relation 36

All results are plotted on figure 20, taken from [13].

- D. GUGGI et al [38] reported by [13] find lithium partial pressure differences over Y LiAlO- in Knudsen cells of different metals : Pt - Mo - Ta. See figure 21.

The equations established are as follows :

. for a Mo cell with T = 1250 - 1430 K

3 log PLi(Pa) = -(20.37 X 10 /T) + 12.75 relation 37

. for a Ta cell with T = 1330 - 1480 K

3 log PLi(Pa) = -(17.02 X 10 /T) + 10.35 relation 38 53

- A. N. NESMEIANOF [36] reported by Z. V. ERSHOVA et al [37] give the following expression for a stainless steel cell :

3 log Patm = - ^1 Î0 + 7.33 relation 39

T in °K

D. GUGGI et al [38] have performed tests with different metal powders added to increase the surface reaction :

. with Mo : the wall reacts with oxygen ; LiAl50„ is found, together with small cuantities of 0, LiO, Li^O ;

. with stainless steel and its components Fe, Ni, Cr, Zn, Nb : Cr adds greatly to the Li pressure ; at equilibrium the CL pressure varies inversely to the power 4 with that of Li

The results ire given in figure 22. 54

TEMPERATURE (K) I MO 1800 mo (700 1850 1600 1930 1900

^ I 1- •!• i-.J. x^j: **••!., •4—I r ! T

> i 4=£ -^-! a cuo ' Et •? - i2 —>T: Sac 7 - H—h 3= *• ' en 2S 1 ! ! > S i ^V •! ssss : 4—(- LEGEND H i I i i ~> rsr=s•v^^** c |os IKEOA et al. i xzc> ! s: s= c = GUCCI et al. q i ! I =sz A = POPKOV & 5EM0N0VQ * = HILDENBRAiND ij

i 034 0.3S oaa aso 0J2 as4 0.6S 0.08 TEMPERATURE 1000/T" (K)

Figure ; - COMPARATIVE RESULFS OF Li PARTIAL PRESSURES OVER YLJAIQQ IN A PLATINUM KNUDSEN CELL [133. TEMPERATURE (K) 1600 IMO 1900 I4S0 1400 1390 1300 1290

-*-+• ±±Z •+-T-T LEGEND -t—I- ja = Mo-CELLc 1 * 1 jo = Ta-CELLF f ! 1 ' • ' 1 -Ha = Pt-CELLf -t—Ï- ! f (- -i4-rt- ±X -M- ! ! P.! -H* *-+- -*-*• ' I ! ! 35. =^ 1 .3 o. 7 P? 1 • 1 I ! .' 1 S s 1 CT> o». S ^ 1 f ! s -l—H XX =SC SE•f i s±= *t ' ! 1 1 1 M «* -«r 3K 5C • •• 1 1 =sg=s *±t= H—1- 3=: 1 1 r 1 !

002 064 048 0.70 0.78 0.71 0.76 0.78 OM 0J2 TEMPERATURE 1000/T (K)

Figure 21 - Li PARTIAL PRESSURE OVER yLiAlOp IN KNUDSEN CELLS OF DIFFERENT METALS [38], 56

0.70 0.7S 040 Jgflfi. Tin}

Figure 22 - Li PRESSURE ABOVE Y LiAlO, IN CONTACT WITH STAINLESS STEEL, ITS CONSTITUENTS AND SOME OTHER METALS [38]. 57

THERMAL STABILITY

. The above data show that up to 1200°C, vapour pressures over LiAlO. are extremely low.

. According te A. M. LEJUS [19], the Y variety subjected to prolonged heating at hig^ temperature (1300°C) looses lithium oxide by sublimation :

5 LiA102(Y)-> LiAl50Q + 2 Li20

D. GUGGI [39], with 0. S. P0PK0V [35] and D. L. HILDEBRAND [40] expresses the reaction at 1700°K in a platinum Knudsen cell as follows :

LiA102(s) = 0.8 Li(g) + 0.202(g) + 0.2 LiAl50Q

The compound is thus highly stable up to 1200-1300°C. 58

SOLUBILITY OF HYDROGEN ISOTOPES

No quantitative data exist on the solubility of hydrogen isotopes in LiAlOp. According to estimations, this would seem to be low. 59

PHASE DIAGRAMS

Equilibrium diagram of the LiAlOp-AKCL system

A phase diagram of the LiAIO?-Al?CL system, taken from the work of A. M. LEJUS [19] is shown in figure 23. « complete phase diagram of the LipO-AUO, system has not been accomplished.

Four stable phases appear :

two forms of aluminate LiAKL

a form stable up to 900 °C

Y form stable between 900 °C and -1700 °C

two varieties of aluminate LiAl5CL :

. an ordered type, stable up to 1290°C,

. 3 disordered spinel type, stable from 1290°C up to melting point above 1900°C.

Alumina is insoluble in the ordered variety but highly soluble in the disordered variety, the solubility increasing with temperature ;

- aluiiinate Li-O, 15 A^Oj or 6, . stable near melting point, around 2000°C ;

- a alumina or corindon. 60

T; TCA Li Al O * il*. 2.100 1.950 / 3 3 . „ /xi:

- 1.700

Li Ai D 0 dji. L1AIO2 y • LiAl^Og dis. Un 5JL 22 » • Al 0 3 3 ? 3 1.300

LtAl02^ • LiAl50B ord

900

LiAt02C< + UAI5O9 ord.

i. 50 60 70 « 1 . AI ft «O

LiA102 AI A • •/ L1AI5O» AI2O3 mol* 7—» *

Figure 23 - EQUILIBRIUM DIAGRAM OF THE LiA102-Al20? SYSTEM [19] 61

Temperature-pressure phase diagram for LiAlO- according to an estimation by H. J. BYKER et al [11]. See figure 24.

In these diagrams (figures 23 and 24), no mention is made of :

- the allotropie 6 form of LiAlO-, synthesized by C. A. CHANG and J. L. MARGRAVE at 370°C under 18 Kbars [21] and studied by K. DORHOFER [2] ;

- the compound LiJUtK observed by A. LA GINESTA et al [41], unstable above 400°C. 62

Bit

BOO

Figure 24 - ESTIMATED TEMPERATURE-PRESSURE PHASE DIAGRAM FOR LiAlO^ [11] 63

INTERACTION WITH

STRUCTURAL MATERIALS AND COOLANTS 64

ADSORPTION OF WATER

Adsorption of water by porous LiAlCL has been mentioned by many authors but is not yet quantified as a function of the several parameters responsible for it.

8. RASNEUR [4] finds a sensivity of lithium aluminates exposed tc air, due to the combined action of water vapour and carbon dioxide. Figure 25 shows the weight gain with time, for given moisture content and temperature for various samples. M »« H »4 *• X HYGROMETRY 00 M Cl

e 0 0 0 0 Q 0 0 0 0 TEMPERATURE 0 0 oo »- o »- po « fo m in N M M CM pg cg <\i CJ «vi

A «t-—•f.—f'f ..-• i 0-6 _

»4 Z

in TIME IN DAYS

Figure 25 - UEIGHT GAIN OF VARIOUS LiA102 SAMPLES EXPOSEO TO AIR AT ROOM TEMPERATURE [24] 66

INTERACTION WITH WATER

A. M. LEJUS [19] has studied the hydrolytic reaction of Y LiA102 by X-ray analysis of the products formed. The reaction, slow at room temperature and fast at 100°C, is faster with LiAlCU prepared at 900°C rather than at 1100°C.

L:A102 + H20 *-Al203, x LigO, y H20 + LiOH

H phase

+ H20 •.A1203, 3 H20 + LiOH . nordstrandite .

The H phase hydrolyses slowly by gradual elimination of lithium.

Thermal decomposition of the H phase takes plaça by elimination of water beyond 35G°C when the crystal lattice changes to become that

of LiAl50Q at 1000°C ; a alumina is obtained at 1350°C.

The heat of reaction of LiAIO- with water is given by [15] :

AH = -0.9 Kj/gLi ; -0.2 Kj/cm3 relation 40

0. W. JEPPSON et al [42] [43] observe no reaction at 600°C of

YUA1O2(0 = 150 urn) with water. 67

INTERACTION WITH HELIUM AND AIR

D. W. JEPPSON [42] finds no interaction- between LiAlCL and helium.

The heat of reaction of LiAlCL, with air (CL) is given in [15] as :

AH = +7.5 Kj/gLi ; +1.8 Kj/cm3 relation 41 68

COMPATIBILITY WITH AUSTENITIC AND FERRITIC STEELS

Compatibility tests of y LiAlO- with structural materials (type 316 stainless steel, HT 9, Inconel 625 and Ti 6242) have been conducted by several authors.

- 0. K. CHOPRA and D. L. SMITH [44] and P. A. FINN et al [45] carried out compatibility tests at temperature 873°K for 1900 h in a high-purity helium environment.

The Y LiA102 samples were 59.1 % T. D. and X-ray diffraction analysis revealed minor amounts of LiAlOp, H~0. After the tests, interactions were examined by analysis of the ceramic surface and alloy surface in contact.

Results are given in the following tables [45] :

a Visual SEMa X-Rayanalysis Auger Alloy examination3' Depth elements minor

316 S S light -2 y Fe, Cr, Ni LiAl508

Inconel 625 light <2 y Fe, Cr, Ni LiAl508

HT 9 moderate <2 y Fe, Cr, Ni LiAl508

b Ti 6242 moderate <2 y Ti, Fe, Cr LiAl508 Ll

a = results of analysis of the ceramic surface b = results of analysis of the alloy surface Composition (weight %) of surface scale on alloy sample :

Alloy 0 Si S Cr Mn Fe Ni Totala

HT 9 22.5 0.7 0.1 27.9 9.6 35.5 0.2 96.5

316 S S 26.3 0.2 0.1 44.2 2. 6 16.3 2.1 91.8

Inconel 625 34.6 0.3 0.1 42.1 0.3 0.9 15.4 93.7

a = the remainder is assumed to be Li 69

Upon completion of the compatibility test, each LiA10? surface in contact with an alloy remained white, but black speckles were also present. The outer edges of the ceramic were dark gray. Each alloy surface was embossed with a gray imprint of the ceramic plate in contact with it (for Ti 6242, the imprint was closer to red-gray). X-ray diffraction analysis of the ceramic test specimens showed the presence of the lithium-deficient species LiAlgOg.

LiCrOp was detected" on all alloy surfaces as well as Fe30. and/or

Cr2°3-

The thicknesses of the scales formed between the alloys and LiAlCL were negligible, and all Y LiAICL samples retained their original shape.

- 0. K. CHOPRA and SMITH [44] tested aLiA102 at 973°K for 1000 and 2000 hours.

The results are as follows :

total scale metal IOSSM Ceramic/alloy thickness u Alloy interaction 1000 h 2000 h 1000 h 2000 h

HT 9 weak 8 5 8 5

316S S weak 6 5 6 5

[14] refering to those experiments, reports that advance of the process appears to decline substantially with time. 70

- D. J. SUITER [13] reported results of compatibility tests carried out by G. W. HOLLENBERG. Interactions of -yLiAlO^ with 316 stainless steel and Ni 270 were studied at 600 °C for 98 days, and with Ni 270 at 750 °C for 98 days. The samples were encapsulated in a stainless steel cup sealed in a dry inert gas atmosphere. In all three cases negligible interation was detected.

CONCLUSION

Under the above conditions : T = 700°C and 2000 h, interaction

between LiA10? and steels is negligible. 71

COMPATIBILITY WITH BERYLLIUM

T. R. GALLOWAY [47] reports a strong interaction between LiAlO- and beryllium or beryllium oxide without any more detail. 72

IRRADIATION EFFECTS 73

EFFECTS OF IRRADIATION J)N PHYSICAL AND MECHANICAL PROPERTIES SWELLING, SINTERING CHARACTERISTICS RESIDUAL TRITIUM CONTENT

These data are deduced from the few irradiation experiments performed so far.

- Results of irradiation experiments car-ied out by J. W. WEBER [48] are reported in [28]. y LiAlOp samples of 3 different densities, i.e. 68 % T. D. pressed-sintered, 79 % T. D. swaged, 96 % T. D. pneumatically impacted, were irradiated for 4.4 days at 200-300°C at a flux of 5.5 10 n cm s . The samples were clad (Ai 8001 internal-zircalloy 2 external). All remained intact except the pressed-sintered specimen which broke during removal from the ampoule. The visual appearance of the aluminate was not affected during irradiation. A few prototype targets were described as brittle after outgassing and cracked along their axes after thermal extractions, but generally such tergets remained intact after heating to temperatures as high as 1475°C.

- B. RASNEUR [25] reports an experiment to evaluate swelling. Samples cf different grain sizes ars irradiated in OSIRIS reactor at temperature < 300°C up to fluences of 1.5.10 cm (thermal fluence) and 2.I019cm"2(fast fluence).

The following results are shown on figure 26

Porosity grain diameter swelling % 0.27 0.3 v 0.1 + 0.2 0.22 1.7 u 0.5 0.22 13 u 0.8 1 - 1

*** z » 1—1 —I 1 —1 3uJ co

0 : .(.. .1... -1 L l_ -4 1 -*—»

Figure 26 - SWELLING OF LiA102 VERSUS GRAIN DIAMETER [25]

-p» 75

In this experiment, the swelling is deduced from the change in level at which a cylindrical sample rests in a calibrated conical quartz tube. A 1 % swelling of the sample corresponds to a 1 mm level change. However, a possible swelling of quartz itself has not been estimated. Integrity of the sample was apparently very good.

- Y. LING [49] reports results of a 6 month irradiation at

850-950-1000°C of Inconel 600 clad LiA102 pellets with the following characteristics :

grain size < 43y density- 60 - 70 % T. D. Li isotopy 0.05 %

Irradiation carried out in the Oak Ridge research reactor to a fast pi _? fluence ( >0.18 Mev) of about 2.10 n cm , caused neither cladding attack nor microstructural changes, but did appear to lessen the mechanical strength of the LiAlO- samples.

Residual Tritium amounted to 0.003 % or 0.01 wppm.

- The FUBR experiment has been widely reported, as for example in

[50]. Nickel-clad Y LiAlO, samples of grain size < 1 u , densities 60 %, 85 %, 95 % T. D., Li enriched, were irradiated in the EBR II fast reactor at temperatures 500-700-900°C for 100, 200, 300 full power days. A 300 full power day exposure in EBR II corresponds to a burn-up of about 102 1 captures cm -3 which is comparable to one year of operation in the STARFIRE design. The dimensional changes for the 100 day exposure are given on figure 27.

Figures 28 and 29, respectively show the swelling and grain growth

of LiA102 samples versus temperature under irradiation, in comparison with other lithiated ceramics. Under the conditions described above no swelling or grain growth was noticeable. LIUPR PELIET plflEMSIoriAL CHANCES

PELLET TENPERATURE DIAMETER MATERIAL P^H$1TY % TP ilQ CHANGE (?) LENGTH CHANGE (X) MWL

L1A102 85 500 0 + .2 0 +.1 L1A102 85 700

L1A102 85 900 0 .0

700 0 -.4 L1A102 95

L1A102 95 900 -.5 -.1

L1A102 60 700 -2.1 -.3 -.5 L1A102 60 900 -2.1

Figure 27 - DIMENSIONAL CHANGES OF LiAIO? SAMPLES UNDER IRRADIATION [50] 77

2.0

• Li20

• LLAI02

+ L-22r03 • U4S1O4 1.5

% 1.0

< £ 0.5 2

< LÎ4Si04

U2Zr03 * UAIO2 0.0

-0.5 -

5C0 700 SCO TEMPERATURE (°C)

Figure 26 - SWELLING OF L i AI Or COMPARISON WITH OTHER CERAMICS [51] 78

500 TCO S30 TEMPERATURE (°C>

Figure 29 - GRAIN GROWTH OF LiAlO, DURING IRRADIATION, COMPARISON WITH OTHER CERAMICS [51] 79

- The in-situ tritium extraction experiment TRIO-01 [52], provided also some information on the irradiation behaviour under the test conditions.

The characteristics of the y LiAlCL sample were :

density 65 % T. D. grain size < 0.1 u microstructure bimodal distribution 6li isotopy 0.5 %

The sample was irradiated in the Oak Ridge research reactor up to a ? 1 0 n fluence of 2.10 n cm" , at maximum temperature 700 C

. this fluence had no detectable effect on the thermal conductivity

. a preliminary survey reveals no significant change in the microstructure

. Tritium retention at 650°C amounted to < 0.1 wppm. 80

ACTIVATION PRODUCTS

Besides the spallation of lithium, such nuclear reactions as (n, 2n), (n, p), (n, Y) between neutrons and Al and 0 in the lithium aluminate, will occur and lead to activation products. The potentially important activation chains are presented in [53] and shown on figures 30 and 31 for aluminum and oxygen respectively, while the complete transmutation chains are shown on fi-gures 32 and 33.

The principal first generation activation products of aluminum are :

^Al (n, 2n reaction) of half-life 7.2 105 years

24 and t.Na (n, a reaction) of half-life 15 hours

The only other potentially significant aluminum activation product is ^Na half-life 2.5 years.

The conclusion may be set up as follows :

Li : No radioactivity besides that of tritium

0 : 1g0 (n, p)^N 7 seconds are short lived 1g0 (n, 2n)1g0 2 minutes 6 seconds Al : J7A1(n > 2n)^Al 7.2 1015 years a = 0.02 barns [54]

^Al (n, pl^Mg 9-46 minutes a = 0.08 barns [54]

^Al (n, a)^Na 15 hours a = 0.124 barns [54]

Therefore, lithium and oxygen retain no lasting radioactivity, aluminum requires precautions for less than a week because of the (n, ct)^7Na reaction.

The (n, 2n) Al induces only low activities (small a , long half-life). 82

Alcairnra

Al27 n'_2n *A126 (7.2xi05y) First Generation Al27 nLC 5a24 (15.Ch)

,,27 n,_c 24 .24 Second a!— -«- 3a~ -- Mg" (S) Generation (Mg24 ** *Sa22 (2.6V)

Al27 a'J Al28 I" Si28 (S)

si2S n,jn ^26 (7;3xl05y) I

^27 n,s 24 24 Third Na 1" Mg (S) Generation 24 n 2aT 23 [Hg '- » (S) i „ 23 n, 2n ^„.22 ,_ -, 2â *• *Sa (2.6y;

Al27 n'.2n *AI26 (7.4xI05y) \

•Al2 6 n, a Na23 (S)

Sa23 nL2n «Sa22 (2.6y)

'Al27 a--2* Al26 (6.4s) i-«g26

26 a 23 23 Mg ^ Ne (388) I Na

Ka23 nL2n ^22 (2#6y)

3. ^27 njte 7^25^

M?2S V Ka23((SS )

23 n 2n 22 Sa i *Na (2.6y)

;A127 V Mg25 (S)

|Mg2S V îîa23(S)

La23 nt2n ^22 (2#gy)'

Figure 30 - POTENTIALLY IMPORTANT ACTIVATION CHAINS WITH ALUMINUM [53] 83

Oxvcen

n c 14 First o" L *c {5730y)

Generation 1 16 n,Ee* 14 o *C (5730y)

16 n, 2n Second o 0U (122s) 9 u15 (s) Generation n,d 14 il" •c (5730y)

18 n,c 15 1.0* ° c (2.4s) 3 B (S) s V n,J •c14 (5730y)

o16 aLe c13 (S)

c" alY •c14 (5730y)

16 o nld N1S (S)

15 . n,d 14 N *C (S730y)j

,16 n,c CU (S) ^

,13 n, a •Be10 (1.6xl06y)

516 n^Tr s" (s) 14 n,p .14 S

Figure 31 - POTENTIALLY IMPORTANT ACTIVATION CHAINS WITH OXYGEN [53] rranamutation leotopee of Aluminum (24)

Decay Max v Generating («rant Initial Half De en y uneray •tfinrçy Final Stailo (S), reaction i aor.np* lavahtcr Ufa modu (Mo'/) ri* ug II Car i-ni'.ub'o fyî jMayil • • LA«» • —— — •*-

2B a 29 1. •'.» Al" A1 2.2m 4.f î.e 31

7 27 w * n.P Al" H," 9.4m 9" 2,6 1.0 Al 3. n, 2n Al" Al26 I 6.-el B+ 3.-» Mg26 )7.3xl05y| 8+ 4.0 1.8 •A126 4. n.» Al" H.24 IS. Oh e~ 5.5 2.8 M,24 n.d Al" H," S — __ __ H," 6. n, le Al" *.25 60 a B~ 1.0 -- H9» 7. n.T Al" Ng" S — — — Mg"

Second Generation e. n.v Si28 Si» S — -- —. SI29 9. n.P si28 Al28 2.2a p 4.6 1.8 si28 27 + 10. n, 2n si2B si 4.2a B 4.8 2.2 Al27 28 il. n.a si H925 S — — ~ M,25 12. n, d Si28 Al" S — — — Al27 13. n.HeJ Si28 H926 s — — —• Mg2« 14. n.T Si28 Al26 S 6.4a ( 3.2 Hg2« |7.3xlOsyf S* 4.0 1.8 •AI2* IS. n. Y Mg2« Mg25 S — — — Mg25 2 16. n.P m * Na*« lS.Oh B~ 5.5 2.8 Hg24 17. n, 2n H,24 Mg" 123 3+ 4.1 3.0 Ha2'

CO 4*

Figure 32 - ACTIVATION PRODUCTS OF ALUMINUM [53] Second Generation (Cont'd) Dacay Max v Generating Parant Initial Half Daciiy anargy •nergy Pinal Stable (S), Is&SEt. da«»ght«ir lite ;rod«t (MeY) daucihtar unstable (U)' 18. n, 2n Ma" ».21 6 S

23 19. n.d Ha24 Ma23 S — — — Na S 20. n.lia3 Mg2« Na« 8 — • "" — He" S

22 21. n.T Hg24 Sa22 •2.6y 9+ 2.8 1.3 •Ha U Ne" S

2 22. n,v «i25 M926 6 — — — Mg * S 23. ».P Hg2* Ha25 60 a 9~ 3.8 1.0 Mg« s

2 24. n, 2n M92S Mg24 S — — — Hg < s

22 n 22 — 25. . a Mg» Ka S — —. Ma s

24 26. n.d Mg25 Ha2« IS.Oh P~ S.S 2.8 Mg s

3 23 23 27. u.2e H92S Ma 38a a" 4.4 1.64 Ha s 2B. n.T Ng2S * «a23 S H.23 • s

27 29. n.V Kg26 in27 9.4a B~ 2.6 1.0 Al s 30. Mg2* ».26 1.0a B~ 8.7 1.8 Kg26 s 31. n. 2a *9 Mg2* S H925 s 23 s 32- n. a N." 3Ba B" 4.4 1.6 Ha

25 33. n.d K926 H.25 60a B~ 3.8 i.o H9 s

2 34. n.Be3 H," H.24 3.4» B" 2.S 0.9 Ha * u Ha2« IS. Oh S.S 2.8 Hg24 s 35. n.T Mg „,24 IS. Oh B~ 5.5 2.8 M924 s

27 3to. n,v Al2* Al27 S — «••* — Al s 1

00 cri Figure 32 - CONT'D Decay Max y Goneratlng Parent Initial Half Decay energy energy Final Stable (S), reaction inotopa dauahter life podo (MeV) (HeV) dauahter unstable (V)

37. n.P Al26 H," S M*26 S 3d. n, 2n Al" Al" 7.2a « + 4.3 1.6 Mg25 S

23 39. n.2 Al26 N.23 S — — Na s 40. n.d Al*' H," S — —• Mg" s 41. n.He3 Al26 N.24 lS.Oii 9~ 5.5 2.8 «g24 s

24 42. n.T Al26 m34 8 -- — — H, s Third Generation

29 30 ._' 43. n.v si si S si29 s

29 29 44. 29 n.P si Al 6.5a q~ 3.7 2.4 si s

29 28 45. n, 2n ,._ .,_ _ 28 si si S — si s

29 26 46. n.or -»_ 26 si H, S *-. «9 s

29 28 47. 28 n.d si Al 2.2a B~ 4.6 1.8 si 8 3 29 27 48. 27 n.Be si Kg 9.4a B~ 2.6 1.0 Al 8

29 27 49, n.* si __ ^ 27 Al S •-* w Al s 50. 23 24 n.v Na Na lS.Oh B~ 3.5 2.8 Mg24 S 51. 23 23 n.P «a Ne 38 a B" 4.4 1.64 Na23 s 23 52. n, 2n 22 + 22 Na Na *2.6y B 2.8 1.3 Ne s 53. 23 20 20 n.o Na F Ils B' 7.0 1.6 NM e s

23 22 54. n.d _ 22 Na Ne S .«. — Ne s

3 23 21 55. 21 n.He Na F 4.45 8" 5.7 1.4 Ne s 23 21 21 56. n.T Na „_ _w Ne S M„ c

Figure 32 - CONT'D Third Generation (Cont'd)

Decay Max y

1Generatin g Parent Initial Half Dociiy energy energy Final Stable (S), reaction iaotope dauqhter life modo «MeV> iMeY) da.u9ht;«r. "n?câbl a «

23 57. n. v Na" Na» S N. S

22 58. n.P Na" Ne" s — — — «a s

+ 21 59. n, 2n Na" H." 23s B 3.6 0.35 Ne s 19 60. n,« Na" F" 5 — — — F s

21 61. n,d Na" N«2X S — — — N. s

20 62. n.He3 N." F20 lia e~ 7.6 1.6 N. s

20 63. n.T Na" Ne20 S — — — Ne s

23 64. n.Y Sa" Ne23 38a e" 4.4 1.6 N. s

22 65. n.p Ne22 F22 4a B~ 10.8 2.06 Ne s

21 66. n, 2n N«22 Ne21 S — — -- Ne s « 22 19 67. n.oi o 27a B~ 4.8 1.6 F" s Ne « 22 21 21 68. n.d Ne r 4.4 a~ 5.7 1.4 Ne 8 20 20 3 „ 22 69. n. He Ne o 14s 0~ 3.8 1.06 F u „22 20 70. n.T F20 14a 7.0 1.6 Ne s Ne P"

Figure 32 - CONT'D

00 Tranamutation Iaotopee of Oxygen (24) Tiret Generation rocny Max y Inltl»! Parent Generating Halt Decay energy energy rlnal dsuahter *?PtPpe reaction ills. rode

17 N" ola n.d 4.2a 6" 8.7 2.2 o o" n.P .16 o"» n.T 7. la 8~ 10.42 7.1 o" 0» n.d Q16 n.P 15 N" o" n.T S — — — H

016 n.d 16 H" 0 n,T S — — — N" o" ol* n. 2n 122S B+ 2.8 — N" 18 19 o" 0 n.Y 27a 9" 4.8 1.6 F c« o" n*» S — — — C«

* 14 16 3 c 0 n.He 5730y e~ 0.16 — 13 n^r C C15 O18 2.4a B~ 9.8 5.3 N« n.Ue3

3 c16 ia N16 0 n.He 0.74a a" 8.0 16 N 7.1s 3" 10.4 7.1 ol* Second Generation

1 *C14 Nis n.d 5730y B" 0.1S6 — C * n.P C12 n. 2n S — — ~ C" n.T

Figure 33 - ACTIVATION PRODUCTS OF OXYGEN Second Generation (Cont•d) u a — • e x Max Y Initial Parent Generating Half Decay energy Final daughter. t»otppe ..r««

B12 n,or 20na fl~ 13.4 4.4 c" H" n. Re3 ci« n.T c" n.d

p" S — — — Bll c» n.T Be" c" n.He* lia 6" 11.6 B" B*2 20ms 8~ 13.4 4.4 c" Be" c" B- 11.S 8.0 „11 c" n.He3 14a

•BelO I3 6 C n, or l.&clO ? B~ 0.S6 — *B,10 10

Figure 33 - CONT'D 90

TRITIUH DIFFUSIVITY

Values of tritium diffusion coefficients have been derived from several tritium extraction experiments mostly out of pile tritium release but recently from in pile tritium extraction experiments too.

The reported values are very much scattered. Two possible reasons are :

- The mechanism of tritium release is not purely diffusional as mentioned by the authors themselves and therefore calculated coefficients are only apparent diffusion coefficients. Diffusing species may not be tritium gas only.

- Test materials are not always well-defined, especially with respect to grain size (sizes of grain agglomerates have sometimes been used for calculations instead of grain sizes proper).

K. OKULA and D. K. SZE [53] reviewed the data of diffusion coefficients for several solid lithium breeders, among which LiAlOp, as shown on figure 34.

Argonne National Laboratory also presented a survey, see figure 35 from [56], of the tritium diffusion coefficients versus temperature

for LiA102.

In the present work, these surveys have been supplemented and updated with recent results.

A synthesis of the various works is presented in figure 36, and the corresponding results are gathered on figure 37.

The diffusion coefficients roughly cluster in two groups and show a wide spread both of activation energies and jb:olute values. 91

A choice is hardly pcssible at present between those values, due to the complexity of the experiments from which they are derived and sometimes the triefness of the reports. Our tendency is to be more confident in results of experiments conducted on well-defined materials. But the interpretation of results should account for all non diffusional factors playing a role in the release rate of tritium and this has not yet been accomplished.

Related to these determinations of tritium diffusion coefficient and activation energy based on tritium extraction experiments, is the investigation of T. MATSUO et AI. In their study [57] [58], the authors come to the conclusion that tritium behaviour in lithium ceramic compounds (li^O, LiAICL, Li-SiOJ is in close relation with the diffusion of Li+ ion by the analysis of nuclear magnetic resonance and ionic conductivity. The activation energy of the diffusion coefficient of tritium, coincide with thi. of ionic conductivity in extrinsic region and dipole-dipole interaction with Li+ ion diffusion in nuclear magnetic resonance. The measurements were conducted of LiAICL samples with characteristics as follows.

CHARACTERISTICS OF THE LiA102 SAMPLE

Analytical data for LiA102 powder (%)

Na 0.O65 Cu < 0.001 K < 0.O01 Ni < 0.001 Mg < 0.O01 Fe < 0.001 Ca < 0.002 Cr < 0.001 Ag < 0.O01 Pb < 0.001 Si < 0.001

characteristics of the pellets :

immersion density : 50.5 % T. D. 2 -1 specific surface area : 2.05 m g 92

The activation energy (eV) of nuclear spin relaxation and ionic conductivity in LiAlO- are

NMR CONDUCTIVITY extrinsic intrinsic

0.77 0.79 1.47

The values of activation energy of nuclear spin relaxation and ionic conductivity in extrinsic region corresponding to 17.6 and 18.1 Kcal/mole are comparable to the values mentioned in figure 36. S3

ANNEAL TEMPERATURE, »C 1200 1000 «00 TQQ 600 500 400 300 200 1 T" 2X10*° ri T i i—r- T • Ll-AI I0*6

• UAKI0-Î0MC3M)

-7 • LiAI(IO-20MtSH;- 10 oUAJOj • U7M2 H2 A0OEDTO; SWOT OAS) ' • UAHS-IOMCS*) CM • LUKIO-20MCSM) E «07^*2 u * #-U AI0 w I0*8 9 4 Z Ul

lv UJ 10* O U gz 10 •10 u. It o

10*

• UAI0z< 70-100 MESH) ÎU*l02 VALUES

AT «X«r-S=2ffW5W& 7.3X10-'»-^(^T^ATtB'' 10' 12 ' ' * ' I 1 1 1 Û6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 RECIPROCAL TEMPERATURE, I03/T(°K}

!B

In— I V*aal»I Awtltoir/T*ar

* «l«*Wl MlMlttaa «lift It-rHM Wlaaall IfM.I»;» lattnal «artf >» «rattlMt»! «•« af4-«*l«f MM4 Vl«a»ll 1111,14» M ffMilaaai i i •!«•*•<•< alaaall IVVI»H rr.iakra) a UnH aalMiriaa) aillii »l<-("»!«« tttaaall 111* »f arak imrnl vara) (**•** HAI aeMctat M*rf.w# *pr* tliwinH MCT ttelerminai IM HI «nil IW» .!,«• • !«•«»» Y frwiliawi wlar< araa («ma»* Vlaaall It» MT OunlHlM «raa*»*' * «(«ara) fluid»* «loi aU-aala» VI ••all i«f» «f MM IMin,i aaaa! CCr-lS M>I a ataatrai Mtva ftaaatar e»a«i n;» o raaaa) iMflili M MOV* iraia IIMI» (««•> HI» o aanJarai MO va et—ft e«u» >»>• A I Vim* MlUiftt* aalta ««ui , t 3 wafarti aarlcfcaaj u LI Tatam 1*7? a u-«*»i M'ini «nliM It *l.l r< Ill» (•«•HI •!<-»•!« »/ a.av-a.i) » i«c,; aaartara; ala-aalat af a «1-0,1 J aj> IH«»I *—i «••III» m» •a*"la#t; ala^aalai «/ 9.0VO.I) aa laiaoal »•**• «••III» ID»

Figure 34 TRITIUM DIFFUSION COF FICIENTS FOR LiAlO^ACCORDING TO OKULA ET AL. COMP.rïISON WITH OTHER SOLID BREEDERS [55] 94

TEMPERATURE. *C 1400 1000 800 600 400 300 10r* =1 I I | I—|—J f i—n

10" O JAERI 1982 -20 jtm 4 GUGGI 1976 1300 pm FUSEfi IV GU6GI 1979 33 »m

A VASILl'V 1979 130 Mm

O WISWALL 1976 130-215 Mm m 10-• « O JOHNSON 1976 180 pin 3«l»« 2

W 10" >•• O

o 5» w ior«* o

ior»

10-< • J L 0.8 0.8 1.0 1.2 1.4 1.6 1.8 ^0 10*/ T, *"•

Figure 35 - TEMPERATURE DEPENDENCE OF DIFFUSION COEFFICIENT OF TRITIUM

IN LiA102 [56] DIFFUSION COEFFICIENT 0 AUTHOR(S) REFERENCE SAMPLE CHARACTERIZATION ACTIVATION ENERGY E

B. JOHNSON et al 128J Cylinders diameter 2.8 cm Estimated D value at 900°C 10~6 cm2 s"1 Porosity is not taken into account

reported in 156] grain diameter 180 y see figure 3 5

R. H. WlSMALL and E. WIRSING [59] [60] j LiAlOp alpha product T ' 500°C eoo°c 650°C [57] / 21.4 % Li^O content (22.7 % theoretical) Th 500 3.9 1

1 12 1 Sieved at 150-210 n •WV ' 3.lO- at500"C [58] 3.8.10"1U at 600°C

After réévaluation of data froiu WI SHALL and WIRSING, P. GRONER and a] [61] reported

Dcm2 s"1 = 2-10"11 at 500°c 3.10"9 at 600°C 6.10"9 at 700°C

R. M. W1SHALL and E. WIRSING °cm2 s"1 = 10~14cm2 s"1 at 650°C [62] 2.4.l0~13cm2 s"1*at 975°C to in Cont'd

QIFFUSION COEFFICIENT D AUTHOR(S) REFERENCE SAMPLE CHARACTERIZATION ACTIVATION ENERGY E

3 log D - - (2.875 ± 0.06) 10 . g 43 t Q Q? D. GUGG1 et al [39] LiAI02 (2 % LiAl50Q) Sieved at 70 u K no cladding for 400°C < T < 700°C relation 42 E = 13.2 Î 0.3 Kcal/mole relation 43

3 Stainless steel cladding lofl1a. (2.22 1 0.61) 10 , 1<51 to.65 T ' relation 44 (see figure 38)

8 2 1 D. GUGG1 et al [63] liAI02 (300 ppm Mo impurity), melted, 1300 u 900°C D = 7.6 10" cm s" crushed 70 u 900°C D = 1.3 10"8cm2 s"1 3 0. BKUNING et al [64] Ventron alpha product In D = - (5.78 ± 0.7) - ( 9.73 - 0.7) ^

LiA102 (0.13 mole % Mo) K

Density : 97.3 % T. D. for 878 < TK < 1178 relation 45 melted, solidified, spherical particles E = 19.3 - 1.4 Kcal/mole relation 46

V. G. VASIL1EV et al [65] LiA102 powder [55] see figure 34 and 35 reported in [55] and [56] LiAlOp 150u grain diameter [56]

to (Cont'd)

DIFFUSION COEFFICIENT 0 AUIW)R(S) REFERENCE SAMPLE CHARACTERIZATION ACTIVATION ENERGY E

0. L. SMITH. C. E. JOHNSON et al From TRIO-01 experiment 0 = 1.14.10'4 exp [^f^- ] relation 47

H4j L1AI02 (R = 1.9872 Kcal/Kmole °K) D in cm2 s -1 Jenslty 65 l T. D. lately revised as follows : 3raln size < 0.1 p D - 1.1 10"6 exp [ ^^- 1 relation 47b1s K,K (R = 1.9872 X 10"3Kcal/mole °K) D in cm2 s"1

* JAERI 1982 reported in [56] grain diameter 20 p see figure 35

i„ n 87600 „, .,,, M. BRIEC [661 2 MA)09 samples with characteristics : RT— " -4231 2-1 2-1 Surface area 5.8 m g 0.2 m g 703 °K < T < 873 °K relation 48 Pore radius 0.035 M 1.55 p (R = 8.314 Kj/Kmole °K) grain diameter 0.38 M 13 p E = 20.9 Kcal/mole relation 49 porosity 0.23 0.22

F. BOTTER et al [67J UA102 Pore radius 0.035 p 650 °C 0 = 7.10"16 cm2 s"1 Grain diameter 0.38 p Porosity 0.22

Figure 36 : IRITIUH OlfFUSION COEFFICIENT AND ACTIVATION ENERGY 98

ANNEAL TEMPERATURE, °C

6 1200 1000 300 700 600 500 400 300 2 x io" r 1 '1 1 1 1 1 1 1 1 1 1 o! 10" r T : V • V m-7 > 10 F o E \ * ,«-8 o 10 ° \* D • • 'ma io-9 r

/se c ) • X . *A U io40 • » A » a - A Z 41 LU lu ^^ » <_> • • * M u. id*2 r u_ » \ LU » © . \ # (975 3C Heat treated) u 13 \ icf E • z \ o • \ 00 id14 r \* =3 \ u_ • u. \\ ID"15 r

\ Id*6 r \

m-17 1 i i i i i 0.6 0.8 1.0 1.2 1.4 1.6 1.8

RECIPROCAL TEMPERATURE, 10J/T(5K)

Figure 37 - TRITIUM DIFFUSION COEFFICIENT IN LiAlO, Key for figure 37

AUTHOR REFERENCES

A. B. JOHNSON et al [28][56]

R. H. WISWALL and E. WIRSING [59][60]

R. H. WISWALL and E. WIRSING [62]

GRONER et al [61]

GUGG1 et al [39]

GUGGI et al [63]

BRUNING et al [64]

V. G. VASILIEV [55][56][65]

JAERI [56]

D. L. SMITH, C. E. JOHNSON et al [14]

M. BRI EC [66]

F. BOTTER et al [67] 100

log 1/T log D

-3

3,5

Li'A102 open

,5

0,8 0,9 1,1 1,2 1,3 Ti*i

Figure 38 - TEMPERATURE DEPENDENCE OF RECIPROCAL TIME CONSTANT 1/T FOR

TRITIUM RELISE FROM LiA102 SEALED IN STAINLESS STEEL

AND OF DIFFUSION COEFFICIENT D OF TRITIUM IN LiA102 [393. 101

Acknowledgement

The authors wish to thank Mrs G. BESNARD for preparing the documentation. REFERENCES

1 LANDOLT-BORNSTEIN, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7 d2, p. 147, K. H. HELLWEGE, Ed., Springer Verlag (1980).

2 K. DORHOFER, "A Reindexing of the X-Ray Powder Diffraction Pattern

of g-LiA102," J. Appl. Cryst., 12, 240 (1979).

3 HAREZIO, M., Acta Cryst., _19_, 396-400 (1965).

4 B. RASNEUR et al private communication, work performed within the framework of the European program on fusion technology, to be published.

5 CHRISTENSEN, A. U., Conway, K. C, and Kelby, K. K., U. S. Bureau Mines, RI-5565, 1-7 (1960).

6 H0LLENBERG, G. W., "Thermal Properties of Lithium Ceramics for Fusion Applications", presented at the 84th Annual Meeting of the Am. Cer. Soc, Cincinnati, Ohio, May 3-5, 1982.

7- BARIN-KNACKE, Thermochem. prop, of inorgan. subst. 1973 - Verlag - Berlin.

8 JANAF, Thermochemical Tables, National Bureau of Standards, ?;SRDS-NBS-37, (1971).

9 K0ELER, H. F., BARANY, R., and KELLEY, K. K., U. S. Bureau Mines, Dept of Investigations 5565 (1960). 103

10 M. W. CHASE, J. L. CURNUTT, A. T. HU, H. PROPHET, A. N. SYVERUD, and L. C. WALKER. Thermal Research, the Dow Chemical Company, Midland, Michigan 48640. JANAF Thermochemical Tables, 1974 Supplement, J. Phys. Chem. Réf. Data. Vol. 3, N° 2, p. 337-338, 1974.

11 H. J. BYKER, I. ELIEZER, N. ELIEZER, and R. A. HOWALD,

"Calculation of a Phase Diagram for the Li0Q c-AlO. 5 System," J. Phys. Chem., 83, 2349 (1979).

12 GURWELL, W. E., Battel le Pacific Northwest Laboratory, BNWL-CC-464, 1-21 (1966).

13 D. J. SUITER. Mac Donnel Douglas Astronautics Company St Louis Division. Lithium based oxide ceramics for tritium breeding applications. Report MDC E 2677 UC-20, June 1983.

14 D. L. SMITH, C. E. JOHNSON, E. CHENG, J. JUNG, D. K. SZE, C. P. C. WONG, C. BAKER, et al. ANL Blankets ETR-INTOR/DIS/NUC-2. Nuclear Data Base Assessment - Group H INTOR Phase IIA - Volume III - U. S. A. Contribution to the 9th Workshop meeting - May 1984.

15 A. ABDOU, INTOR Participant, I. BASKES, SNL ; W. BAUER, SNL ; R. CLEMMER, ANL ; P. FINN, ANL ; G. HOLLENBERG, HEDL ; C. JOHNSON, ANL ; H. TETENBAUM, ANL ; K. WILSON, SNL. TRITIUM. U. S. A. Input to INTOR Workshop Session III, phase 2A, december 1981. FED-INTOR/TRIT/81-01.

16 Francis KLEIN. Contribution à l'étude de l'oxyde d'aluminium et de

lithium LiA102. Thèse de Sciences Physiques à l'Université de NANCY le 3 mars 1971.

17 HUMMEL, F. A., J. Am. Cer. Soc, 34(8), 235-239 (1951). Thermal Expansion Properties of some synthetic lithia minerals. 104

18 Y. S. TOULOUKIAN. Ed. Thermophysical Properties in High Temperature Solid Materials, Vol. 4, Part II, TPRC, Purdue University (1977).

19 Anne-Marie LEJUS. Rev. Hautes Temper, et Refract., L I, 1964, n° 1, p. 72 à 83.

20 MAREZIO, M. and REMEIKA, J. P., J. Chem. Phys., 44, 3143-3144 (1966).

21 CHANG, C. H. and MARGRAVE, J. L., J. Am. Chem. Soc, 90, 2020-2022 (1968).

22 Mlle Anne-Marie LEJUS et M. Robert CCLLONGUES. Sur la structure et les propriétés des aluminates de lithium. Académie des Sciences - Chimie Minérale - 12 mars 1962 - p. 2005-2007.

23 P. A. FINN. Argonne National Laboratory, brgonne, Illinois 60439. The effects of different environments on the Thermal Stability of Powdered Samples of LiAlOp. J. Electrochem. Soc. : Solid State Science and Technology - January 1980 - p. 236-238.

24 P. CHARPIN. CEA-CEN Saclay, DESICP. Private communication.

25 B. RASNEUR. CEA-CEN Saclay, DESICP. Tritium Breeding Porous Ceramics LiAlOp. Thirteenth Symposium on Fusion Technology. Varese, 24th to 28th September 1984.

26 W. E. GURWELL. Compressive Strenghts of Some Aluminate Pellets. BNWL-CC-538, Battel le, Pacific Northwest Laboratories, Richland, WA, March 8, 1966.

27 W. E. GURWELL. Isostatic Testing of Aluminate Pellets. BNWL-CC-506, Battelle, Pacific Northwest Laboraties, Richland, WA, February 18, 1966. 105

28 A. B. JOHNSON, Jr. T. J. KABELE, W. E. GURWELL. Battel le Pacific Northwest Laboratories, Richland, Washington 99352. Tritium Production from Ceramics Targets : A Summary of the Hanford Coproduct Program. BNWL-2097 UC-20 - August 1976.

29 B. RASNEUR. DESICP CEA Saclay. Les céramiques tritigènes. L'Aluminate de lithium poreux. 27ème Colloque de métallurgie. INSTN 18-19-20 juin 1984.

30 S. ARONSON. Department of Chemistry, City University of New-York at Brooklyn College, Brooklyn. New-York 11210, USA. Estimation of the Heat of Formation of Refractory Mixed Oxides. Journal of Nuclear Materials 107 (1982) 343-346. North-Hohanci Publishing Company.

31 Yasushi IKEDA, Hirovuki IT0 and Genishi MATSUM0TO, Hiroshi HAYASHI. The Vaporisation and Thermochemical Stability of Lithium Alum'inates. Journal of Nuclear Materials 97 (1981) 47-58. North-Holland Publishing Company.

32 H. R. IHLE, H. KUDO, C. H. WU. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and LipO as breeding materials in fusion reactor blankets. Thermodynamics of Nuclear Materials 1979, IAEA, Vienna, 1980, Vol. II, p. 31.

33 W. DIENST. Die Eigenschaften und das Betriebsverhalten von oxidischen festen Brutstoffen fur Kernfusionsreaktoren. Institut fur Material und Festkôrperforschung - 03.05.01 P 0 8 A - Januar 1984. Kernforschungszentrum Karlsruhe GmbH.

34 GUGGI, D., IHLE, H. R., and Neubert, A., Proc. 9th Symposium on Fusion Technology, Garmisch-Partenkirchen (FRG), Pergamon Press, pp 635-644 (1976). 35 POPKOV, 0. S. and SEMENOV, G. A., Zhurn. Fiz. Khim, 45 (2) 475-477 (1971).

36 NESMEIANOF A. N., BELIIX L. L. «Siz Xhimii 34, 1960, C 841.

37- ERShOVA Z. V., VASILIEV V. G., YAKUNIN S. A., DAVYDOVA N. B., BASMANOVA V. P., PETROV B. V. INTOR phase IIA Workshop - Group D-Tritium - Session III. December 1981.

38 GUGGI, D., NEUBERT, A., ZMBOV, K. F., Proc. 4th Int. Conf. on Chem. Thermo., J. ROQUEROL and R. SABBAH (éd.), Cent. Rech., Marseille, Vol. 3, pp 124-131 (1975).

39 D. GUGGI, H. IHLE, A. NEUBERT and R. WOLFLE. "Tritium-release from LiAlOp. Its thermal decomposition and phase relationship :

Y-LiAlCL-LiAl50g. Implications regarding its use as Blanket Material in FRT," in Radiation Effects and Tritium Technology for Fusion Reactors. CONF-750989, Vol. Ill, pp. 416-432 (1975).

40 D. L. HILDENBRAND et al , Ford Motor Company Research Laboratory, "An experimental Program for obtaining the thermodynamic Properties", Propellant Combustion Products Publication N° U-2055 (1963).

41 LA GINESTA, A., LO JACONO, M., and PORTA, P., J. Therm. Anal., 4, 5-17 (1972).

42 D. W. JEPPSON, R. F. KEOUGH. Fusion-Reactor Blanket and coolant. Material Compatibility HEDL SA 2355 FP. Fusion Reactor Materials Meeting Seattle. Washington August 10 - 1981.

43 D. W. JEPPSON, L. D. MUHLESTEIN, S. COHEN. Fusion Reactor Breeder Material Safety Compatibility Studies. 107

44 0. K. CHOPRA, D. L. SMITH. Interactions of solid breeding materials with structural alloys. Journal of Nuclear Materials 103-104 (1981) 555-560. North-Holland Publishing Company.

45 P. A. FINN, S. R. BRE0N, N. R. CHELLEW. Argonne National Laboratory. Compatibility study of solid ceramic breeder Materials. Paper presented at the 2nd Topical meeting on Fusion Reactor materials in Nuclear Materials (1981).

46 H0LLEN8ERG, G. W., Hanvord Engineering Development Laboratory, TC-2022 (1981).

47 T. R. GALLOWAY, Lawrence Livermore Laboratory. Proceedings of the 2nd Topical meeting on the technology of controlled nuclear fusion, September 21-23, 1976, Richland, Washington.

48 J. W. WLBER, Final Report - Examination of LiAlO- Coproduct Targets Irradiated as PT-NR-57. BNWL-CC-946, Battel le, Pacific Northwest Laboratories, Richland, WA, December 9, .1966.

49 YANG LING. Irradiation studies of lithium compounds for tritium breeding application. General Atomic Fusion Program Annual Report, 1981. G. A. San Diego, CA (USA) pp 70-73.

50 C. E. JOHNSON. Chemical Technology Division, Argonne National Laboratory. Solid breeder materials research. April 19, 1983. Proceedings of the workshop on tritium breeding solids-research and development D0E/ET 52039/1.

51 C. E. JOHNSON. Argonne National Laboratory. G. W. H0LLEMBERG. Westinghouse, ilanford. Recent developments for solid breeder materials. Proceeding of the third Topical Meeting en Fusion Reactor Materials, Albuquerque, New-Mexico - September 19-22, 1983. 52 R. G. CLEMMER, P. A. FINN, M. C. BILLONE, 3. MISRA, L. R. GREENWOOD, Argonne National Laboratory. F. F. DYER, I. T. DUDLEY, L. C. BATE, E. D. CLEMMER, P. W. FISHER, J. L. SCOTT and S. W. WATSON, Oak Ridge National Laboratory. The TRIO-01 experiment in-situ tritium recovery results. Tenth Symposium on Fusion Engineering. Institute of Electrical and Electronics Engineers. Philadelphia - Pensylvania - Dec. 5-9-1983.

53 J. R. POWELL, F. T. MILES, A. ARONSON, W. E. WINSCHE. Studies of fusion reactor blanket with minimum radioactive inventory and with Tritium breedings in solid lithium compounds. Primary report. Department of Applied Science, Brookhaven National Laboratory. Upton - New-York"11973. BNL 18236 - June 1973.

54 B. V. ROBOUGH. ENEA Frascati. Private communication at AIEA advisory group meeting, July 1982.

55 K. OKULA and D. K. SZE. Tritium recovery from solid breeders : Implications of the existing data. Fusion Engineering Program, University of Wisconsin. American Nuclear Soc. National Topical Meeting (April 29 to May 1, 1980) Dayton (Ohio).

56 ANL. 31anket comparison and selection study. ANL/FPP.83.1.

57 Lithium movement and Tritium (hydrogen) behaviors in LipO,

Li2Si03 and LiA102. 0HN0, Hideo ; K0NISHI, Satoshi ; NODA, Kenji ; TAKESHITA, Hidefumi ; KATSUTA, Hiroji ; YOSHIDA, Hiroshi ; WATANABE, Hitoshi (Japan Atomic Energy Research Inst. Tokai, lbaraki. Tokai Research Establishment) : MATSUO, Tooru. Japan Atomic Energy Research Inst. Tokyo (in Japanese). JAERI-M 82-146. Oct. 1982. 109

58 Toru MATSUO, Department of Physics, Faculty of Engineering, Tokyo University, Kawagoe, Saitama-ken 350, Japan. Hideo 0HN0, Kenji NODA, Satoshi KONISHI, Hiroshi YOSHIDA and Hitoshi WATANA8E, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-11, Japan. Nuclear Magnetic Resonance Investigations of Lithium Diffusion in

Li20, LipSi03 and LiAlOp. J. Chem. Soc. Faraday Trans. 2. 1983. 79. 1205-1216.

59 R. H. WISWALL and E. WIRSING, "Tritium Recovery from Fusion Blankets Using Solid Lithium Compounds - II : Experiments on Tritium Removal and Absorption," in Radiation Effects and Tritium Technology for Fusion Reactors. CONF-750989, Vol. Ill, pp 232-252 (March 1976).

60 R. H. WISWALL and E. WIRSING, "The Removal of Tritium from Solid CTR Blanket Materials ; A Progress Report," BNL-19766, (February 1975).

61 P. GRONER and W. SEIFRITZ. Ceramic Lithium Compounds for Solid Breeder Concepts for Fusion Reactors. Nuclear Technology/Fusion Vol. 5 - March 1984 - pp. 169-177.

62 R. H. WISWALL and E. WIRSING, "The Removal of Tritium from Fusion Reactor Blankets," BNL-50748 (October 1977).

63 D. GUGGI, H. R. IHLE, U. KURZ, "Tritium Release from Neutron Irradiated Lithium-Aluminum Oxides," Proceedings of the Ninth Symposium on Fusion Technology, Garmish-Partenkirchen (FRG), June 14-18, 1976, Pergamon Press, pp. 337-344.

64 0. BRUNING, D. GUGGI, H. R. IHLE. The Diffusivity of Tritium in the System L^O-Âl^. 12th Sym. Fur Tech. Julien 1982 -

pp; 543-548. 110

65 V. G. VASILIEV, C. R. 30RIS0V, N. N. RIAPARTSEVA and A. A. VASHMAN, "Investigation of the Physical-Chemical Properties of Irradiated Inorganic Compounds of Lithium Oxides, Aluminates, and Silicates," US/USSR Workshop on Engineering and Economic Problems of ETF, Moscow and Leningrad, (USSR), September 10-21, 1979.

66 M. BRIEC, DESICP CEN Grenoble. Private communication, work performed within the European program on Fusion Technology, submitted to be published in the proceedings of ICFRM-I, Tokyo, December 3-6 1984.

67 F. BOTTER et al, DESICP CEA Saclay. Out of pile Tritium release

from neutron irradiated LiA102. 13th SOFT, VARESE, September 24-28, 1984.

Manuscrit reçu le 16 décembre 1987 Edité par le Service de Documentation Centre d'Etudes Nucléaires de Saclay 91191 GIF-surYVETTE Cedex (France)