4.3 CMY Color Model

Total Page:16

File Type:pdf, Size:1020Kb

4.3 CMY Color Model 4.3 CMY Color Model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 346 CMY color model • The CMY color model is related to the RGB color model. •Itsbasecolorsare –cyan(C) –magenta(M) –yellow(Y) • They are arranged in a 3D Cartesian coordinate system. • The scheme is substractive. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 347 Subtractive color scheme • RGC color model is subtractive, i.e., adding colors makes the resulting color darker. • Application: color printers. • As it only works perferctly in theory, typically a black cartridge is added (CMYK color model). Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 348 CMY color cube • All colors c that can be generated are represented by the unit cube in the 3D Cartesian coordinate system. magenta blue red black grey white cyan yellow green Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 349 CMY color cube Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 350 CMY color model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 351 CMYK color model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 352 Conversion • RGB -> CMY: • CMY -> RGB: Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 353 Conversion • RGB -> CMYK: •CMYK -> RGB: Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 354 4.4 HSV/HLS Color Models Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 355 HSV color model • While RGB and CMY color models have their application in hardware implementations, the HSV color model is based on properties of human perception. • Its application is for human interfaces Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 356 HSV color model The HSV color model also consists of 3 channels: • H: When perceiving a color, we perceive the dominant wavelength. This is represented by the hue (H). • S: Thepurityof a colorismeasuredbytheamountof frequencies in the light. The smaller the frequency spectrum, the purer the color. This is represented by the saturation (S). • V: The maximum amplitude of the light is given at its dominant wavelength. It represents the energy of the light given in form of its value (V). Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 357 HSV coordinate system • The coordinate system of the HSV color model is given in form of a cone: – H is given in form of an angle in the range [0,360) which represents the rotational symmetry of the cone. Theorder of thecolorsisgivenbythefrequencyspectrum. – S is in the range [0,1] and its axis perpendicular to the V axis. – V is in the range [0,1] and its axis is the rotational symmetry axis of the cone. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 358 HSV coordinate system Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 359 HSV coordinate system • Sometimes the cone is approximated by a 6-sided pyramid: green: 120° yellow: 60° white cyan: 180° red: 0° blue: 240° magenta: 300° grey black • The hexagon at the base of the 6-sided pyramid is the RGB cube projected along the grey axis. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 360 HSV color model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 361 Conversion: RGB -> HSV Let max = max {R,G,B} and min = min {R,G,B}: green: 120° yellow: 60° cyan: 180° red: 0° blue: 240° magenta: 300° Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 362 Conversion HSV -> RGB Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 363 HLS color model • HLS color model is identical to HSV color model, but value V is replaced by lightness L. • Lightness is also in the range [0,1] • The cone coordinate system is replaced by a double- cone coordinate system, where the maximum cone radius is reached at L = 0.5. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 364 HLS coordinate system Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 365 HLS color model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 366 Conversion RGB -> HLS Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 367 4.5 CIE Color Models Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 368 CIE color models • CIE: Commission Internationale d‘ Eclairage • Human color space (tristimulus): – x, y, and z axes represent the stimuli for the long- wavelength (L), medium-wavelength (M), and short- wavelength (S) receptors. – The human color space is a horse-shoe-shaped cone. – The origin corresponds to black and is the tip of the cone. – Brighter colors are farther removed from the origin. – The most saturated colors are located at the outer rim of the cone. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 369 Human color space Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 370 Gamut • The set of colors described by a color model, is called its gamut. • We observed that the RGB gamut is a real subset of the human tristimulus gamut. • CIE tried to overcome this problem by replacing the R, G, and B wavelength with the tristimulus wavelengths. • They defined chromaticity curves with no negative components. • The 3 color channels are called X, Y, and Z. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 371 CIE XYZ color model • The amplitudes of the curve were rather arbitrary. • The CIE xyz color model modifies them by scaling to equal areas under the curves. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 372 CIE XYZ Color Model Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 373 Conversion •RGB -> CIE XYZ: • CIE XYZ -> RGB: –inversematrix – caveat: not always all entries will be nonnegative! Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 374 CIE xyY color model • Normalization: • z is not stored explicitly. • Instead we store a luminance channel Y. • x and y represent the chromatic channels. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 375 CIE xyY chromaticity diagram Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 376 Comparison CIE xyY vs. RGB Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 377 CIE L*a*b* color model • To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (Xn,Yn,Zn) are the tristimulus values of the reference white point. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 378 CIE L*a*b* color model • L* represents a luminance or lightness channel. • a* and b* represent chromatic channels. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 379 CIE L*a*b* color model Chromaticity diagram for various luminances: Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 380 CIE L*a*b* color model Perceptually uniform: • The CIE L*a*b* color model is perceptually uniform, i.e., a change of the same amount in a color value should produce a change of about the same visual importance. • In other words, Euclidean distance in the color space is propotional to human perception. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 381 L*a*b* & RGB • L*a*b* chromaticity diagram reduced to the colors that can be represented in RGB color space. Jacobs University Visualization and Computer Graphics Lab 320322: Graphics and Visualization 382.
Recommended publications
  • Color Models
    Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates.
    [Show full text]
  • Chapter 6 : Color Image Processing
    Chapter 6 : Color Image Processing CCU, Taiwan Wen-Nung Lie Color Fundamentals Spectrum that covers visible colors : 400 ~ 700 nm Three basic quantities Radiance : energy that flows from the light source (measured in Watts) Luminance : a measure of energy an observer perceives from a light source (in lumens) Brightness : a subjective descriptor difficult to measure CCU, Taiwan Wen-Nung Lie 6-1 About human eyes Primary colors for standardization blue : 435.8 nm, green : 546.1 nm, red : 700 nm Not all visible colors can be produced by mixing these three primaries in various intensity proportions Cones in human eyes are divided into three sensing categories 65% are sensitive to red light, 33% sensitive to green light, 2% sensitive to blue (but most sensitive) The R, G, and B colors perceived by CCU, Taiwan human eyes cover a range of spectrum Wen-Nung Lie 6-2 Primary and secondary colors of light and pigments Secondary colors of light magenta (R+B), cyan (G+B), yellow (R+G) R+G+B=white Primary colors of pigments magenta, cyan, and yellow M+C+Y=black CCU, Taiwan Wen-Nung Lie 6-3 Chromaticity Hue + saturation = chromaticity hue : an attribute associated with the dominant wavelength or dominant colors perceived by an observer saturation : relative purity or the amount of white light mixed with a hue (the degree of saturation is inversely proportional to the amount of added white light) Color = brightness + chromaticity Tristimulus values (the amount of R, G, and B needed to form any particular color : X, Y, Z trichromatic
    [Show full text]
  • In Concert with Teaching Strategies That Have a Solid Theoretical Basis
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in “Teaching and Learning Technology”. In Section 1 of this course you will cover these topics: Learning And Instruction Computer Applications In Education The Impact Of The Computer On Education Topic : Learning And Instruction Topic Objective: At the end of this topic student would be able to understand: Computer's Role In Instruction Instructional Technology Early Applications The Internet Era Outcomes Research Social Context Gagne's Nine Events of Instruction Definition/Overview: The first topic establishes a framework for looking at the computer's role in instruction and examines its role in student learning. A brief review of behaviorist and constructivist theories of instruction and learning is presented. The intent is to demonstrate that the computer can be a practical tool usedWWW.BSSVE.IN in concert with teaching strategies that have a solid theoretical basis. We recognize that thinking patterns and learning styles vary and that many different cognitive processes and intelligences should be valued. This topic presents a brief overview of types of intelligences, perception and motivation in order to emphasize the importance of analyzing student populations and matching instructional materials to student needs. Recognizing the important role that software plays in instruction and learning, a good deal of discussion takes place on the selection and evaluation of effective software. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Key Points: 1.Computer's Role in Instruction American education has long incorporated technology in K-12 classrooms tape recorders, televisions, calculators, computers, and many others.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • A Method of Content-Based Image Retrieval for the Generation of Image Mosaics
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics Michael Snead University of Central Florida Part of the Computer Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Snead, Michael, "A Method Of Content-based Image Retrieval For The Generation Of Image Mosaics" (2007). Electronic Theses and Dissertations, 2004-2019. 3358. https://stars.library.ucf.edu/etd/3358 A METHOD OF CONTENT-BASED IMAGE RETRIEVAL FOR THE GENERATION OF IMAGE MOSAICS by MICHAEL CHRISTOPHER SNEAD B.S. University of Central Florida, 2005 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Electrical Engineering and Computer Science in the College of Engineering & Computer Science at the University of Central Florida Orlando, Florida Spring Term 2007 © 2007 Michael Christopher Snead ii ABSTRACT An image mosaic is an artistic work that uses a number of smaller images creatively combined together to form another larger image. Each building block image, or tessera, has its own distinctive and meaningful content, but when viewed from a distance the tesserae come together to form an aesthetically pleasing montage. This work presents the design and implementation of MosaiX, a computer software system that generates these image mosaics automatically.
    [Show full text]
  • First Semester
    NATIONAL UNIVERSITY F o u r t h Y e a r S y l l a b u s D e p a r t m e n t of Computer Science and Engineering Four Year B.Sc. Honours Course Effective from the Session: 2017–2018 National University Subject: Computer Science and Engineering Syllabus for Four Year B.Sc. Honours Course Effective from the Session: 2017-2018 Year wise courses and marks distribution FOURTH YEAR Semester VII Course Code Course Title Credit Hours 540201 Artificial Intelligence 3.0 540202 Artificial Intelligence Lab 1.5 540203 Compiler Design and Construction 3.0 540204 Compiler Design Lab 1.5 540205 Computer Graphics 3.0 540206 Computer Graphics Lab 1.5 540207 E-Commerce and Web Engineering 3.0 540208 E-Commerce and Web Engineering Lab 1.5 Total Credits in 7th Semester 18.0 Semester VIII Course Code Course Title Credit Hours Major Theory Courses 540209 Network and Information Security 3.0 540210 Network and Information Security Lab 1.5 540211 Information System Management 3.0 Project/Industry Attachment 540240 Project/Industry Attachment 6.0 Optional Course (any one) 3.0 540212 Simulation and Modeling 540214 Parallel and Distributed Systems 540216 Digital Signal Processing 540218 Digital Image Processing 540220 Multimedia 540222 Pattern Recognition 540224 Design and Analysis of VLSI Systems 540226 Micro-controller and Embedded System 540228 Cyber Law and Computer Forensic 540230 Natural Language Processing 540232 System Analysis and Design 540234 Optical Fiber Communication 540236 Human Computer Interaction 540238 Graph Theory Page 2 of 18 Optional Course
    [Show full text]
  • NEC Multisync® PA311D Wide Gamut Color Critical Display Designed for Photography and Video Production
    NEC MultiSync® PA311D Wide gamut color critical display designed for photography and video production 1419058943 High resolution and incredible, predictable color accuracy. The 31” MultiSync PA311D is the ultimate desktop display for applications where precise color is essential. The innovative wide-gamut LED backlight provides 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3, enabling more accurate colors to be displayed on screen. Utilizing a high performance IPS LCD panel and backed by a 4 year warranty with Advanced Exchange, the MultiSync PA311D delivers high quality, accurate images simply and beautifully. Impeccable Image Performance The wide-gamut LED LCD backlight combined with NEC’s exclusive SpectraView Engine deliver precise color in every environment. • True 4K resolution (4096 x 2160) offers a high pixel density • Up to 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3 • 10-bit HDMI and DisplayPort inputs display up to 1.07 billion colors out of a palette of 4.3 trillion colors Ultimate Color Management The sophisticated SpectraView Engine provides extensive, intuitive control over color settings. • MultiProfiler software and on-screen controls provide access to thousands of color gamut, gamma, white point, brightness and contrast combinations • Internal 14-bit 3D lookup tables (LUTs) work with optional SpectraViewII color calibration solution for unparalleled color accuracy A Perfect Fit for Your Workspace A Better Workflow Future-proof connectivity, great ergonomics, and VESA mount Exclusive,
    [Show full text]
  • Working with Colors
    Working With Colors INK: The physical form of color; Ink is how color is applied to paper There are two different types of inks: • TRANSPARENT INKS are commonly used in printing • OPAQUE INKS are considered a specialty ink and generally cost more COLOR: in printing, there are two types of color modes: • SPOT COLOR; aka: Match color, PMS color, Solid color • 4-COLOR PRocESS; aka: Process, CMYK Working With Colors With Working SPot COLOR • A pre-mixed color; a color mixed prior to the printing press PMS : PANtoNE MAtcHING SYSTEM • Color system that has several color libraries for reference in reproducing color • Popular PMS color libraries: • Spot color Formula guide (coated, uncoated, and matte versions) solid color guide that identifies specific colors • 4-Color Process Guide (coated and uncoated versions) identifies colors using CMYK inks • Color Bridge (coated and uncoated versions) using the colors from the spot color Formula guide this book shows the difference Working With Colors With Working between a spot color and the same color when converted to CMYK • Metallic Inks • Pastels • Tints • www.pantone.com COATED: Paper stock that has been treated with a special coating in order to have a glossy appearance. • Ink sits on this type of paper stock as a result of the glossy coating • Colors appear to be brighter compared to uncoated paper Matte: coated paper stock that has been dulled UNcoATED : Paper stock that has not been treated; it has no coating. • Ink is absorbed into this type of paper stock • Ink color appears darker and duller Working With Colors With Working BENEFit OF USING SPot coLOR: • consistent color within a print job.
    [Show full text]
  • Xilinx PG014 Logicore IP Ycrcb to RGB Color-Space Converter V6.00.A, Product Guide
    LogiCORE IP YCrCb to RGB Color-Space Converter v6.00.a Product Guide PG014 July 25, 2012 Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Feature Summary. 8 Applications . 9 Licensing and Ordering Information. 9 Chapter 2: Product Specification Standards Compliance . 10 Performance. 10 Resource Utilization. 11 Core Interfaces and Register Space . 13 Chapter 3: Designing with the Core General Design Guidelines . 27 Color-Space Conversion Background . 28 Clock, Enable, and Reset Considerations . 34 System Considerations . 36 Chapter 4: C Model Reference Installation and Directory Structure . 38 Using the C-Model . 40 Input and Output Video Structures . 42 Initializing the Input Video Structure . 43 Compiling with the YCrCb to RGB C-Model . 46 YCrCb to RGB Color-Space Converter v6.00.a www.xilinx.com 2 PG014 July 25, 2012 SECTION II: VIVADO DESIGN SUITE Chapter 5: Customizing and Generating the Core Graphical User Interface . 49 Output Generation. 53 Chapter 6: Constraining the Core Required Constraints . 54 Device, Package, and Speed Grade Selections. 54 Clock Frequencies . 54 Clock Management . 54 Clock Placement. 54 Banking . 55 Transceiver Placement . 55 I/O Standard and Placement. 55 SECTION III: ISE DESIGN SUITE Chapter 7: Customizing and Generating the Core Graphical User Interface . 57 Parameter Values in the XCO File . 61 Output Generation. 62 Chapter 8: Constraining the Core Required Constraints . 63 Device, Package, and Speed Grade Selections. 63 Clock Frequencies . 63 Clock Management . 63 Clock Placement. 63 Banking . 64 Transceiver Placement . 64 I/O Standard and Placement. 64 Chapter 9: Detailed Example Design Demonstration Test Bench . 65 Test Bench Structure .
    [Show full text]
  • Chapter 2 Fundamentals of Digital Imaging
    Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]
  • Image Processing Based Automatic Color Inspection and Detection of Colored Wires in Electric Cables
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 5 (2017) pp. 611-617 © Research India Publications. http://www.ripublication.com Image Processing based Automatic Color Inspection and Detection of Colored Wires in Electric Cables 1Rajalakshmi M, 2Ganapathy V, 3Rengaraj R and 4Rohit D 1Assistant Professor, 2Professor, Dept. of IT., SRM University, Kattankulathur-603203, Tamil Nadu, India. 3Associate Professor, Dept. of EEE, SSN College of Engg., Kalavakkam-603110, Tamil Nadu, India. 4Research Associate, Siechem Wires and Cables, Pondicherry, India. Abstract manipulation and interpretation of visual information, and it plays an increasingly important role in our daily life. Also it In this paper, an automatic visual inspection system using is applied in a variety of disciplines and fields in science and image processing techniques to check the consistency of technology. Some of the applications are television, color of the wire after insulation, and meeting the photography, robotics, remote sensing, medical diagnosis requirements of the manufacturer, is presented. Also any and industrial inspection. Probably the most powerful image color irregularities occurring across the insulation are processing system is the human brain together with the eye. displayed. The main contributions of this paper are: (i) the The system receives, enhances and stores images at self-learning system, which does not require manual enormous rates of speed. The objective of image processing intervention and (ii) a color detection algorithm that can be is to visually enhance or statistically evaluate some aspect of able to meet up with varied finishing of the wire insulation. an image not readily apparent in its original form.
    [Show full text]