Studying BDNF Signalling Using Neurons Derived from Human Embryonic Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

Studying BDNF Signalling Using Neurons Derived from Human Embryonic Stem Cells Studying BDNF signalling using neurons derived from human embryonic stem cells Spyridon Merkouris A thesis submitted to Cardiff University in accordance with the requirements for the degree of Doctor of Philosophy in the discipline of Neuroscience School of Biosciences, Cardiff University June 2020 1 DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of …………………………(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ………………………………………… (candidate) Date ………………………… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ………………………………………… (candidate) Date ………………………… 2 “The energy of mind is the essence of life” Aristotle’s Metaphysics 12.1072b25 “ἡ γὰρ νοῦ ἐνέργεια ζωή” 3 ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisor, Yves Barde, for giving me the opportunity to work in his lab and providing his continuous guidance and advice throughout my PhD. His endless ideas and passion for science encouraged me when experiments did not work as expected. Thank you for your support and the exciting discussions during the last four years. Special thanks go to my co-supervisor Meng Li, who’s experience on human stem cells greatly facilitated my project. Meng and Claudia Tamburini introduced me to the techniques of human stem cell culture and for possibility to use equipment. Claudia was always there for scientific discussions, and the exchange of ideas made me more productive. I would like to extend my gratitude to Nick Allen whose experience on differentiating human stem cells offered me a very useful system to work with. I also wish to thank the whole Barde lab, but specific thanks go to Pedro Chacon Fernandez who always gave help when I needed it and for his advices; Hayley Dingsdale for giving me valuable feedback on this thesis; Xinsheng Nan for always being willing to share his great experimental expertise. Katharina, Laura, Sven, Jess and Natalia: thank you for the many enjoyable moments that we spent together, for the support and for the productive discussions. Thanks to all the members of the 3rd floor of the BIOSI 3 for creating an ideal working environment. Last, but not least I want to thank my friends and family for their reassurance and inspiration. I would like to thank in particular my parents for their love, continuous support and for always believing in me. Thank you, mam and dad, for everything that you have done for me. Special thanks also go to my sister Katerina for always being there when I needed her. I would also like to thank my good friend Giannis Kessidis for our long and stimulating discussions. 4 ABSTRACT As a result of a large number of in vitro as well as in vivo experiments with rodents, brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB are now widely appreciated to play major roles in brain function. There is also a growing appreciation that decreased BDNF signalling may be a significant component in a wide range of brain dysfunction in humans based on the discovery of mutations and polymorphisms in the corresponding genes. Yet still very little is known about BDNF expression and TrkB activation in human neurons or the human brain. In order to begin to address these questions, human embryonic stem cells (hESCs) have been used to generate large numbers of neurons suitable for biochemical experiments. In the work reported in the following chapters, two different protocols have been used to grow and differentiate hESCS. In the first, excitatory neurons were generated exhibiting detectable levels of BDNF albeit at low levels and after well over 2 months of culture. Detailed biochemical analyses that could significantly advance the field within a manageable time frame were also hampered by uncontrolled cell division still occurring in excitatory neurons even after extended culture periods. The use of a second, recently published differentiation protocol led to the significantly faster, more reproducible generation of large numbers of TrkB- expressing, mostly inhibitory neurons. A key feature of this robust differentiation protocol was the high proportion of BDNF-responsive cells allowing BDNF-induced phosphorylation to be studied with regard to time course and dose response. This system also allowed comparisons to be made between BDNF, the related factor neurotrophin-4 (NT4) and newly generated TrkB-activating antibodies. These TrkB-activating ligands were compared by extracting RNA from neurons treated for different time periods. One of the TrkB- activating antibody (designated #85) turned out to activate human TrkB at concentrations close to those of the natural ligands and with a strikingly similar pattern of induced mRNA transcripts, especially at early time points. The main conclusion of this work is that a test system based on the generation of BDNF-responsive neurons can be used to develop new reagents able to meaningfully activate TrkB. This work has been published in Merkouris et al 2018 in PNAS (https://www.pnas.org/content/115/30/E7023.long) 5 ABBREVIATIONS 7,8-DHF 7,8-Dihydroxyflavone Aβ Amyloid Beta ACAN Aggrecan ACKR3 Atypical Chemokine Receptor 3 AD Alzheimer’s Disease ADF Advanced DMEM F12 Akt see PKB AMPK 5’ Adenosine Monophosphate-Activated Protein Kinase AP-1 Activator Protein 1 Arc Activity-Regulated Cytoskeleton-Associated Protein ATF3 Activating Transcription Factor 3 BAD Bcl-2-associated Death Promotor Bcl-2 B-cell Lymphoma 2 BDNF Brain-Derived Neurotrophic Factor BDNF-AS BDNF Antisense bFGF Basic Fibroblast Growth Factor BMP Bone Morphogenetic protein BP Base Pairs BSA Bovine Serum Albumin BTG2 B-Cell Translocation Gene 2 CamKII Calcium/Calmodulin-Dependent Protein Kinase II cAMP Cyclic Adenosine Monophosphate 6 CaREs Calcium-Response Elements CaRF Calcium-Responsive Transcription Factor Cdk Cyclin-Dependent Kinase cDNA Complementary DNA CNS Central Nervous System CR Calretinin CRE cAMP Response Element CREB cAMP response element-binding protein CSRNP1 Cysteine and Serine Rich Nuclear Protein 1 Ct Cycle Threshold CTIP2 Chicken Ovalbumin Upstream Promotor Transcription Factor-Interacting Protein 2 CUX1 Cut Like Homeobox 1 CYR61 Cysteine Rich Angiogenic Inducer 61 DAPI 4’,6-diamidino-2 phenylindole DARPP-32 Dopamine- and cAMP-regulated neuronal phosphoprotein DIV Days in vitro DMAQ-B1 Demethylasterriquinone B-1 DMEM Dulbecco’s Modified Eagle Medium DMSO Dimethyl Sulfoxide DNA Deoxyribonucleic Acid dNTP Deoxynucleotide Triphosphates DTT Dithiothreitol DUSP1 Dual Specificity Phosphatase 1 EC50 Half Maximal Effective Concentration EDTA Ethylenediaminetetraacetic Acid EGF Epidermal Growth Factor 7 EGR Early Growth Reponse ERK Extracellular-Signal-Regulated Kinase ESC Embryonic Stem Cell ETV5 ETS Variant 5 FAM 6-carboxyfluorescein FAM83G Family With Sequence Similarity 83 Member G FCS Foetal Calf Serum FGF Fibroblast Growth Factor FOXP Forkhead Box Protein P FPKM Fragments Per Kilobase Million FRET Fluorescence Resonance Energy Transfer GABA Gamma-Aminobutyric Acid GAD Glutamate decarboxylase GEM Guanosine-5’-Triphosphate (GTP) Binding Protein Overexpressed in Skeletal Muscle GFAP Glial Fibrillary Acidic Protein GFR Growth Factor-Reduced GO Gene Ontology GPR G Protein-Coupled Receptor GSK3 Glycogen Synthase Kinase-3 GSX2 Genetic-Screened Homeobox 2 HAP1 Huntingtin Associated Protein 1 HD Huntington’s Disease HESCs Human Embryonic Stem Cells HIV Human Immunodeficiency Virus HRP Horseradish peroxidase HT High Throughput 8 Ig Immunoglobulin IPA Ingenuity Pathway Analysis iPSCs Induced Pluripotent Stem Cells JAK Janus Kinase kDa Kilodalton KLF Kruppel-like Factor LDS Lithium Dodecyl Sulphate LGE Lateral Ganglionic Eminence LIF Leukaemia Inhibitor Factor LOXHD1 Lipoxygenase Homology Domains 1 LRRTM1 Leucine Rich Repeat Transmembrane Neuronal 1 LTM Long-Term Memory LTP Long-Term Potentiation MAPK Mitogen-activated Protein Kinase MECP2 Methyl Cpg Binding Protein 2 MES 2-(N-Morpholino) Ethanesulfonic Acid MGB Minor Groove Binder MMP1 Matrix Metalloproteinase-1 mRNA Messenger RNA MSN Medium Spiny Neurons NAT Natural antisense transcript NF-κB Nuclear Factor Kappa B NGF Nerve Growth Factor NPAS4 Neuronal PAS Domain-Containing Protein 4 NR4A Nuclear Receptor Subfamily 4 Group A NT3 Neurotrophin-3 9 NT4 Neurotrophin-4 NTR Neurotrophin Receptor Oct-4 Octamer-Binding Transcription Factor 4 OLIG2 Oligodendrocyte transcription factor 2 PALD1 Phosphatase Domain Containing, Paladin 1 PAX6 Paired Box Protein 6 PC Principal Component PCA Principal Components Analysis PBS Phosphate Buffered Saline PBS-T Phosphate Buffered Saline, 0.1 % Triton X-100 PCR Polymerase Chain Reaction PD Parkinson’s Disease PDYN Prodynorphin PFA Paraformaldehyde PI3K Phosphoinositide 3-kinase PKB Protein kinase B (also Akt) PLCγ1 Phospholipase Cγ1 PMA Purmorphamine PMCH Pro-Melanin
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Dissertation
    Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the Degree of Doctor of Natural Sciences Presented by Ann-Cathrin Hofer (M.Sc.) Born in Heidelberg, Germany Oral Examination: 12th of September 2016 Regulatory T cells protect the neonatal liver and secure the hepatic circadian rhythm Referees 1st Referee: Prof. Dr. Peter Angel 2nd Referee: Dr. Markus Feuerer This dissertation was performed and written during the period from November 2012 to May 2016 in the German Cancer Research Center (DKFZ) under the supervision of Prof. Dr. Peter Angel and direct supervision of Dr. Markus Feuerer. The dissertation was submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany in June 2016. German Cancer Research Center (DKFZ) Immune Tolerance (D100) Im Neuenheimer Feld 280 69120 Heidelberg, Germany I II Confirmation Hereby, I confirm that I have written this thesis independently, using only the results of my investigation unless otherwise stated. Furthermore, I declare that I have not submitted this thesis for a degree to any other academic or similar institution. Parts of this dissertation have been submitted for publishing: Regulatory T cells protect the liver early in life and safeguard the hepatic circadian rhythm Ann-Cathrin Hofer, Thomas Hielscher, David M. Richards, Michael Delacher, Ulrike Träger, Sophia Föhr, Artyom Vlasov, Marvin Wäsch, Marieke Esser, Annette Kopp-Schneider, Achim Breiling, Frank Lyko, Ursula Klingmüller, Peter Angel, Jakub Abramson, Jeroen Krijgsveld & Markus Feuerer Parts of the experiments in this dissertation were performed in collaboration with other research groups as follows: CG methylation analysis with the 454 pyrosequencing technology: Division of Epigenetics, DKFZ, Heidelberg Dr.
    [Show full text]
  • Supplemental Figure 1. CD27 Expression by CD30+ B Cells
    Supplemental Figure 1. CD27 expression by CD30+ B cells. Tonsillar mononuclear cells were depleted of CD3+ T cells and enriched for CD30+ B cells by consecutive MACS isolation steps. The flow-through of the CD30-MACS enrichment was used to analyze CD30- B cells. Isolated B cells were stained for CD20, CD30, CD38, and CD27 or isotype control. Dot plots in panel A depict the gating strategy, and histograms show the staining patterns for CD27 and isotype control of the four subsets. In B, the mean fluorescence intensities (MFI) for CD27 of the four B cell subsets, as well as naive and plasma cells, are given for four tonsils analyzed. Graphs indicate mean ± SD. The MFI of the CD27 staining have been corrected for the respective values of the isotype control staining. As CD30- non-GC B cells include CD27- naïve B cells and CD27+ memory B cells, they show a biphasic CD27 expression. n.s., not significant; ** p<0.01 (unpaired t test). Supplemental Figure 2. Interleukin receptor expression by CD30+ B cells and relatedness of CD30+ EF B cells to CD21low B cells. mRNA and surface protein expression of IL2RB (A), IL21R (B) and CD21 (C) are shown for indicated B cell subsets of five tonsils (conventional (conv.) CD30- GC (germinal center) B cells (CD20highCD38+), CD30+ GC B cells, CD30- memory and CD30+ EF (extra follicular) B cells (CD20+CD38-/lowCD27+), and plasma cells (PC) (CD20+CD38high). mRNA data originate from Affymetrix genechip analyses (Tiacci et al., Blood, 2012; 120:4609-4620) and were analyzed using an unpaired t test.
    [Show full text]
  • Resveratrol Is a Nuclear Receptor 4A1 (NR4A1) Ligand the Antagonizes NR4A1-Regulated Prooncogenic Pathways in Lung Cancers
    Resveratrol is a Nuclear Receptor 4A1 (NR4A1) Ligand the Antagonizes NR4A1-Regulated Prooncogenic Pathways in Lung Cancers Lei Zhang1, Kumaravel Mohankumar1, Gregory Martin1, and Stephen Safe1 1Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843 Abstract Methods A. C. Resveratrol (3,5,4’-trihydroxystilbene) is a polyphenolic phytochemical found in fruits, nuts, Ø Cell line: A549, H460 and H1299 non-small lung cancer cell lines were purchased and vegetables and there is evidence that this compound offers protection from several from American Type Culture Collection. human diseases including cancer. In cancer cell lines, resveratrol inhibits cell growth, survival, Ø Cell proliferation Assay: A549, H460, H1299 cells are seeded (2x104 per well) in migration/invasion and genes/pathways associated with these anticancer activities. Many of 96-well plates. A549 cells were maintained with DEME and 10% FBS. H460 and B. the same anticancer activities reported for resveratrol have previously been observed in this H1299 cells were maintained in RPMI 1640 and 10% FBS. Cells were allowed to laboratory using bis-indole derived nuclear receptor 4A1 (NR4A1) ligands that antagonize of attach for 24 hours. Then, the cells were treated at given concentrations with NR4A1-regulated pro-oncogenic pathways. Treatment of A549, H460, H1299 lung cancer cells appropriate media and 2.5% stripe FBS for 24, 48, and 72 hours. XTT cell viability with 50-125 µM resveratrol for 24, 48, 72 hours inhibited cell growth and IC50 values for kit that was purchased from Cell Signaling was applied to stain live cells after growth inhibition decreased with time.
    [Show full text]
  • Figure S1. Gene Ontology Classification of Abeliophyllum Distichum Leaves Extract-Induced Degs
    Figure S1. Gene ontology classification of Abeliophyllum distichum leaves extract-induced DEGs. The results are summarized in three main categories: Biological process, Cellular component and Molecular function. Figure S2. KEGG pathway enrichment analysis using Abeliophyllum distichum leaves extract-DEGs (A). Venn diagram analysis of DEGs involved in PI3K/Akt signaling pathway and Rap1 signaling pathway (B). Figure S3. The expression (A) and protein levels (B) of Akt3 in AL-treated SK-MEL2 cells. Values with different superscripted letters are significantly different (p < 0.05). Table S1. Abeliophyllum distichum leaves extract-induced DEGs. log2 Fold Gene name Gene description Change A2ML1 alpha-2-macroglobulin-like protein 1 isoform 2 [Homo sapiens] 3.45 A4GALT lactosylceramide 4-alpha-galactosyltransferase [Homo sapiens] −1.64 ABCB4 phosphatidylcholine translocator ABCB4 isoform A [Homo sapiens] −1.43 ABCB5 ATP-binding cassette sub-family B member 5 isoform 1 [Homo sapiens] −2.99 ABHD17C alpha/beta hydrolase domain-containing protein 17C [Homo sapiens] −1.62 ABLIM2 actin-binding LIM protein 2 isoform 1 [Homo sapiens] −2.53 ABTB2 ankyrin repeat and BTB/POZ domain-containing protein 2 [Homo sapiens] −1.48 ACACA acetyl-CoA carboxylase 1 isoform 1 [Homo sapiens] −1.76 ACACB acetyl-CoA carboxylase 2 precursor [Homo sapiens] −2.03 ACSM1 acyl-coenzyme A synthetase ACSM1, mitochondrial [Homo sapiens] −3.05 disintegrin and metalloproteinase domain-containing protein 19 preproprotein [Homo ADAM19 −1.65 sapiens] disintegrin and metalloproteinase
    [Show full text]
  • Mediators in Human Disease and Autophagy
    Chen et al. Cell Mol Biol Lett (2020) 25:48 https://doi.org/10.1186/s11658-020-00241-w Cellular & Molecular Biology Letters REVIEW LETTER Open Access The nuclear receptor 4A family members: mediators in human disease and autophagy Liqun Chen1,2*† , Fengtian Fan1,2†, Lingjuan Wu1,2 and Yiyi Zhao1,2 *Correspondence: [email protected] Abstract † Liqun Chen and Fengtian The Nuclear receptor 4A (NR4A) subfamily, which belongs to the nuclear receptor (NR) Fan are co-frst author. 1 College of Biological superfamily, has three members: NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (Nor1). Science and Engineering, They are gene regulators with broad involvement in various signaling pathways and Fuzhou University, human disease responses, including autophagy. Here, we provide a concise overview Fuzhou 350108, China Full list of author information of the current understanding of the role of the NR4A subfamily members in human is available at the end of the diseases and review the research into their regulation of cell autophagy. A deeper article understanding of these mechanisms has potential to improve drug development processes and disease therapy. Keywords: NR4A family, Autophagy, Human disease, Nur77, Nurr1, Nor1 Introduction Autophagy is an evolutionarily conserved catabolic process that attenuates cellular stress by digesting cytoplasmic contents and disposing of intracellular waste [1, 2]. Te process involves lysosomal enzymes degrading pathogens, longevity proteins, damaged orga- nelles and other components [3, 4]. Rapid adaptation to environmental changes to main- tain homeostasis is key to the health and survival of cells and organisms. By maintaining a balance between synthesis and degradation, autophagy can regulate homeostasis [5].
    [Show full text]
  • Molecular Insights Into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death
    Molecular Neurobiology (2019) 56:5799–5814 https://doi.org/10.1007/s12035-019-1487-4 Molecular Insights into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death Md. Jakaria1 & Md. Ezazul Haque1 & Duk-Yeon Cho1 & Shofiul Azam1 & In-Su Kim1,2 & Dong-Kug Choi1,2 Received: 31 October 2018 /Accepted: 10 January 2019 /Published online: 25 January 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract NR4A2 is a nuclear receptor and a transcription factor, with distinctive physiological features. In the cell nuclei of the central nervous system, it is widely expressed and identified as a crucial regulator of dopaminergic (DA) neuronal differentiation, survival, and maintenance. Importantly, it has regulated different genes crucial for dopaminergic signals, and its expression has been diminished in both aged and PD post-mortem brains and reduced in PD patients. In microglia and astrocytes, the expression of NR4A2 has been found where it can be capable of inhibiting the expression of proinflammatory mediators; hence, it protected inflammation-mediated DA neuronal death. In addition, NR4A2 plays neuroprotective role via regulating different signals. However, NR4A2 has been mainly focused on Parkinson’s research, but, in recent times, it has been studied in Alzheimer’s disease (AD), multiple sclerosis (MS), and stroke. Altered expression of NR4A2 is connected to AD progression, and activation of its may improve cognitive function. It is downregulated in peripheral blood mononuclear cells of MS patients; nonetheless, its role in MS has not been fully clear. miR-145-5p known as a putative regulator of NR4A2 and in a middle cerebral artery occlusion/reperfusion model, anti-miR-145-5p administration promoted neurological outcomes in rat.
    [Show full text]
  • 1 Transcriptomic Responses to Hypoxia in Endometrial and Decidual Stromal Cells 2 3 Kalle T
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885657; this version posted December 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic responses to hypoxia in endometrial and decidual stromal cells 2 3 Kalle T. Rytkönen 1,2,3,4, Taija Heinosalo 1, Mehrad Mahmoudian 2,5, Xinghong Ma 3,4, Antti 4 Perheentupa 1,6, Laura L. Elo 2, Matti Poutanen 1 and Günter P. Wagner 3,4,7,8 5 6 1 Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, 7 University of Turku, Kiinamyllynkatu 10, 20014, Finland 8 2 Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 9 20520, Turku, Finland 10 3 Yale Systems Biology Institute, West Haven, Connecticut 06516, USA 11 4 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, 12 USA 13 5 Department of Future Technologies, University of Turku, FI-20014 Turku, Finland 14 6 Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, 15 20521, Turku, Finland. 16 7 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New 17 Haven 06510, USA 18 8 Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI- 48201, USA 19 20 Correspondence should be addresses to K T Rytkönen; Email: [email protected]. Address: Institute 21 of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of 22 Turku, Kiinamyllynkatu 10, 20014, Finland / Turku Bioscience Centre, University of Turku and 23 Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
    [Show full text]
  • A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Anti-Tumor Immunity
    Author Manuscript Published OnlineFirst on January 7, 2020; DOI: 10.1158/0008-5472.CAN-19-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Anti-Tumor Immunity Keshav Karki1, Gus A. Wright2, Kumaravel Mohankumar1, Un-Ho Jin1, Xing-Han Zhang1 and Stephen Safe1 Affiliations: 1 Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA, 77843 2 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA, 77843 Running Title: NR4A1 antagonists as immunotherapy mimics Keywords: NR4A1, antagonists, mammary, tumors, immunotherapy mimics Corresponding Author: Stephen H. Safe, Ph. D., College of Veterinary Medicine & Biomedical Sciences, Department of Veterinary Physiology & Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA, Tel: 979-845-5988 / Fax: 979-862-4929, Email: [email protected] Disclosure of Conflicts of Interest: There are no conflicts of interests to declare. Word Count: 5004 Figures: 7 References: 46 1 Downloaded from cancerres.aacrjournals.org on October 6, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 7, 2020; DOI: 10.1158/0008-5472.CAN-19-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT PD-L1 is expressed in tumor cells and its interaction with PD-1 plays an important role in evading immune surveillance; this can be overcome using PD-L1 or PD-1 immunotherapy antibodies. This study reports a novel approach for targeting PD- L1.
    [Show full text]
  • Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice
    International Journal of Molecular Sciences Review Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice Balachandar Vellingiri 1,*, Mahalaxmi Iyer 2, Mohana Devi Subramaniam 3, Kaavya Jayaramayya 2, Zothan Siama 4, Bupesh Giridharan 5, Arul Narayanasamy 6, Ahmed Abdal Dayem 7 and Ssang-Goo Cho 7,* 1 Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India 2 Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; [email protected] (M.I.); [email protected] (K.J.) 3 Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India; [email protected] 4 Department of Zoology, School of Life-science, Mizoram University, Aizawl 796004, Mizoram, India; [email protected] 5 R&D Wing, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chromepet, Chennai 600044, Tamil Nadu, India; [email protected] 6 Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; [email protected] 7 Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; [email protected] * Correspondence: [email protected] or [email protected] (B.V.); [email protected] (S.-G.C.); Tel.: +45-24769924 (B.V.); +82-01-81743878 (S.-G.C.) Received: 15 January 2020; Accepted: 4 February 2020; Published: 9 February 2020 Abstract: Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early stages.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses by a Synthetic TLR3 Ligand Mitigates
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Inducing is online at: average * The Journal of Immunology published online 16 August 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/08/16/jimmun ol.1300376 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 16, 2013, doi:10.4049/jimmunol.1300376 The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • TD GALVEZ CARVAJAL Laura.Pdf
    UNIVERSIDAD DE MÁLAGA FACULTAD DE MEDICINA Departamento Medicina y Dermatología Tesis Doctoral IDENTIFICACIÓN DE UNA FIRMA DE EXPRESIÓN GÉNICA MEDIANTE EL SISTEMA DE ANÁLISIS NCOUNTER COMO MARCADOR PRONÓSTICO DE RECAÍDA EN PACIENTES CON TUMORES DE CÉLULAS GERMINALES NO SEMINOMA ESTADIO I Laura Gálvez Carvajal Málaga, 2020 AUTOR: Laura Gálvez Carvajal http://orcid.org/0000-0002-7952-598X EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es Revisión por Unicheck Cargado: 02/12/2020 | Verificado: 02/12/2020 Parte Matches Cita Referencia sustituida 0.7% Matches 22% Citas 0% Referencias Matches Web fuentes 153 1 www.laproteina.es 0.09% https://www.laproteina.es/tienda/3956-pure-bcaa-r811-300-gr.html 2 documentop.com 0.09% https://documentop.com/investigar-con-y-para-la-sociedad-uca_59fa65801723dd386241e125.html 3 mafiadoc.com 0.07% https://mafiadoc.com/utilizacion-de-material-didactico-con-recursos-de-ajedrez-para-la-_599c8d241723dd0f406ee02b.html 4 accessmedicina.mhmedical.com 0.04% https://accessmedicina.mhmedical.com/content.aspx?sectionid=114914497
    [Show full text]