Insights from Effective Elastic Thickness and Topography of the Ojin Rise Seamoun

Total Page:16

File Type:pdf, Size:1020Kb

Insights from Effective Elastic Thickness and Topography of the Ojin Rise Seamoun Shimizu et al. Earth, Planets and Space (2020) 72:11 https://doi.org/10.1186/s40623-020-1140-5 EXPRESS LETTER Open Access Near-ridge-axis volcanism afected by hotspot: insights from efective elastic thickness and topography of the Ojin Rise Seamounts, east of Shatsky Rise in the northwest Pacifc Ocean Shoka Shimizu1* , Masao Nakanishi2 and Takashi Sano3 Abstract We used recently collected bathymetric data and published gravity data to examine the efective elastic thickness of the lithosphere and the crustal thickness beneath the Ojin Rise Seamounts, located east of Shatsky Rise in the northwest Pacifc Ocean. An admittance analysis of the bathymetric and gravity data indicates that the efective elastic thickness of the Pacifc plate under the Ojin Rise Seamounts is 2.7 0.1 km, implying that the seamounts were formed on or near the spreading ridge between the Pacifc and Farallon plates.± The mean crustal thickness beneath the seamounts estimated from the mantle Bouguer anomaly is 10.1 1.7 km, which is thicker than the surrounding crust. The thick crust was probably formed by the interaction between± the Pacifc–Farallon ridge and a hotspot form- ing Shatsky Rise. Our results indicate that late-stage volcanism after the formation of the main edifces of Shatsky Rise spread widely beyond the eastern side of the rise, forming the Ojin Rise Seamounts. Keywords: Efective elastic thickness, Ojin Rise Seamounts, Shatsky Rise Introduction the plume tail (e.g., Hawaiian–Emperor volcanic chain; Te formation of oceanic plateaus is an important unre- Clague and Dalrymple 1987). Rejuvenated-stage vol- solved problem in Earth science. Oceanic plateaus are canism may occur as a result of melting of lithospheric thought to be emplaced by rapid, voluminous eruptions mantle beneath the plateau (e.g., Tejada et al. 2015). Late- over a surfacing mantle plume head (e.g., Duncan and stage volcanism produced volcanic cones on the Mani- Richards 1991). However, secondary (late-stage or post- hiki Plateau (Pietsch and Uenzelmann-Neben 2015) and plateau) volcanism also plays an important role in the may have thickened the crust of the Ontong Java Plateau formation of oceanic plateaus (e.g., Ito and Clift 1998; (Ito and Clift 1998). Tus, a comprehensive understand- Pietsch and Uenzelmann-Neben 2015). Late-stage vol- ing of the formation of oceanic plateaus requires ade- canism includes volcanism along the hotspot track and quate knowledge of late-stage volcanism. rejuvenated-stage volcanism. According to the plume Shatsky Rise is proposed to have formed by the emer- model, hotspot-track volcanism represents activity of gence of a mantle plume head at the ridge–ridge–ridge triple junction among the Pacifc, Izanagi, and Faral- lon plates (Nakanishi et al. 1999). It consists of three *Correspondence: [email protected] major volcanic edifces, the Tamu, Ori, and Shirshov 1 Graduate School of Science and Engineering, Chiba University, massifs, and the bathymetric high of Papanin Ridge Chiba 2638522, Japan Full list of author information is available at the end of the article (Fig. 1a). Drilled samples have yielded radiometric dates © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea- tivecommons.org/licenses/by/4.0/. Shimizu et al. Earth, Planets and Space (2020) 72:11 Page 2 of 8 a −5000 −5000 Japan Papanin Ridge Shatsky Rise 40˚N Shirshov Massif −4 0 00 Cooperation Ori Massif −5 Seamount 000 −4000 35˚N Ojin Rise −6000Seamounts Toront Ridge −4000 −6000 −500 −3000 0 Tamu Massif −6000 −6000 30˚N −6000 −6000 −6000 155˚E 160˚E 165˚E 170˚E c M10N M9 M8 M7 M10 M9 b 39˚N 000 −5 37˚30'N 00 −5000 M4 −40 M5 −500 M6 M1 M2 0 M9 −5000 M3 M2 −5 0 00 37˚00'N 37˚N −5000 −500 M5 M3 −5 0 M4 −500 M1 00 M8 0 M10N M10 M8 M11 M7 0 M10N M9 36˚30'N M10 M11 165˚E 166˚E 35˚N 164˚E 166˚E 168˚E −6000 −5000 −4000 −3000 Topography (m) Fig. 1 Bathymetry of the study area. a Bathymetric map around the Ojin Rise Seamounts and Shatsky Rise. Bathymetric data are from Smith and Sandwell (1997); contour interval is 500 m. Shatsky Rise is outlined in red at the 5000 m bathymetric contour. Thin black lines represent magnetic anomaly lineations (Nakanishi et al. 1999). The white-edged black line at lower center is the seismic refection survey line of Ohira et al. (2017). The two dashed rectangles are the areas shown in b and c. The inset shows the locations of Shatsky Rise, Japan, and present plate boundaries (dashed lines). b Bathymetric map based on data collected during cruise KR14-07. c Bathymetric map of the study area of ~ 145 Ma for the Tamu Massif and ~ 134 Ma for the mid-ocean ridges (e.g., Sano et al. 2012). Previous studies Ori Massif (Mahoney et al. 2005; Geldmacher et al. 2014; have also suggested that late-stage volcanism occurred Heaton and Koppers 2014). Te maximum crustal thick- on Shatsky Rise (e.g., Sager et al. 2016; Shimizu et al. ness of the Tamu Massif is estimated to be 30 km on the 2013; Tejada et al. 2016). basis of seismic refraction surveys (Korenaga and Sager Te Ojin Rise Seamounts (ORS) lies east of Shatsky Rise 2012). Several studies have proposed that the thick crust and consists of approximately 80 volcanic edifces. Tors- of the massif was produced by deeper melting, with a vik et al. (2019) devised an absolute Late Jurassic–Creta- higher degree of partial melting, than is typical at normal ceous Pacifc plate model and showed that the ORS is a Shimizu et al. Earth, Planets and Space (2020) 72:11 Page 3 of 8 hotspot track connected to Shatsky Rise. Nakanishi et al. where ∆g(k) and H(k) are the Fourier transforms of the (1999) speculated that part of the ORS (around 37° 00′ N observed FGA and bathymetry, respectively, and the and 165° 30′ E) was formed near a spreading ridge because asterisk denotes the complex conjugate. the elongation of the seamounts and the magnetic anomaly Te Te value can be estimated by comparing the admit- lineations have similar orientations (Fig. 1a). Te crustal tance function of an elastic plate model with observa- structure under the ORS is unknown. Tejada et al. (2016) tional admittances (Watts 2001). Te elastic plate model indicated that the ORS was formed by late-stage volcanism used in this study is one in which the load of a seamount related to the formation of Shatsky Rise and proposed two is compensated by fexure of a plate. Te admittance models of formation based on the geochemical data. One is function of this model is defned by that the ORS was formed by the interaction between vol- −kd −kt Z(k) = 2πG(ρc−ρw)e 1 − Φe(k)e , canism of a spreading ridge and a hotspot. Te other is that (4) the ORS was formed only by deformation-related shallow- where d is the mean water depth, G is the universal gravi- mantle volcanism. Age information for the ORS is indis- tational constant, t is the mean crustal thickness, and ρw pensable for testing these models. and ρc are the densities of seawater and crust, respec- Te efective elastic thickness (T ) value of the litho- e tively. Te fexural response function of the lithosphere sphere under a seamount is an indicator of its tectonic Φe(k) is (Walcott 1976) setting (Watts 1978). Te Te value, the thickness of the lith- −1 osphere behaving as an elastic body, can be estimated from Dk4 Φe(k) = + 1 , (ρm−ρw)g (5) bathymetric and gravity data. Te relationship between Te and the age of the lithosphere at the time of loading was where g is the average gravitational acceleration, ρm is the frst proposed by Watts (1978). Small Te values (0–8 km) suggest that the seamounts were formed on or near a density of the mantle, and D is the fexural rigidity of the lithosphere defned by spreading ridge. For example, Te value of the lithosphere 3 under the Foundation Seamounts near the Pacifc–Ant- D = ETe , arctic Ridge is 0–5 km, suggesting an age diference of 12(1−ν2) (6) 0–10 Myr between the seamounts and the lithosphere where E is Young’s modulus and ν is Poisson’s ratio. Tese under them (Maia and Arkani-Hamed 2002), and Te of the lithosphere under the Hawaiian Islands is 30–40 km, indi- and other parameters used in this study are listed in cating an age diference of 70–80 Myr between the islands Table 1. and the adjacent seafoor (Watts 1978). In this study, we Te most suitable Te value was determined by mini- mizing the root-mean-square (RMS) misft between determined the crustal thickness and the Te value of the lithosphere under the ORS to estimate its formation age, theoretical and observational admittances for various Te tectonic setting, and crustal structure.
Recommended publications
  • Massive Basalt Flows on the Southern Flank of Tamu Massif, Shatsky Rise: a Reappraisal of ODP Site 1213 Basement Units1 A.A.P
    Sager, W.W., Sano, T., Geldmacher, J., and the Expedition 324 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 324 Massive basalt flows on the southern flank of Tamu Massif, Shatsky Rise: a reappraisal of ODP Site 1213 basement units1 A.A.P. Koppers,2 T. Sano, 3 J.H. Natland,3 M. Widdowson,3 R. Almeev,3 A.R. Greene,3 D.T. Murphy,3 A. Delacour,3 M. Miyoshi,3 K. Shimizu,3 S. Li,3 N. Hirano,3 J. Geldmacher,3 and the Expedition 324 Scientists3 Chapter contents Abstract Abstract . 1 Drilling during Ocean Drilling Program Leg 198 at Site 1213 re- covered three massive basalt units (8–15 m thick) from the south- Introduction . 1 ern flank of Tamu Massif at Shatsky Rise. Originally, these igneous Volcanology and igneous petrology of Site 1213. 2 units were interpreted to represent three diabase sills. During In- Interpretation and conclusions. 5 tegrated Ocean Drilling Program Expedition 324, this core was re- Acknowledgments. 6 described leading to the new conclusion that these diabase units References . 6 represent three submarine massive basalt flows. These massive Figures . 8 submarine flows were probably emplaced as inflated compound Table . 20 sheet flows during eruptions similar to those in large oceanic pla- teaus and continental flood basalts. Introduction The main objective of Integrated Ocean Drilling Program (IODP) Expedition 324 was to test competing mantle plume and plate tectonic models for ocean plateau formation at Shatsky Rise (Fig. F1). In these tests, determining the timing, duration, and source of volcanism at Shatsky Rise is of pivotal importance to under- stand the origin of this oceanic plateau.
    [Show full text]
  • 1. Shatsky Rise: Seismic Stratigraphy and Sedimentary Record of Pacific Paleoceanography Since the Early Cretaceous1
    Natland, J.H., Storms, M.A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 132 1. SHATSKY RISE: SEISMIC STRATIGRAPHY AND SEDIMENTARY RECORD OF PACIFIC PALEOCEANOGRAPHY SINCE THE EARLY CRETACEOUS1 William V. Sliter2 and Glenn R. Brown3 ABSTRACT Shatsky Rise consists of three highs arranged in a linear trend more than 1300 km long. Shatsky Plateau, the southernmost and largest of three highs is represented by an exposed basement high of presumed Late Jurassic age flanked by a sedimentary sequence of at least Cretaceous and Cenozoic age that reaches a maximum thickness of more than 1100 m. Drilling on Shatsky Rise is restricted to eight DSDP and ODP sites on the southern plateau that partially penetrated the sedimentary sequence. Leg 132 seismic profiles and previous seismic records from Shatsky Plateau reveal a five-part seismic section that is correlated with the drilling record and used to interpret the sedimentary history of the rise. The seismic sequence documents the transit of Shatsky Plateau beneath the equatorial divergence in the Late Cretaceous by horizontal plate motion from an original location in the Southern Hemisphere. Unconformities and lithologic changes bounding several of the seismic units are correlated with pale- oceanographic changes that resulted in erosional events near the Barremian/Aptian, Cenomanian/Turonian, and Paleogene/Neo- gene boundaries. INTRODUCTION Plateau, is the largest with a length of about 700 km and a width of about 300 km. All previous DSDP and ODP drill sites are located on Shatsky Rise, the second largest oceanic plateau in the Pacific the southern plateau (Fig.
    [Show full text]
  • Scientists Confirm Existence of Largest Single Volcano on Earth (Update) 5 September 2013
    Scientists confirm existence of largest single volcano on Earth (Update) 5 September 2013 Tamu Massif did indeed erupt from a single source near the center. "Tamu Massif is the biggest single shield volcano ever discovered on Earth," Sager said. "There may be larger volcanoes, because there are bigger igneous features out there such as the Ontong Java Plateau, but we don't know if these features are one volcano or complexes of volcanoes." MCS re?ection Line A–B, across the axis of Tamu Massif. Credit: Nature A University of Houston (UH) professor led a team of scientists to uncover the largest single volcano yet documented on Earth. Covering an area roughly equivalent to the British Isles or the state of New Mexico, this volcano, dubbed the Tamu Massif, is nearly as big as the giant volcanoes of Mars, placing it among the largest in the Solar System. William Sager, a professor in the Department of Earth and Atmospheric Sciences at UH, first began studying the volcano about 20 years ago at Texas A&M's College of Geosciences. Sager and his team's findings appear in the Sept. 8 issue of Nature Geoscience, the monthly multi-disciplinary journal reflecting disciplines within the geosciences. Located about 1,000 miles east of Japan, Tamu Massif is the largest feature of Shatsky Rise, an underwater mountain range formed 130 to 145 million years ago by the eruption of several underwater volcanoes. Until now, it was unclear whether Tamu Massif was a single volcano, or a IODP technician Margaret Hastedt labels pieces of core composite of many eruption points.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • (2020) Pūhāhonu: Earth's Biggest and Hottest Shield Volcano. Earth And
    Earth and Planetary Science Letters 542 (2020) 116296 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Puh¯ ahonu:¯ Earth’s biggest and hottest shield volcano ∗ Michael O. Garcia a, , Jonathan P. Tree a, Paul Wessel a, John R. Smith b a Department of Earth Sciences, University of Hawai‘i at Manoa,¯ Honolulu, HI 96822, USA b Department of Oceanography, University of Hawai‘i at Manoa,¯ Honolulu, HI 96822, USA a r t i c l e i n f o a b s t r a c t Article history: New bathymetric and gravity mapping, refined volume calculations and petrologic analyses show that Received 22 November 2019 the Hawaiian volcano Puh¯ ahonu¯ is the largest and hottest shield volcano on Earth. This ∼12.5-14.1 Ma Received in revised form 5 April 2020 volcano in the northwest Hawaiian Ridge (NWHR) is twice the size of Mauna Loa volcano (148 ± 29 vs. Accepted 18 April 2020 3 3 74.0 × 10 km ), which was assumed to be not only the largest Hawaiian volcano but also the largest Available online xxxx known shield volcano. We considered four testable mechanisms to increase magma production, including Editor: R. Dasgupta 1) thinner lithosphere, 2) slower propagation rate, 3) more fertile source, and 4) hotter mantle. The first Keywords: three of these have been ruled out. The lithosphere was old (∼88 Myrs) when Puh¯ ahonu¯ was formed, Hawaii and thus, too thick and cold to allow for greater extents of partial melting. The propagation rate was volume relatively fast when it erupted (87 km/Myr), so this is another unlikely reason.
    [Show full text]
  • Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection Between the Shatsky and Hess Rises
    Accepted Manuscript Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises Maria Luisa G. Tejada, Jörg Geldmacher, Folkmar Hauff, Daniel Heaton, Anthony A.P. Koppers, Dieter Garbe-Schönberg, Kaj Hoernle, Ken Heydolph, William W. Sager PII: S0016-7037(16)30165-X DOI: http://dx.doi.org/10.1016/j.gca.2016.04.006 Reference: GCA 9701 To appear in: Geochimica et Cosmochimica Acta Received Date: 4 September 2015 Accepted Date: 1 April 2016 Please cite this article as: Tejada, M.L.G., Geldmacher, J., Hauff, F., Heaton, D., Koppers, A.A.P., Garbe- Schönberg, D., Hoernle, K., Heydolph, K., Sager, W.W., Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.04.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications 2 for a connection between the Shatsky and Hess Rises 3 Maria Luisa G. Tejada a,b*, Jörg Geldmacher c, Folkmar Hauff c, Daniel Heaton d, Anthony A.
    [Show full text]
  • Connecting the Deep Earth and the Atmosphere
    In Mantle Convection and Surface Expression (Cottaar, S. et al., eds.) AGU Monograph 2020 (in press) Connecting the Deep Earth and the Atmosphere Trond H. Torsvik1,2, Henrik H. Svensen1, Bernhard Steinberger3,1, Dana L. Royer4, Dougal A. Jerram1,5,6, Morgan T. Jones1 & Mathew Domeier1 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway; 2School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa; 3Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany; 4Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA; 5DougalEARTH Ltd.1, Solihull, UK; 6Visiting Fellow, Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia. Abstract Most hotspots, kimberlites, and large igneous provinces (LIPs) are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have likely been quasi-stable for hundreds of millions, perhaps billions of years, and plume heads rise through the mantle in about 30 Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating and modifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown (cooling), but we find no clear relationship between LIPs and post-emplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time- scales.
    [Show full text]
  • Pacific-Panthalassic Reconstructions
    RESEARCH ARTICLE Pacific‐Panthalassic Reconstructions: Overview, Errata 10.1029/2019GC008402 and the Way Forward Key Points: Trond H. Torsvik1,2 , Bernhard Steinberger3,1 , Grace E. Shephard1 , • We devised a new absolute Late 1 1 1 1 Jurassic‐Cretaceous Pacific plate Pavel V. Doubrovine , Carmen Gaina , Mathew Domeier , Clinton P. Conrad , model and William W. Sager4 • This study was motivated because published Pacific plate models 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway, 2School of Geosciences, University – fl (83.5 150 Ma) are variably awed of Witwatersrand, Johannesburg, South Africa, 3Helmholtz Centre Potsdam, GFZ, Potsdam, Germany, 4Department of • The emplacement of the Shatsky Rise Large Igneous Province at ~144 Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA Ma caused a major plate boundary reorganization Abstract We have devised a new absolute Late Jurassic‐Cretaceous Pacific plate model using a fixed hot spot approach coupled with paleomagnetic data from Pacific large igneous provinces (LIPs) while simultaneously minimizing plate velocity and net lithosphere rotation (NR). This study was motivated Correspondence to: fi ‐ ‐ fl T. H. Torsvik, because published Paci c plate models for the 83.5 to 150 Ma time interval are variably awed, and their [email protected] use affects modeling of the entire Pacific‐Panthalassic Ocean and interpretation of its margin evolution. These flaws could be corrected, but the revised models would imply unrealistically high plate velocities fi Citation: and NR. We have developed three new Paci c realm models with varying degrees of complexity, but we Torsvik, T. H., Steinberger, B., focus on the one that we consider most realistic.
    [Show full text]
  • The Shatsky Rise Oceanic Plateau Structure from Two-Dimensional Multichannel Seismic Refl Ection Profi Les and Implications for Oceanic Plateau Formation
    Downloaded from specialpapers.gsapubs.org on June 2, 2015 The Geological Society of America Special Paper 511 2015 The Shatsky Rise oceanic plateau structure from two-dimensional multichannel seismic refl ection profi les and implications for oceanic plateau formation Jinchang Zhang* William W. Sager† Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA Jun Korenaga Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA ABSTRACT The Shatsky Rise is one of the largest oceanic plateaus, a class of volcanic fea- tures whose formation is poorly understood. It is also a plateau that was formed near spreading ridges, but the connection between the two features is unclear. The geologic structure of the Shatsky Rise can help us understand its formation. Deeply penetrating two-dimensional (2-D) multichannel seismic (MCS) refl ection profi les were acquired over the southern half of the Shatsky Rise, and these data allow us to image its upper crustal structure with unprecedented detail. Synthetic seismo- grams constructed from core and log data from scientifi c drilling sites crossed by the MCS lines establish the seismic response to the geology. High-amplitude basement refl ections result from the transition between sediment and underlying igneous rock. Intrabasement refl ections are caused by alternations of lava fl ow packages with dif- fering properties and by thick interfl ow sediment layers. MCS profi les show that two of the volcanic massifs within the Shatsky Rise are immense central volcanoes. The Tamu Massif, the largest (~450 km × 650 km) and oldest (ca. 145 Ma) volcano, is a single central volcano with a rounded shape and shallow fl ank slopes (<0.5°–1.5°), characterized by lava fl ows emanating from the volcano center and extending hun- dreds of kilometers down smooth, shallow fl anks to the surrounding seafl oor.
    [Show full text]
  • Geochemistry of the Northern Paraná Continental Flood Basalt (PCFB)
    DOI: 10.1590/2317-4889201820180098 ARTICLE Geochemistry of the Northern Paraná Continental Flood Basalt (PCFB) Province: implications for regional chemostratigraphy Fábio Braz Machado1*, Eduardo Reis Viana Rocha-Júnior2, Leila Soares Marques3, Antonio José Ranalli Nardy4, Larissa Vieira Zezzo4, Natasha Sarde Marteleto5 ABSTRACT: The Paraná Continental Flood Basalt (PCFB) province is one of the largest igneous provinces on Earth, but little is known about the architecture and geochemical characteristics of the lava flows. In this context, a set of borehole samples arranged in an NEE-SWW profile – more than 600 km long – located in the northern PCFB was used to define its chemostratigraphy. In this region, the outcrops are rare, and the volcanic piles are covered by hundreds of meters of sedimentary rocks from the Bauru Sub-Basin. This study aimed to explore the chemostratigraphic column from northern PCFB to improve the understanding of its internal architecture and to characterize the flood basalt sequences by using the petrography and elemental geochemistry of surface and borehole samples. The results showed the presence of the main four magma types, which were essentially distinguished by their P2O5, TiO2 and Sr concentrations, as well as Zr/Y ratios, with excellent chemostratigraphy relations. KEYWORDS: Paraná Continental Flood Basalts; chemostratigraphy; volcanic successions; magma types; geochemistry of boreholes. INTRODUCTION Several chemostratigraphy studies have been carried out on volcanic piles of CFB provinces, such as the Siberian Traps, Continental Flood Basalts (CFB) are a type of Large Karoo, Deccan, and Columbia River, in order to under- Igneous Province (LIP) that occur as extensive outpourings stand the architecture of magmatic dynamics (Ernst 2014).
    [Show full text]
  • EGU2018-5700, 2018 EGU General Assembly 2018 © Author(S) 2018
    Geophysical Research Abstracts Vol. 20, EGU2018-5700, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Numerical modeling for the geodynamic formation of the Tamu Massif, the largest single volcano on Earth Jinchang Zhang (1), Min Ding (2), and Zhiyuan Zhou (1) (1) CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China ([email protected]), (2) School of Earth and Space Sciences, Peking University, Beijing, China The Western Pacific Ocean has most of the underwater volcanoes on Earth, and among them the Tamu Massif within the Shatsky Rise is proved to be the largest single volcano. By comparing thermo-mechanical models with gravity, topography, and seismic observations, we seek to address an important question: “How did this Earth’s largest volcano form by the interaction between a ridge-ridge-ridge triple junction and a mantle plume?” We focus on the following tasks: 1.set up three-dimensional thermo-mechanical models to simulate the ridge-plume interac- tion; 2.calculate the coupled mantle flow and temperature structure, and constrain the model parameters (spreading rates, plume size and depth, loading time, magma types, melting conditions, source temperature) using magnetic anomalies and magmatic geochemistry characteristics; 3.compute model-based magma supply and compare with crustal thickness and crustal volume estimates from seismic sounding and gravity observations; 4.invert for model parameters and find the control parameters on the volcano’s formation. It is creative to conduct a quantitative anal- ysis of the volcano’s formation, which can provide insights to the geodynamic evolution of thick oceanic crust.
    [Show full text]
  • Structural and Morphologic Study of Shatsky Rise Oceanic
    STRUCTURAL AND MORPHOLOGIC STUDY OF SHATSKY RISE OCEANIC PLATEAU IN THE NORTHWEST PACIFIC OCEAN FROM 2D MULTICHANNEL SEISMIC REFLECTION AND BATHYMETRY DATA AND IMPLICATIONS FOR OCEANIC PLATEAU EVOLUTION A Dissertation by JINCHANG ZHANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, William W. Sager Co-Chair of Committee, Zuosheng Yang Committee Members, Mitch W. Lyle Richard L. Gibson Head of Department, Debbie J. Thomas May 2014 Major Subject: Oceanography Copyright 2014 Jinchang Zhang ABSTRACT Shatsky Rise is one of the largest oceanic plateaus, a class of volcanic features whose formation is poorly understood. It is also a plateau that was formed near spreading ridges, but the connection is unclear. The geologic structure and morphology of Shatsky Rise oceanic plateau provides key observations that can help understand its formation. Deep penetrating 2D multichannel seismic (MCS) reflection profiles and high-resolution multi-beam sonar data were acquired over the southern half of Shatsky Rise on R/V Marcus G. Langseth during two cruises. The MCS profiles allow us to image Shatsky Rise's upper crustal structure and Moho structure with unprecedented detail, and the multi-beam bathymetry data allow us to produce an improved bathymetric map of the plateau. MCS profiles and bathymetry data show that two of the volcanic massifs within Shatsky Rise are immense central volcanoes. Tamu Massif, the largest (~450 × 650 km) and oldest (~145 Ma) volcano, is a single central volcano with rounded shape and shallow flank slopes (<0.5o-1.5o), characterized by lava flows emanating from the volcano center and extending hundreds of kilometers down smooth, shallow flanks to the surrounding seafloor.
    [Show full text]