Independent Domestication of Two Old World Cotton Species Jonathan F

Total Page:16

File Type:pdf, Size:1020Kb

Independent Domestication of Two Old World Cotton Species Jonathan F Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2016 Independent Domestication of Two Old World Cotton Species Jonathan F. Wendel Iowa State University, [email protected] Simon Renny-Byfield Iowa State University Justin T. Page Brigham Young University Joshua A. Udall Brigham Young University William S. Sanders Mississippi State University SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Agronomy and Crop Sciences Commons, Behavior and Ethology Commons, Plant Breeding and Genetics Commons, and the Population Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/232. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Independent Domestication of Two Old World Cotton Species Abstract Domesticated cotton species provide raw material for the majority of the world's textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton ( Gossypium hirsutum L.) and the other to Egyptian cotton ( Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4–2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently. Keywords Gossypium, repetitive DNA, molecular evolution, genome size, crop plants Disciplines Agronomy and Crop Sciences | Behavior and Ethology | Ecology and Evolutionary Biology | Plant Breeding and Genetics | Population Biology Comments This article is published as Renny-Byfield, Simon, Justin T. Page, Joshua A. Udall, William S. Sanders, Daniel G. Peterson, Mark A. Arick, Corrinne E. Grover, and Jonathan F. Wendel. "Independent domestication of two Old World cotton species." Genome biology and evolution 8, no. 6 (2016): 1940-1947. 10.1093/gbe/ evw129. Posted with permission. Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License Authors Jonathan F. Wendel, Simon Renny-Byfield, Justin T. Page, Joshua A. Udall, William S. Sanders, Daniel G. Peterson, Mark A. Arick II, and Corrinne E. Grover This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/eeob_ag_pubs/232 GBE Independent Domestication of Two Old World Cotton Species Simon Renny-Byfield1,6,7,JustinT.Page2, Joshua A. Udall2, William S. Sanders3,4, Daniel G. Peterson3,5, Mark A. Arick II3,CorrinneE.Grover1, and Jonathan F. Wendel1,* 1Department of Ecology, Evolution and Organismal Biology, Iowa State University 2Plant and Wildlife Science Department, Brigham Young University 3Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University 4Department of Computer Science and Engineering, Mississippi State University 5Department of Plant and Soil Sciences, Mississippi State University 6DuPont Pioneer, Johnston, IA 7Present address: Department of Plant Sciences, University of California, Davis, CA *Corresponding author: E-mail: [email protected]. Accepted: May 26, 2016 Data deposition: The data used in this study have been previously published and data deposition to the NCBI SRA is detailed in the relevant references and in the supplementary file S1. Abstract Domesticated cotton species provide raw material for the majority of the world’s textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton (Gossypium hirsutum L.) and the other to Egyptian cotton (Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4–2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently. Key words: Gossypium, repetitive DNA, molecular evolution, genome size, crop plants. Introduction possible introgression between crops and wild relatives, culti- Understanding the origins of crop plants and their relation- vation far outside the native range, and rarity or extinction of ships to wild relatives have long been central concerns of plant wild ancestors. Accordingly, the wild ancestors and germ- biologists. This historical interest, stimulated by the impor- plasm relationships of some of our major crop species have tance of this understanding to crop plant improvement, remained obscure. traces to before the landmark volumes by de Candolle A case in point concerns the two Old World cultivated (1883) and Darwin (1868) and remains an area of active re- cotton species, Gossypium arboreum and Gossypium herba- search today (Abbo et al. 2012; Hancock 2012; Meyer and ceum (fig. 1). Both species have an ancient history of cultiva- Purugganan 2013; Olsen and Wendel 2013). A major chal- tion, extending back perhaps 5,000 years or more lenge in the study of crop plants has been determining the (Chowdhury and Buth 1971). This antiquity of original domes- wild ancestors of domesticated species. This difficulty reflects tication followed by human-mediated dispersal over vast geo- multiple processes, including the often dramatic morphologi- graphic ranges, extending from Africa through the Levant and cal transformation between progenitor and derivative, Indian subcontinent into the Far East, has generated extensive ß The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 1940 Genome Biol. Evol. 8(7):1940–1947. doi:10.1093/gbe/evw129 Advance Access publication June 11, 2016 Downloaded from https://academic.oup.com/gbe/article-abstract/8/6/1940/2574112 by Iowa State University user on 05 December 2017 Independent Domestication of Two Old World Species GBE and their relationships to each other are unclear. Two oppos- ing views have been forwarded, one that stresses the overall similarity of the two species and a second that emphasizes their differences. Hutchinson, a proponent of the first view, proposed G. herbaceum subsp. africanum as a model of the ancestor of both species (Hutchinson and Ghose 1937; Hutchinson 1954; Fryxell 1978).AccordingtoHutchinson’s hypothesis, G. arboreum arose from G. herbaceum early in the history of diploid cotton cultivation, suggesting one culti- vated cotton species arose from another. An alternative hy- pothesis is that G. arboreum and G. herbaceum diverged prior to domestication. Fryxell (1978) and Wendel et al. (1989) among others argue that genetic differences between the two species are too great to have arisen during the relatively FIG.1.—Morphological differences between fiber from wild and do- brief period in which domesticated cottons have existed. Thus, mesticated A-genome diploid cotton species. Shown are single seeds with single celled trichomes (fiber) from two cotton species, Gossypium herba- according to this view, cultivated Old World cottons originated ceum and Gossypium arboreum. Gossypium arboreum exists only as a from at least two independent domestication events from two cultigen. different wild progenitor species. The purpose of this study was
Recommended publications
  • Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
    Journal of Agricultural Science; Vol. 8, No. 8; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gossypium barbadense: An Approach for in Situ Conservation in Cerrado, Brazil Andrezza Arantes Castro1, Lúcia Vieira Hoffmann2, Thiago Henrique Lima1, Aryanny Irene Domingos Oliveira1, Rafaela Ribeiro Brito1, Letícia de Maria Oliveira Mendes1, Caio César Oliveira Pereira1, Guilherme Malafaia1 & Ivandilson Pessoa Pinto de Menezes1 1 Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Goiás, Brazil 2 Embrapa Algodão, Campina Grande, Paraíba, Brazil Correspondence: Ivandilson Pessoa Pinto de Menezes, School Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Brazil. Tel: 55-64-9279-9708. E-mail: [email protected] Received: May 27, 2016 Accepted: June 16, 2016 Online Published: July 15, 2016 doi:10.5539/jas.v8n8p59 URL:http://dx.doi.org/10.5539/jas.v8n8p59 Abstract Abandonment of planting of Gossypium barbadense has endangered its existence. The objective was to determine the characteristicof the maintenance of Gossypium barbadense in the Central-West Region of Brazil, with the aim to foster the conservation of the species. Expeditions were conducted in 2014-2015 in Southeast Goiás, where cotton collection has not been reported before. Data from previous collections in Goiás, Mato Grosso, Mato Grosso do Sul and Distrito Federal available in Albrana database were considered this study. In the Central-West Region of Brazil, 466 accesses of G. barbadense were recorded, found most frequently in backyards (91.4%), but also spontaneous plants (7.5%), farm boundary (0.8%) and commercial farming (0.2%) have also been found. The main use indicated by VDU was as medicinal plant (0.66), therefore this is the main reason for in situ preservation.
    [Show full text]
  • Polyploidy and the Evolutionary History of Cotton
    POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative
    [Show full text]
  • Genetic Variability Studies in Gossypium Barbadense L
    Electronic Journal of Plant Breeding, 1(4): 961-965 (July 2010) Research Article Genetic variability studies in Gossypium barbadense L. genotypes for seed cotton yield and its yield components K. P. M. Dhamayanathi , S. Manickam and K. Rathinavel Abstract A study was carried out during kharif 2006-07 with twenty five Gossypium barbadense L genotypes to obtain information on genetic variability, heritability and genetic advance for seed cotton yield and its yield attributes. Significant differences were observed for characters among genotypes. High genetic differences were recorded for nodes/plant, sympodia, bolls as well as fruiting points per plant, seed cotton yield, lint index indicating ample scope for genetic improvement of these characters through selection. Results also revealed high heritability coupled with high genetic advance for yield and most of the yield components as well as fibre quality traits. Sympodia/plant, fruiting point /plant, number of nodes/plant, number of bolls per plant, and lint index were positively correlated with seed cotton yield per plant and appeared to be interrelated with each other. It is suggested that these characters could be considered as selection criteria in improving the seed cotton yield of G. barbadense , L genotypes. Key words : Gossypium barbadense , genetic variability, heritability, genetic advance, lint index, selection criteria Introduction Seed cotton yield is a complex trait governed by Cotton is the most widely used vegetable fibre and several yield contributing characters such as plant also the most important raw material for the textile height, number of monopodia, number of industry, grown in tropical and subtropical regions sympodia, number of bolls, number of fruiting in more than 80 countries all over the world.
    [Show full text]
  • Cotton Leaf Curl Disease – an Emerging Threat to Cotton Production Worldwide
    Journal of General Virology (2013), 94, 695–710 DOI 10.1099/vir.0.049627-0 Review Cotton leaf curl disease – an emerging threat to cotton production worldwide M. Naeem Sattar,1 Anders Kvarnheden,1 Muhammad Saeed2 and Rob W. Briddon2 Correspondence 1Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Anders Kvarnheden Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, [email protected] Sweden 2National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan Cotton leaf curl disease (CLCuD) is a serious disease of cotton which has characteristic symptoms, the most unusual of which is the formation of leaf-like enations on the undersides of leaves. The disease is caused by whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus) in association with specific, symptom-modulating satellites (betasatellites) and an evolutionarily distinct group of satellite-like molecules known as alphasatellites. CLCuD occurs across Africa as well as in Pakistan and north-western India. Over the past 25 years, Pakistan and India have experienced two epidemics of the disease, the most recent of which involved a virus and satellite that are resistance breaking. Loss of this conventional host–plant resistance, which saved the cotton growers from ruin in the late 1990s, leaves farmers with only relatively poor host plant tolerance to counter the extensive losses the disease causes. There has always been the fear that CLCuD could spread from the relatively limited geographical range it encompasses at present to other cotton-growing areas of the world where, although the disease is not present, the environmental conditions are suitable for its establishment and the whitefly vector occurs.
    [Show full text]
  • CHEMISTRY and HISTOLOGY of the GLANDS of the COTTON PLANT, with NOTES on the OCCURRENCE of SIMILAR GLANDS in RELATED Plantsl
    CHEMISTRY AND HISTOLOGY OF THE GLANDS OF THE COTTON PLANT, WITH NOTES ON THE OCCURRENCE OF SIMILAR GLANDS IN RELATED PLANTSl By ERNEST E. STANFORD, Scientific Assistant, and ARNO VIEHOEVER, Pharmacog- nosist in Charge, Pharmacognosy Laboratory, Bureau of Chemistry, United States Department of Agriculture INTRODUCTION The work herein reported forms a portion of a chemical and biological investigation of the cotton plant (Gossypium spp.), the purpose of which is to isolate and determine the substance or substances which attract the boll weevil. A previous paper (77)2 discusses the isolation of certain glucosids and the products of their hydrolysis, as well as preliminary studies of an ethereal oil which manifested some attraction for the boll weevil. Both the glucosids and this oil, as well as several other sub- stances, are largely localized in prominent internal glands which are very numerous in nearly all parts of the cotton plant. The main purpose of this paper is to discuss the occurrence, formation, structure, and con- tents of these glands. Glands of another type, more properly referred to as "nectaries/' also occur in the cotton plant. These are superficial in position and definitely localized. The internal glands have nothing in common with these nectaries save the function of secretion. In certain taxonomic and other literature, however, either or both types are referred to indis- criminately simply as "glands." Therefore, it seems advisable also to discuss briefly in this paper the nature and occurrence of the nectaries, in order to distinguish them clearly from the internal secretory organs, which form the main subject of the present study.
    [Show full text]
  • Assessment of Gene Flow Between Gossypium Hirsutum and G
    G3: Genes|Genomes|Genetics Early Online, published on May 25, 2017 as doi:10.1534/g3.117.041509 Assessment of gene flow between Gossypium hirsutum and G. herbaceum: evidence of unreduced gametes in the diploid progenitor. Montes E *1, Coriton O †, Eber F †, Huteau V †, Lacape JM ‡, Reinhardt C §2, Marais D §, Hofs JL **, Chèvre AM † 2, Pannetier C * ‡ 2 *: Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, F-78026 Versailles Cedex, France †: Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes I., BP35327, 35653 Le Rheu, France ‡: CIRAD, UMR AGAP, Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales, 34398 Montpellier, France. §: Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0001, South Africa ** : CIRAD, UR AIDA, Agro-écologie et Intensification Durable des cultures Annuelles, 34398 Montpellier, France. 1 present address: UMR 1349, IGEPP, INRA BP35327, 35653 Le Rheu, France 2 corresponding authors Running title Unreduced gametes in diploid cotton 1 © The Author(s) 2013. Published by the Genetics Society of America. Key words Gene flow, natural hybridization, unreduced gamete, Gossypium hirsutum, Gossypium herbaceum Corresponding authors: UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique (INRA), BP35327, F-35653 Le Rheu, France. Email [email protected] and UMR1318, Institut Jean-Pierre Bourgin, INRA F-78026 Versailles, France. Email [email protected]. 2 Abstract In the framework of a gene flow assessment, we investigated the natural hybridization rate between Gossypium hirsutum (AADD genome) and G. herbaceum (AA genome). The latter species, a diploid progenitor of G.
    [Show full text]
  • A Global Assembly of Cotton Ests
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource A global assembly of cotton ESTs Joshua A. Udall,1 Jordan M. Swanson,1 Karl Haller,2 Ryan A. Rapp,1 Michael E. Sparks,1 Jamie Hatfield,2 Yeisoo Yu,3 Yingru Wu,4 Caitriona Dowd,4 Aladdin B. Arpat,5 Brad A. Sickler,5 Thea A. Wilkins,5 Jin Ying Guo,6 Xiao Ya Chen,6 Jodi Scheffler,7 Earl Taliercio,7 Ricky Turley,7 Helen McFadden,4 Paxton Payton,8 Natalya Klueva,9 Randell Allen,9 Deshui Zhang,10 Candace Haigler,10 Curtis Wilkerson,11 Jinfeng Suo,12 Stefan R. Schulze,13 Margaret L. Pierce,14 Margaret Essenberg,14 HyeRan Kim,3 Danny J. Llewellyn,4 Elizabeth S. Dennis,4 David Kudrna,3 Rod Wing,3 Andrew H. Paterson,13 Cari Soderlund,2 and Jonathan F. Wendel1,15 1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA; 2Arizona Genomics Computational Laboratory, BIO5 Institute, 3Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA; 4CSIRO Plant Industry, Canberra City ACT 2601, Australia; 5Department of Plant Sciences, University of California–Davis, Davis, California 95616, USA; 6Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, 200032, China; 7United States Department of Agriculture–Agricultural Research Service, Stoneville, Mississippi 38776, USA; 8United States Department of Agriculture–Agricultural Research Service, Lubbock, Texas 79415, USA; 9Department of Biology, Texas Tech University,
    [Show full text]
  • Thespesia Populnea (L
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 7 F. R. Fosberg Thespesia Populnea (L. ) and M.-H. Sachet Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1972 ABSTRACT Fosberg, F. R. and M.-H. Sachet. Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) . Smithsonian Con- tributions to Botany, number 7, 13 pages, 6 figures. 1972.-The pantropical Thespesia populnea (Malvaceae) is shown to be clearly separable into two species : T. popul- nea, which is pantropical on seashores, and T. populneoides of the Indian Ocean area, extending to Hainan Island, usually, but not always, somewhat inland. Hybrids between the two species occur where their ranges touch, and in Ceylon some of these hybrids have been widely propagated vegetatively as ornamentals and “living fence-posts.” Library of Congress Cataloging in Publication Data Fosberg, Francis Raymond, 1908- Thespesia populnea (L.) Solander ex Correa and Thespesia populneoides (Roxburgh) Kosteletsky (Malvaceae) (Smithsonian contributions to Botany, no. 7) Bibliography: p. 1. Thespesia populnea. 2. Thespesia populneoides. I. Sachet, Marie-HCkne, joint author. 11. Title. 111. Series: Smithsonian Institution. Smithsonian contributions to Botany, no. 7. QKlS2747 no. 7 [QK495.M27] 581’ .08s 1583’ ,171 70-39683 Oficial publication date is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. For sale by the
    [Show full text]
  • Influência De Fertilizantes Foliares, Na Eficácia Do
    Revista Brasileira de Herbicidas, v.15, n.1, p.89-96, jan./mar. 2016 (ISSN 2236-1065) DOI: http://dx.doi.org/10.7824/rbh.v15i1.437 www.rbherbicidas.com.br Biology and management of Rottboellia cochinchinensis1 Biologia e manejo de Rottboellia cochinchinensis Núbia Maria Correia2 Abstract - Rottboellia cochinchinensis (Lour.) Clayton, popularly known as itchgrass is the main weed of at least 18 crops grown in many countries. Therefore, it is proposed, in this review, to present biological and management aspects of this important weed species. It is an annual or perennial plant reproduced by seeds or from pieces of stems, reaching up to 4.0 m high. The seeds can remain dormant in the soil for up to four years and the light is not a limiting factor for germination. Although with the system clear/dark there is stimulating seed germination. The rapid development of the root system, with subsequent formation of the aerial part, favors the space occupation by plants. Furthermore, the decomposing plant waste of that species release to soil phytotoxic compounds which can inhibit germination and growth of adjacent or species, whether harmful or cultured. In rural workers, it cause skin irritation by contact, with rigid trichomes of leaf sheaths. There is little information in the literature on the chemical control of this species, especially for pre-emergence herbicides applied. This can be attributed to the difficulty of the product crossing the structure surrounding the seeds and thus reaching the embryo. In sugarcane, clomazone + imazapyr, clomazone + isoxaflutole and sulfomethuron + diuron + hexazinone, sprayed pre-emergence resulted in satisfactory controlling R.
    [Show full text]
  • Table E-1. Vegetation Species Found on Wake Atoll
    Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Abutilon albescens Sweet monkeybush Abutilon asiaticum var. albescens Indian mallow Agave americana American century plant Agave angustifolia century plant Agave sisalana Sisal Agave sp. agave sp. Aglaonema commutatum Aglaonema Allium cepa Onion Allium fistulosum Green onion Allium sp. Onion sp. Allium tuberosum Chinese chive Aloe vera Aloe Alpinia galanga Greater galangal Alpinia purpurata Pink ginger; Jungle Queen Amaranthus dubius Spleen amaranth Amaranthus graecizans Tumbleweed Amaranthus tricolor Joseph′s coat Amaranthus viridis Slender amaranth Ananas comosus Pineapple Anethum graveolens Dill Annona muricata Soursop Annona squamosa Sweetsop Apium petroselinum Garden parsley Araucaria heterophylla Norfolk Island pine Asparagus densiflorus Sprenger asparagus fern Asplenium nidus Bird’s-nest fern Barringtonia asiatica Fish poison tree Bauhinia sp. Camel’s foot tree Bidens alba white beggar-ticks Bidens pilosa var. minor Beggar-ticks Boerhavia albiflora var. powelliae -- Boerhavia diffusa Red Spiderling Boerhavia repens anena Boerhavia sp. Spiderling sp. Bothriochloa pertusa Indian blue grass Bougainvillea spectabilis bougainvillea Brassica nigra Mustard Brassica oleracea var. italica Brocolli Caesalpinia bonduc Grey nickers Caladium bicolor Caladium Calotropis gigantea Crown flower Capsicum frutescens Cayenne pepper Capsicum annuum chili pepper Table E-1. Vegetation Species Found on Wake Atoll Scientific Name Common Name Carica papaya Papaya Casuarina equisetifolia
    [Show full text]
  • Malvales Nymphaeales Austrobaileyales
    Amborellales Malvales Nymphaeales Austrobaileyales Acorales G Eenzaadlobbigen G Alismatales Petrosaviales Huerteales Pandanales Een recente ontwikkeling is het Dioscoreales Dipentodontaceae in een nieuw Liliales Asparagales hout- en anatomische kenmerke 2 geslachten en 5 soorten van b Arecales en samengestelde bladeren, die G Commeliniden G Dasypogonales Poales werden geplaatst. De Dipentod Commelinales sinicus, een boom uit China en Zingiberales die vroeger in de Violales werd Ceratophyllales Malvales Chloranthales De Malvales zijn voor het meren Canellales warme streken. Ze hebben vers Piperales G Magnoliiden G De bast is nogal eens vezelig, st Magnoliales veel voor. De kroonbladen ligge Laurales Ze hebben meestal een lange st Ranunculales De zaden en de binnenkant van Sabiales bezet. Deze orde omvatte al de Proteales Trochodendrales Dipterocarpaceae, Bixaceae, Ne Buxales Sphaerosepalaceae. De Lindefam Gunnerales Bombacaceae zijn nu opgenom Berberidopsidales (Malvaceae). De Muntingiaceae Dilleniales afgesplitst. Nieuwkomers in de Caryophyllales Santalales (Cistaceae), uit de Violales, en d Saxifragales (Thymelaeaceae) uit de Euphorb Cytinaceae (vroeger Rafflesiales G Geavanceerde tweezaadlobbigen G Vitales Crossosomatales ook in deze orde thuis. Geraniales Myrtales Sapindales Zygophyllales De meeste soorten in deze orde Celastrales houtige gewassen, vaak met sam Malpighiales G Fabiden G Oxalidales Fabales Rosales Bixaceae G Rosiden G Cucurbitales Malvaceae Fagales Muntingiaceae Cistaceae Huerteales Dipterocarpaceae G G Malviden Brassicales
    [Show full text]
  • Larly in Gossypium
    CHROMOSOMES IN GOSSYPIUM AND RELATED GENERA^ By A. E. LoNGLEy2 Associate Botanist, Division of Genetics and Biophysics, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION An investigation of the chromosomes in the Malvaceae, particu- larly in Gossypium, was undertaken because of the repeated failures of cotton breeders in their attempts to hybridize such cottons as Garo Hill {Gossypium cernuum Tod.) with any of the varieties of upland cotton (G. hirsutum L.). In 1923 a study was made of the chromosomes in a few repre- sentative species of Gossypium growing in the greenhouses at Wash- ington, D. C. Among these were found some species with 13 and some with 26 as their haploid chromosome number. Neither number corresponded with that found earlier by Cannon (4) ^ or Balls (1). Simultaneously with two other investigators, Denham (5, 6), of England, and Nikoljeva as reported by Zaitzev (15, 16), of Russia, the writer found that cultivated varieties of Gossypium fall into two classes, those with 13 chromosomes and those with 26 chromosomes. This classification corresponds with the taxonomic separation of Gos- sypium species into the Old World, or Asiatic, and the New World, or American, groups. MATERIAL AND METHODS The present investigation has been confined to pollen mother cells during the reduction phases. Young buds were selected and the staminal column removed and put at once into Bouin^s, Carnoy's, or chromo-acetic (1:1:100) killing solution, embedded, sectioned, and stained. It was soon found that very satisfactory preparations of pollen mother cells in which the chromosomes were dividing could be made from fresh material stained in aceto-carmine fluid.
    [Show full text]