Self-Study Report for Academic Program Review Fall 2017

Total Page:16

File Type:pdf, Size:1020Kb

Self-Study Report for Academic Program Review Fall 2017 SELF-STUDY REPORT FOR ACADEMIC PROGRAM REVIEW FALL 2017 Department of Geology & Geophysics at Texas A&M University 3115 TAMU College Station, TX 77843-3115 Web : geoweb.tamu.edu ACADEMIC PROGRAM REVIEW TABLE OF CONTENTS TABLE OF FIGURES......................................................................................III TABLE OF TABLES........................................................................................IV CHARGE TO THE EXTERNAL PEER REVIEW TEAM................................................................................V WELCOME FROM THE DEPARTMENT HEAD......................................................................................VII EXECUTIVE SUMMARY OF THE SELF-STUDY REPORT........................................................................IX SCHEDULE OF DEPARTMENT OF GEOLOGY AND GEOPHYSICS EXTERNAL REVIEW.......................XI CHAPTER 1 – INTRODUCTION TO DEGREE PROGRAM................................1 1.1 BRIEF HISTORY OF DEPARTMENT...............................................................................................1 1.2 DEPARTMENT MISSION & GOALS...............................................................................................4 1.3 ADMINISTRATIVE STRUCTURE....................................................................................................6 1.4 FACILITIES...................................................................................................................................14 1.5 FINANCES....................................................................................................................................17 1.6 LAST APR EXTERNAL REVIEW....................................................................................................20 1.7 ANALYSIS OF DEGREE PROGRAM.............................................................................................24 CHAPTER 2 – ACADEMIC PROGRAMS AND CURRICULA...........................30 2.1 PROGRAMS OFFERED................................................................................................................30 2.2 PROGRAM CURRICULA..............................................................................................................32 2.3 ADMISSIONS CRITERIA..............................................................................................................38 2.4 NUMBER OF DEGREES AWARDED PER YEAR...........................................................................42 2.5 AVERAGE TIME TO DEGREE........................................................................................................43 2.6 ACADEMIC ENHANCEMENTS/HIGH-IMPACT OPPORTUNITIES FOR STUDENTS...................47 2.7 ASSESSMENT OF STUDENT LEARNING OUTCOMES (ALL DEGREE LEVELS)...........................48 2.8 ANALYSIS....................................................................................................................................50 CHAPTER 3 – FACULTY PROFILE.................................................................52 3.1 RESEARCH STRENGTHS OF THE DEPARTMENT........................................................................52 3.2 CORE FACULTY (DEFINED AS FULL-TIME, TENURED AND TENURE TRACK)..........................57 3.3 CORE FACULTY/STUDENT RATIO..............................................................................................62 3.4 PUBLICATIONS (2010-2017).......................................................................................................63 3.5 EXTERNAL GRANTS....................................................................................................................65 3.6 FACULTY RECOGNITION AND SERVICE....................................................................................68 3.7 FACULTY ENDOWMENTS ..........................................................................................................69 3.8 TEACHING LOAD.......................................................................................................................71 3.9 FACULTY OTHER THAN CORE (AS DEFINED ABOVE)...............................................................73 3.10 FACULTY DIVERSITY...................................................................................................................75 I ACADEMIC PROGRAM REVIEW ACADEMIC PROGRAM REVIEW 3.11 FACULTY QUALIFICATIONS (I.E. EXPECTED QUALIFICATIONS FOR FACULTY HIRED BY THE DEGREE PROGRAM)...................................................................................................................76 3.12 ANALYSIS....................................................................................................................................77 CHAPTER 4 – STUDENT PROFILE.................................................................78 4.1 ENROLLMENT, INCLUDING % OF FULL-TIME STUDENTS.......................................................78 4.2 STUDENT DIVERSITY/DEMOGRAPHICS.....................................................................................81 4.3 RETENTION AND GRADUATION................................................................................................86 4.4 INSTITUTIONAL FINANCIAL SUPPORT.....................................................................................92 4.5 STUDENT PUBLICATIONS/PRESENTATIONS (MOST RECENT 5 YEARS).................................96 4.6 EMPLOYMENT PROFILE.............................................................................................................97 4.7 ANALYSIS....................................................................................................................................98 CHAPTER 5 – CONCLUDING OBSERVATIONS/ SUMMARY .....................102 5.1 NEW INITIATIVES AND PLANNING.........................................................................................102 LIST OF APPENDICES APPENDIX A. STRATEGIC PLANS APPENDIX B. FACILITIES APPENDIX C. UNDERGRADUATE COURSE DESCRIPTIONS APPENDIX D. UNDERGRADUATE CURRICULA APPENDIX E. GRADUATE COURSE DESCRIPTIONS AND LIST OF THESES APPENDIX F. GRADUATE POLICIES APPENDIX G. GRADUATE PROCEDURES APPENDIX H. FACULTY CURRICULUM VITAES APPENDIX I. INFORMATION FROM THE PROVOST APPENDIX J. PUBLICATIONS II ACADEMIC PROGRAM REVIEW TABLE OF FIGURES FIGURE 1.1 GEPL ORGANIZATION.............................................................................................8 FIGURE 2.1 TEACHING ASSISTANTS........................................................................................35 FIGURE 2.2 GRADUATE STUDENT ADMISSIONS.....................................................................40 FIGURE 2.3 GRE SCORES OF INCOMING STUDENTS..............................................................41 FIGURE 2.4 TIME-TO-DEGREE, FRESHMEN..............................................................................43 FIGURE 2.5 YEARS TO COMPLETE MS DEGREE.......................................................................44 FIGURE 2.6 YEARS TO COMPLETE PHD DEGREE.....................................................................45 FIGURE 2.7 2014 ALUMNI SKILL SURVEY................................................................................50 FIGURE 3.1 DEPARTMENT OF GEOLOGY AND GEOPHYSICS FACULTY, 2009-17.................58 FIGURE 3.2 STUDENTS PER TENURED OR TENURE-TRACK FACULTY, FALL SEMESTER......62 FIGURE 3.3 ACADEMIC ANALYTICS RESEARCH ANALYSIS FOR DEPARTMENT OF GEOLOGY AND GEOPHYSICS FOR 2016..............................................................64 FIGURE 3.4 RESEARCH EXPENDITURES...................................................................................65 FIGURE 3.5 UNDERGRADUATE TEACHING..............................................................................72 FIGURE 4.1 UNDERGRADUATE ENROLLMENT, 2010-17........................................................79 FIGURE 4.2 GRADUATE STUDENT ENROLLMENTS BY DEGREE.............................................80 FIGURE 4.3 UNDERGRADUATE ENROLLMENT BY GENDER...................................................82 FIGURE 4.4 UNDERGRADUATE DIVERSITY..............................................................................82 FIGURE 4.5 INTERNATIONAL AND DOMESTIC GRADUATE ENROLLMENT..........................83 FIGURE 4.6 DIVERSITY IN GRADUATE ENROLLMENT............................................................84 FIGURE 4.7 GRADUATE ENROLLMENT BY GENDER...............................................................85 FIGURE 4.8 UNDERGRADUATE RETENTION...........................................................................87 FIGURE 4.9 UNDERGRADUATE DEGREES AWARDED.............................................................88 FIGURE 4.10 UNDERGRADUATE GRADUATION RATE.............................................................89 FIGURE 4.11 M.S. GRADUATION RATE.....................................................................................90 FIGURE 4.12 PH.D. GRADUATION RATE...................................................................................90 FIGURE 4.13 GRADUATE ASSISTANTSHIP SEMESTERS PER YEAR...........................................92 FIGURE 4.14 PRICE OF OIL AND APPLICATION TO GEPL........................................................98 III ACADEMIC PROGRAM REVIEW ACADEMIC PROGRAM REVIEW LIST OF TABLES TABLE 1.1 GEOLOGY AND GEOPHYSICS ADVISORY COUNCIL FALL 2017.........................12 TABLE 1.2 EXPENDITURES OF THE DEPARTMENT OF GEOLOGY AND GEOPHYSICS ON PERSONNEL...........................................................................................................18 TABLE 1.3 TAMU PEER INSTITUTIONS
Recommended publications
  • Massive Basalt Flows on the Southern Flank of Tamu Massif, Shatsky Rise: a Reappraisal of ODP Site 1213 Basement Units1 A.A.P
    Sager, W.W., Sano, T., Geldmacher, J., and the Expedition 324 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 324 Massive basalt flows on the southern flank of Tamu Massif, Shatsky Rise: a reappraisal of ODP Site 1213 basement units1 A.A.P. Koppers,2 T. Sano, 3 J.H. Natland,3 M. Widdowson,3 R. Almeev,3 A.R. Greene,3 D.T. Murphy,3 A. Delacour,3 M. Miyoshi,3 K. Shimizu,3 S. Li,3 N. Hirano,3 J. Geldmacher,3 and the Expedition 324 Scientists3 Chapter contents Abstract Abstract . 1 Drilling during Ocean Drilling Program Leg 198 at Site 1213 re- covered three massive basalt units (8–15 m thick) from the south- Introduction . 1 ern flank of Tamu Massif at Shatsky Rise. Originally, these igneous Volcanology and igneous petrology of Site 1213. 2 units were interpreted to represent three diabase sills. During In- Interpretation and conclusions. 5 tegrated Ocean Drilling Program Expedition 324, this core was re- Acknowledgments. 6 described leading to the new conclusion that these diabase units References . 6 represent three submarine massive basalt flows. These massive Figures . 8 submarine flows were probably emplaced as inflated compound Table . 20 sheet flows during eruptions similar to those in large oceanic pla- teaus and continental flood basalts. Introduction The main objective of Integrated Ocean Drilling Program (IODP) Expedition 324 was to test competing mantle plume and plate tectonic models for ocean plateau formation at Shatsky Rise (Fig. F1). In these tests, determining the timing, duration, and source of volcanism at Shatsky Rise is of pivotal importance to under- stand the origin of this oceanic plateau.
    [Show full text]
  • Scientists Confirm Existence of Largest Single Volcano on Earth (Update) 5 September 2013
    Scientists confirm existence of largest single volcano on Earth (Update) 5 September 2013 Tamu Massif did indeed erupt from a single source near the center. "Tamu Massif is the biggest single shield volcano ever discovered on Earth," Sager said. "There may be larger volcanoes, because there are bigger igneous features out there such as the Ontong Java Plateau, but we don't know if these features are one volcano or complexes of volcanoes." MCS re?ection Line A–B, across the axis of Tamu Massif. Credit: Nature A University of Houston (UH) professor led a team of scientists to uncover the largest single volcano yet documented on Earth. Covering an area roughly equivalent to the British Isles or the state of New Mexico, this volcano, dubbed the Tamu Massif, is nearly as big as the giant volcanoes of Mars, placing it among the largest in the Solar System. William Sager, a professor in the Department of Earth and Atmospheric Sciences at UH, first began studying the volcano about 20 years ago at Texas A&M's College of Geosciences. Sager and his team's findings appear in the Sept. 8 issue of Nature Geoscience, the monthly multi-disciplinary journal reflecting disciplines within the geosciences. Located about 1,000 miles east of Japan, Tamu Massif is the largest feature of Shatsky Rise, an underwater mountain range formed 130 to 145 million years ago by the eruption of several underwater volcanoes. Until now, it was unclear whether Tamu Massif was a single volcano, or a IODP technician Margaret Hastedt labels pieces of core composite of many eruption points.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • (2020) Pūhāhonu: Earth's Biggest and Hottest Shield Volcano. Earth And
    Earth and Planetary Science Letters 542 (2020) 116296 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Puh¯ ahonu:¯ Earth’s biggest and hottest shield volcano ∗ Michael O. Garcia a, , Jonathan P. Tree a, Paul Wessel a, John R. Smith b a Department of Earth Sciences, University of Hawai‘i at Manoa,¯ Honolulu, HI 96822, USA b Department of Oceanography, University of Hawai‘i at Manoa,¯ Honolulu, HI 96822, USA a r t i c l e i n f o a b s t r a c t Article history: New bathymetric and gravity mapping, refined volume calculations and petrologic analyses show that Received 22 November 2019 the Hawaiian volcano Puh¯ ahonu¯ is the largest and hottest shield volcano on Earth. This ∼12.5-14.1 Ma Received in revised form 5 April 2020 volcano in the northwest Hawaiian Ridge (NWHR) is twice the size of Mauna Loa volcano (148 ± 29 vs. Accepted 18 April 2020 3 3 74.0 × 10 km ), which was assumed to be not only the largest Hawaiian volcano but also the largest Available online xxxx known shield volcano. We considered four testable mechanisms to increase magma production, including Editor: R. Dasgupta 1) thinner lithosphere, 2) slower propagation rate, 3) more fertile source, and 4) hotter mantle. The first Keywords: three of these have been ruled out. The lithosphere was old (∼88 Myrs) when Puh¯ ahonu¯ was formed, Hawaii and thus, too thick and cold to allow for greater extents of partial melting. The propagation rate was volume relatively fast when it erupted (87 km/Myr), so this is another unlikely reason.
    [Show full text]
  • Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection Between the Shatsky and Hess Rises
    Accepted Manuscript Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises Maria Luisa G. Tejada, Jörg Geldmacher, Folkmar Hauff, Daniel Heaton, Anthony A.P. Koppers, Dieter Garbe-Schönberg, Kaj Hoernle, Ken Heydolph, William W. Sager PII: S0016-7037(16)30165-X DOI: http://dx.doi.org/10.1016/j.gca.2016.04.006 Reference: GCA 9701 To appear in: Geochimica et Cosmochimica Acta Received Date: 4 September 2015 Accepted Date: 1 April 2016 Please cite this article as: Tejada, M.L.G., Geldmacher, J., Hauff, F., Heaton, D., Koppers, A.A.P., Garbe- Schönberg, D., Hoernle, K., Heydolph, K., Sager, W.W., Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.04.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications 2 for a connection between the Shatsky and Hess Rises 3 Maria Luisa G. Tejada a,b*, Jörg Geldmacher c, Folkmar Hauff c, Daniel Heaton d, Anthony A.
    [Show full text]
  • Pacific-Panthalassic Reconstructions
    RESEARCH ARTICLE Pacific‐Panthalassic Reconstructions: Overview, Errata 10.1029/2019GC008402 and the Way Forward Key Points: Trond H. Torsvik1,2 , Bernhard Steinberger3,1 , Grace E. Shephard1 , • We devised a new absolute Late 1 1 1 1 Jurassic‐Cretaceous Pacific plate Pavel V. Doubrovine , Carmen Gaina , Mathew Domeier , Clinton P. Conrad , model and William W. Sager4 • This study was motivated because published Pacific plate models 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway, 2School of Geosciences, University – fl (83.5 150 Ma) are variably awed of Witwatersrand, Johannesburg, South Africa, 3Helmholtz Centre Potsdam, GFZ, Potsdam, Germany, 4Department of • The emplacement of the Shatsky Rise Large Igneous Province at ~144 Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA Ma caused a major plate boundary reorganization Abstract We have devised a new absolute Late Jurassic‐Cretaceous Pacific plate model using a fixed hot spot approach coupled with paleomagnetic data from Pacific large igneous provinces (LIPs) while simultaneously minimizing plate velocity and net lithosphere rotation (NR). This study was motivated Correspondence to: fi ‐ ‐ fl T. H. Torsvik, because published Paci c plate models for the 83.5 to 150 Ma time interval are variably awed, and their [email protected] use affects modeling of the entire Pacific‐Panthalassic Ocean and interpretation of its margin evolution. These flaws could be corrected, but the revised models would imply unrealistically high plate velocities fi Citation: and NR. We have developed three new Paci c realm models with varying degrees of complexity, but we Torsvik, T. H., Steinberger, B., focus on the one that we consider most realistic.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Nihieiicanjmllseum
    nihieiicanJMllseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 206 JANUARY 29, I 965 Classification of the Bivalvia BY NORMAN D. NEWELL' INTRODUCTION The Bivalvia are wholly aquatic benthos that have undergone secondary degeneration from the condition of the ancestral mollusk (possibly, but not certainly, a monoplacophoran-like animal; Yonge, 1953, 1960; Vokes, 1954; Horny, 1960) through the loss of the head and the adoption of a passive mode of life in which feeding is accomplished by the filtering of water or sifting of sediment for particulate organic matter. These adapta- tions have limited the evolutionary potential severely, and most structural changes have followed variations on rather simple themes. The most evi- dent adaptations are involved in the articulation of the valves, defense, anchorage, burrowing, and efficiency in feeding. Habitat preferences are correlated with the availability of food and with chemistry, temperature, agitation and depth of water, and with firmness of the bottom on, or within, which they live. The morphological clues to genetic affinity are few. Consequently, parallel trends are rife, and it is difficult to arrange the class taxonomically in a consistent and logical way that takes known history into account. The problem of classifying the bivalves is further complicated by the fact that critical characters sought in fossil representatives commonly are concealed by rock matrix or are obliterated by the crystallization or disso- lution of the unstable skeletal aragonite. The problem of studying mor- I Curator, Department of Fossil Invertebrates, the American Museum of Natural History; Professor of Geology, Columbia University in the City of New York.
    [Show full text]
  • EGU2018-5700, 2018 EGU General Assembly 2018 © Author(S) 2018
    Geophysical Research Abstracts Vol. 20, EGU2018-5700, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Numerical modeling for the geodynamic formation of the Tamu Massif, the largest single volcano on Earth Jinchang Zhang (1), Min Ding (2), and Zhiyuan Zhou (1) (1) CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China ([email protected]), (2) School of Earth and Space Sciences, Peking University, Beijing, China The Western Pacific Ocean has most of the underwater volcanoes on Earth, and among them the Tamu Massif within the Shatsky Rise is proved to be the largest single volcano. By comparing thermo-mechanical models with gravity, topography, and seismic observations, we seek to address an important question: “How did this Earth’s largest volcano form by the interaction between a ridge-ridge-ridge triple junction and a mantle plume?” We focus on the following tasks: 1.set up three-dimensional thermo-mechanical models to simulate the ridge-plume interac- tion; 2.calculate the coupled mantle flow and temperature structure, and constrain the model parameters (spreading rates, plume size and depth, loading time, magma types, melting conditions, source temperature) using magnetic anomalies and magmatic geochemistry characteristics; 3.compute model-based magma supply and compare with crustal thickness and crustal volume estimates from seismic sounding and gravity observations; 4.invert for model parameters and find the control parameters on the volcano’s formation. It is creative to conduct a quantitative anal- ysis of the volcano’s formation, which can provide insights to the geodynamic evolution of thick oceanic crust.
    [Show full text]
  • Structural and Morphologic Study of Shatsky Rise Oceanic
    STRUCTURAL AND MORPHOLOGIC STUDY OF SHATSKY RISE OCEANIC PLATEAU IN THE NORTHWEST PACIFIC OCEAN FROM 2D MULTICHANNEL SEISMIC REFLECTION AND BATHYMETRY DATA AND IMPLICATIONS FOR OCEANIC PLATEAU EVOLUTION A Dissertation by JINCHANG ZHANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, William W. Sager Co-Chair of Committee, Zuosheng Yang Committee Members, Mitch W. Lyle Richard L. Gibson Head of Department, Debbie J. Thomas May 2014 Major Subject: Oceanography Copyright 2014 Jinchang Zhang ABSTRACT Shatsky Rise is one of the largest oceanic plateaus, a class of volcanic features whose formation is poorly understood. It is also a plateau that was formed near spreading ridges, but the connection is unclear. The geologic structure and morphology of Shatsky Rise oceanic plateau provides key observations that can help understand its formation. Deep penetrating 2D multichannel seismic (MCS) reflection profiles and high-resolution multi-beam sonar data were acquired over the southern half of Shatsky Rise on R/V Marcus G. Langseth during two cruises. The MCS profiles allow us to image Shatsky Rise's upper crustal structure and Moho structure with unprecedented detail, and the multi-beam bathymetry data allow us to produce an improved bathymetric map of the plateau. MCS profiles and bathymetry data show that two of the volcanic massifs within Shatsky Rise are immense central volcanoes. Tamu Massif, the largest (~450 × 650 km) and oldest (~145 Ma) volcano, is a single central volcano with rounded shape and shallow flank slopes (<0.5o-1.5o), characterized by lava flows emanating from the volcano center and extending hundreds of kilometers down smooth, shallow flanks to the surrounding seafloor.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
    1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale).
    [Show full text]