Molecular Clock Or Erratic Evolution? a Tale of Two Genes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution, Diversity, and Host Associations of Rhabdoviruses Ben Longdon,1,* Gemma G
Virus Evolution, 2015, 1(1): vev014 doi: 10.1093/ve/vev014 Research article The evolution, diversity, and host associations of rhabdoviruses Ben Longdon,1,* Gemma G. R. Murray,1 William J. Palmer,1 Jonathan P. Day,1 Darren J Parker,2,3 John J. Welch,1 Darren J. Obbard4 and Francis M. Jiggins1 1 2 Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, School of Biology, University of Downloaded from St Andrews, St Andrews, KY19 9ST, UK, 3Department of Biological and Environmental Science, University of Jyva¨skyla¨, Jyva¨skyla¨, Finland and 4Institute of Evolutionary Biology, and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3JT, UK *Corresponding author: E-mail: [email protected] http://ve.oxfordjournals.org/ Abstract Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses. These new viruses are poorly characterized and new approaches are needed predict the host species these viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals, and plants. We have discovered thirty-two new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus by guest on December 14, 2015 sequences, and produced the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses beyond the host they were identified from, but our dataset provides a powerful phylogenetic approach to predict which are vector-borne viruses and which are specific to vertebrates or arthropods. -
Evolution of the Larval Peripheral Nervous System in Drosophila Species Has Involved a Change in Sensory Cell Lineage
Dev Genes Evol (2004) 214: 442–452 DOI 10.1007/s00427-004-0422-4 ORIGINAL ARTICLE Virginie Orgogozo . François Schweisguth Evolution of the larval peripheral nervous system in Drosophila species has involved a change in sensory cell lineage Received: 23 December 2003 / Accepted: 15 June 2004 / Published online: 4 August 2004 # Springer-Verlag 2004 Abstract A key challenge in evolutionary biology is to Introduction identify developmental events responsible for morpholog- ical changes. To determine the cellular basis that underlies Evolution of the abdominal larval peripheral nervous changes in the larval peripheral nervous system (PNS) of system (PNS) in Drosophila melanogaster and closely flies, we first described the PNS pattern of the abdominal related species offers an excellent model system to study segments A1–A7 in late embryos of several fly species the developmental modifications responsible for evolu- using antibody staining. In contrast to the many variations tionary changes. The D. melanogaster abdominal larval reported previously for the adult PNS pattern, we found PNS is composed of a constant number of neurons and that the larval PNS pattern has remained very stable during associated cells, whose characteristics and positions have evolution. Indeed, our observation that most of the been well described and are perfectly reproducible analysed Drosophilinae species exhibit exactly the same between individuals (Bodmer and Jan 1987; Campos- pattern as Drosophila melanogaster reveals that the Ortega and Hartenstein 1997; Dambly-Chaudiére and pattern observed in D. melanogaster embryos has Ghysen 1986; Ghysen et al. 1986; Hertweck 1931). Three remained constant for at least 40 million years. Further- main types of sensory organs can be distinguished: more, we observed that the PNS pattern in more distantly external sensory (es) organs, chordotonal (ch) organs and related flies (Calliphoridae and Phoridae) is only slightly multidendritic (md) neurons. -
Molecular Clock Or Erratic Evolution?
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11729-11734, October 1996 Evolution Molecular clock or erratic evolution? A tale of two genes (neutral theory of evolution/glycerol-3-phosphate dehydrogenase/superoxide dismutase/Drosophila/Ceratitis) FRANcIsco J. AyALA*t, ELADIO BARRIO*t, AND JAN KWIATOWSKI* *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; and iDepartment of Genetics, University of Valencia, 46100-Burjassot, Valencia, Spain Contributed by Francisco J. Ayala, July 19, 1996 ABSTRACT We have investigated the evolution of glycer- Dorsilopha s.g. ol-3-phosphate dehydrogenase (Gpdh). The rate of amino acid Hirtodrosophila s.g. replacements is 1 x 10'10/site/year when Drosophila species Drosophila s.g. are compared. The rate is 2.7 times greater when Drosophila and Chymomyza species are compared; and about 5 times Zaprionus s.g. greater when any of those species are compared with the Sophophora s.g. medfly Ceratitis capitata. This rate of 5 x 10'10/site/year is also the rate observed in comparisons between mammals, or Chymomyz a between different animal phyla, or between the three multi- cellular kingdoms. We have also studied the evolution of Scaptodrosophila Cu,Zn superoxide dismutase (Sod). The rate of amino acid replacements is about 17 x 10'10/site/year when compari- Ceratitis sons are made between dipterans or between mammals, but only 5 x 10-10 when animal phyla are compared, and only 3 x 100 0 10-10 when the multicellular kingdoms are compared. The apparent decrease by about a factor of 5 in the rate of SOD evolution as the divergence between species increases can be My consistent with the molecular clock hypothesis by assuming the FIG. -
The Mariner Transposable Element in the Drosophilidae Family
Heredity 73 (1994) 377—385 Received 10 February 1994 The Genetical Society of Great Britain The mariner transposable element in the Drosophilidae family FREDERIC BRUNET, FABIENNE GODIN, JEAN A. DAVID & PIERRE CAPY* Laboratoire Populations, Genétique et Evolution, CNRS, 91198 Gif/Yvette Cedex, France Thedistribution of the mariner transposable element among Drosophilidae species was investi- gated using three differetìt techniques, i.e. squash blots, Southern blots and PCR amplification, using two sets of primers (one corresponding to the Inverted Terminal Repeats and the other to two conserved regions of the putative transposase). Our results and those of others show that the distribution of mariner is not uniform and does not follow the phylogeny of the host species. An analysis of geographical distribution, based on endemic species, shows that mariner is mainly present in Asia and Africa. At least two hypotheses may be proposed to explain the specific and geographical distributions of this element. Firstly, 'they may be the results of several horizontal transmissions between Drosophila species and/or between Drosophila species and one or several donor species outside the Drosophilidae family. Secondly, these particular distributions may correspond to the evolution of the mariner element from an ancestral copy which was present in the ancestor of the Drosophilidae family. Keywords:Drosophila,mariner, transposon, phylogeny. al., 1994). In all cases, the evolutionary history of these Introduction elements is not simple and more information is neces- Thedistribution of the mariner transposable elements sary about the variability within and between more or in Drosophila was previously investigated by less closely related species. Maruyama & Hartl (1991 a). -
Downloaded Transcribed from an RNA Template Directly Onto a Consensus Sequences of Jockey Families Deposited in the Tambones Et Al
Tambones et al. Mobile DNA (2019) 10:43 https://doi.org/10.1186/s13100-019-0184-1 RESEARCH Open Access High frequency of horizontal transfer in Jockey families (LINE order) of drosophilids Izabella L. Tambones1, Annabelle Haudry2, Maryanna C. Simão1 and Claudia M. A. Carareto1* Abstract Background: The use of large-scale genomic analyses has resulted in an improvement of transposable element sampling and a significant increase in the number of reported HTT (horizontal transfer of transposable elements) events by expanding the sampling of transposable element sequences in general and of specific families of these elements in particular, which were previously poorly sampled. In this study, we investigated the occurrence of HTT events in a group of elements that, until recently, were uncommon among the HTT records in Drosophila – the Jockey elements, members of the LINE (long interspersed nuclear element) order of non-LTR (long terminal repeat) retrotransposons. The sequences of 111 Jockey families deposited in Repbase that met the criteria of the analysis were used to identify Jockey sequences in 48 genomes of Drosophilidae (genus Drosophila, subgenus Sophophora: melanogaster, obscura and willistoni groups; subgenus Drosophila: immigrans, melanica, repleta, robusta, virilis and grimshawi groups; subgenus Dorsilopha: busckii group; genus/subgenus Zaprionus and genus Scaptodrosophila). Results: Phylogenetic analyses revealed 72 Jockey families in 41 genomes. Combined analyses revealed 15 potential HTT events between species belonging to different -
Phylogeny of Drosophila and Related Genera Inferred from the Nucleotide Sequence of the Cu,Zn Sod Gene
J Mol Evol (1994) 38:443454 Journal of Molecular Evolution © Springer-VerlagNew York Inc. 1994 Phylogeny of Drosophila and Related Genera Inferred from the Nucleotide Sequence of the Cu,Zn Sod Gene Jan Kwiatowski, 1,2 Douglas Skarecky, 1 Kevin Bailey, 1 Francisco J. Ayala 1 I Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92717, USA 2 Institute of Botany, Warsaw University, 00-478 Warsaw, Poland Received: 20 March 1993/Revised: 31 August 1993/Accepted: 30 September 1993 Abstract. The phylogeny and taxonomy of the dro- book of Genetics. Plenum Press, New York, pp. 421- sophilids have been the subject of extensive investiga- 469, 1975) phylogeny; are inconsistent in some impor- tions. Recently, Grimaldi (1990) has challenged some tant ways with Grimaldi's (Bull. Am. Museum Nat. Hist. common conceptions, and several sets of molecular da- 197:1-139, 1990) cladistic analysis; and also are in- ta have provided information not always compatible consistent with some inferences based on mitochondri- with other taxonomic knowledge or consistent with al DNA data. The Sod results manifest how, in addition each other. We present the coding nucleotide sequence to the information derived from nucleotide sequences, of the Cu,Zn superoxide dismutase gene (Sod) for 15 structural features (i.e., the deletion of an intron) can species, which include the medfly Ceratitis capitata help resolve phylogenetic issues. (family Tephritidae), the genera Chymomyza and Za- prionus, and representatives of the subgenera Dor- Key words: Superoxide dismutase gene -- Drosophi- silopha, Drosophila, Hirtodrosophila, Scaptodrosophi- la phylogeny -- Nucleotide sequence -- Medfly Ce- la, and Sophophora. -
Capítulo 20 Capítulo 20 Capítulo 20 Capítulo 20 Capítulo 20 Capítulo 20
CapítuloCapítulo 2020Capítulo 2020Capítulo FOTO: ALDICIR SCARIOT FOTO: FOTO: ALDICIR SCARIOT FOTO: Drosofilídeos Rosana Tidon Denise F. Leite Luzitano B. Ferreira (Diptera, Insecta) BárbaraBárbara F.F. D.D. LeãoLeão Departamento de Genética e Morfologia Universidade de Brasília do Cerrado Brasília, DF. Constantino 336 Diversidade e endemismo de térmitas INTRODUÇÃO A família Drosophilidae possui representantes em praticamente todas as regiões biogeográficas, em diversos tipos Os insetos são excelentes orga- de ecossistemas. Algumas espécies são nismos para investigar questões endêmicas de determinadas áreas e ecológicas, tais como a proposição de outras são cosmopolitas, sendo que modelos que visem o desenvolvimento muitas desta última categoria sustentável do planeta, em face das dispersaram-se pelo mundo devido à sua acentuadas modificações ambientais capacidade de associação ao homem. causadas pelo homem (Lawton, 2001). São conhecidas mais de 2.800 espécies Drosofilídeos, em particular, são de Drosophilidae, quase 60% delas extremamente apropriados para explorar pertencentes ao gênero Drosophila. tais questões, uma vez que são pequenos Wheeler (1986) se refere a 1.595 espécies e numerosos em termos de indivíduos e desse gênero no “Catalog of the World Drosophilidae”, e desde então dezenas de espécies, amplamente distribuídos, de espécies novas foram registradas na sensíveis a modificações ambientais, literatura, inclusive, no Brasil (Val & facilmente coletados, possuem ciclo de Marques, 1996; Vilela & Bächli, 2000; vida curto e são facilmente manipulados Tidon-Sklorz & Sene, 2001). Certamente, nos laboratórios. Devido a essas a fauna das regiões temperadas é muito características, esses insetos têm sido melhor conhecida do que a das regiões intensivamente utilizados em pesquisas, tropicais, onde provavelmente existem produzindo uma vasta literatura em centenas de espécies ainda por descrever várias áreas da Biologia. -
Mechanisms of Speciation
International Journal of Evolutionary Biology Mechanisms of Speciation Guest Editors: Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Mechanisms of Speciation International Journal of Evolutionary Biology Mechanisms of Speciation Guest Editors: Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Evolutionary Biology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Giacomo Bernardi, USA Kazuho Ikeo, Japan Jeffrey R. Powell, USA Terr y Burke, UK Yoh Iwasa, Japan Hudson Kern Reeve, USA Ignacio Doadrio, Spain Henrik J. Jensen, UK Y. Satta, Japan Simon Easteal, Australia Amitabh Joshi, India Koji Tamura, Japan Santiago F. Elena, Spain Hirohisa Kishino, Japan Yoshio Tateno, Japan Renato Fani, Italy A. Moya, Spain E. N. Trifonov, Israel Dmitry A. Filatov, UK G. Pesole, Italy Eske Willerslev, Denmark F. Gonza’lez-Candelas, Spain I. Popescu, USA Shozo Yokoyama, USA D. Graur, USA David Posada, Spain Contents Mechanisms of Speciation, Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Volume 2012, Article ID 820358, 2 pages Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa, Aya Takahashi, Nao Fujiwara-Tsujii, Ryohei Yamaoka, Masanobu Itoh, Mamiko Ozaki, and Toshiyuki Takano-Shimizu Volume 2012, Article ID 278903, 10 pages Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility, Dean M. Castillo and Leonie C. Moyle Volume 2012, Article ID 698198, 12 pages DNA Barcoding and Molecular Phylogeny of Drosophila lini and Its Sibling Species, Yi-Feng Li, Shuo-Yang Wen, Kuniko Kawai, Jian-Jun Gao, Yao-Guang Hu, Ryoko Segawa, and Masanori J. -
University of Groningen Evolutionary Genomics of the Immune Response
University of Groningen Evolutionary genomics of the immune response against parasitoids in Drosophila Salazar Jaramillo, Laura IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Salazar Jaramillo, L. (2014). Evolutionary genomics of the immune response against parasitoids in Drosophila. [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 10-10-2021 Evolutionary genomics of the immune response against parasitoids in Drosophila PhD thesis to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. -
Taxonomy of the Order Mononegavirales: Update 2017
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Virol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 August 01. Published in final edited form as: Arch Virol. 2017 August ; 162(8): 2493–2504. doi:10.1007/s00705-017-3311-7. *Corresponding author: JHK: Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA; Phone: +1-301-631-7245; Fax: +1-301-631-7389; [email protected]. $The members of the International Committee on Taxonomy of Viruses (ICTV) Bornaviridae Study Group #The members of the ICTV Filoviridae Study Group †The members of the ICTV Mononegavirales Study Group ‡The members of the ICTV Nyamiviridae Study Group ^The members of the ICTV Paramyxoviridae Study Group &The members of the ICTV Rhabdoviridae Study Group ORCIDs: Amarasinghe: orcid.org/0000-0002-0418-9707 Bào: orcid.org/0000-0002-9922-9723 Basler: orcid.org/0000-0003-4195-425X Bejerman: orcid.org/0000-0002-7851-3506 Blasdell: orcid.org/0000-0003-2121-0376 Bochnowski: orcid.org/0000-0002-3247-3991 Briese: orcid.org/0000-0002-4819-8963 Bukreyev: orcid.org/0000-0002-0342-4824 Chandran: orcid.org/0000-0003-0232-7077 Dietzgen: orcid.org/0000-0002-7772-2250 Dolnik: orcid.org/0000-0001-7739-4798 Dye: orcid.org/0000-0002-0883-5016 Easton: orcid.org/0000-0002-2288-3882 Formenty: orcid.org/0000-0002-9482-5411 Fouchier: -
A-Glycerophosphate Dehydrogenase Within the Genus Drosophila (Dipteran Evolution/Unit Evolutionary Period) GLEN E
Proc. Natl. Acad. Sci. USA Vol. 74, No. 2, pp. 684-688, February 1977 Genetics Microcomplement fixation studies on the evolution of a-glycerophosphate dehydrogenase within the genus Drosophila (dipteran evolution/unit evolutionary period) GLEN E. COLLIER AND Ross J. MACINTYRE Section of Genetics, Development and Physiology, Plant Science Building, Cornell University, Ithaca, New York 14853 Communicated by Adrian M. Srb, November 8,1976 ABSTRACT Antisera were prepared against purified a- least in D. melanogaster, for rapid production of the energy glycerophosphate dehydrogenase (EC 1.1.1.8) (aGPDH) from needed for flight (7-9). Drosophila melanogaster, D. virifis, and D. busckii. The im- munological distances between the enzymes from the 3 species The third criterion is that the protein should be evolving and those from 31 additional drosophilid species agree in gen- relatively slowly. Although cytogenetic analysis and interspe- eral with the accepted phylogeny of the genus. These data per- cific hybridization are adequate for est*blishing phylogenetic mit an estimate that the subgenus Sophophora diverged 52 relationships among closely related species, a protein that has million years ago from the line leading to the subgenus Droso- changed slowly is particularly useful for establishing the rela- phila. The antiserum against melanogaster aGPDH was ca- pable of distinguishing alielic variants of aGPDH. On the basis tionships among species groups, subgenera, genera, and even of presumed single amino acid substitutions, no-drosophilid families or orders. Brosemer et al. (10) and Fink et al. (11) have aGPDH tested differed from the melanogaster enzyme by more established with immunological tests that the structure of than eight or nine substitutions. -
Ane Caroline Lino Salgueiro Florianópolis 2018
Ane Caroline Lino Salgueiro VARIABILIDADE GENÉTICA DE POPULAÇÕES DE Drosophila capricorni ORIUNDAS DE UNIDADES DE CONSERVAÇÃO DE SANTA CATARINA USANDO O MARCADOR COI Trabalho de Conclusão de Curso apresentado à Universidade Federal de Santa Catarina como pré-requisito parcial para obtenção do grau de Bacharel em Ciências Biológicas. Orientadora: Prof. Dra. Norma Machado da Silva Florianópolis 2018 Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Ane Caroline Lino Salgueiro VARIABILIDADE GENÉTICA DE POPULAÇÕES DE Drosophila capricorni ORIUNDAS DE UNIDADES DE CONSERVAÇÃO DE SANTA CATARINA USANDO O MARCADOR COI Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do título de Bacharel em Ciências Biológicas e aprovada em sua forma final pelo Centro de Ciências Biológicas. Florianópolis, 19 de junho de 2018 ________________________ Prof. Dr. Carlos Roberto Zanetti Coordenador do Curso de Ciências Biológicas Banca Examinadora: ________________________ Prof.ª Dr.ª Norma Machado da Silva, Dr.ª Orientadora Universidade Federal de Santa Catarina ________________________ Prof.ª Dr.ª Daniela Cristina De Toni, Universidade Federal de Santa Catarina ________________________ Prof. Dr. Carlos Frederico Deluqui Gurgel, Universidade Federal de Santa Catarina Este trabalho é dedicado a minha família que sempre me apoiou na escolha desta profissão e no caminhar da minha vida acadêmica. AGRADECIMENTOS À Universidade Federal de Santa Catarina, e ao Centro de Ciências Biológicas pela oportunidade de realizar este curso que tanto contribuiu para a minha formação e vida pessoal. À Prof. Dra. Norma Machado da Silva, pela cuidadosa orientação, apoio e confiança na elaboração deste trabalho. Você foi a melhor orientadora que eu podia ter, sempre paciente em sanar minhas dúvidas e acompanhar todas as etapas desse trabalho.