THE BENZOCYCLOBUTENE SYSTEM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosoph

Total Page:16

File Type:pdf, Size:1020Kb

THE BENZOCYCLOBUTENE SYSTEM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosoph THE BENZOCYCLOBUTENE SYSTEM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By DONALD RAY NAPIER, B. S. a****** The Ohio State University 1957 Approved hy: •YU f I J. v f i . Adviser Department of Chemistry ACKNOWLEDGMENT The author wishes to express his deepest apprecia­ tion to Dr. Michael P. Cava, who suggested this problem and whose guidance and council were of inestimable value toward its completion. He also wishes to thank fellow graduate students and members of the staff for their co­ operation. ii TABLE OP CONTENTS PAGE I. INTRODUCTION .......................... 1 II. DISCUSSION AND INTERPRETATION OP RESULTS . 13 III. EXPERIMENTAL .......... ..................... 45 Reaction of a,a,a',a'-tetrabromo-o-xylene (XXXIII) with sodium iodide ........... 45 1.2-Dibromobenzocyclobutene (XXXIV) .... 46 Treatment with maleic anhydride.. ....... 47 Oxidation to phthalic acid ....... 47 Reaction with bromine ................... 48 Treatment with potassium acetate .... 49 1 .2-Diiodobenzocyclobutene (XXXVII) .... 49 Benzocyclobutadiene dimer (XLVI) ....... 50 Aromatization with N-bromosuccinimide . 52 Behavior with other aromatizing reagents 53 Dibromide of benzocyclobutadiene dimer . 55 Dehydrobromination to monobromide XLIX . 55 5-Bromobenzo-[a3-biphenylene (XLVII) . 56 Zinc dehalogenation of triiodide L . 57 Dehydrohalogenation of triiodide L . 53 Benzocyclobutene (I) 58 Thermal stability and acid sensitivity . 61 Attempted HI reduction of diiodide XXXVII . 62 Action of LiAlH^ on diiodide XXXVII .... 63 1-Bromobenzocyclobutene (LXI) ............. 63 iii iv PAGE Reaction with, potassium t-butoxide . 64 Reaction with sodium methoxide ........ 65 Reaction with magnesium ................. 65 1-Cyanobenzocyclobutene (LXIII) ........... 66 Oxidation to benzocyclobutene-l-carbox- amide (LXIV) ..... ................. 67 l=Aminomethyl-benzocyclobutene hydrochlor­ ide ..................... ............ 68 Benzocyclobutene-l-carboxylic acid (LXYI) . 68 1.2-Bis-(trifluoroacetoxy)-benzocyclobu- tene (LXIX) ............................ 69 Hydrolysis o f ............................ 70 Gis and trans esters of 1,2-benzocyclobu- tenediol (LXXIa and LXXIb) ............. 71 1.2-Diketobenzocyclobutene (LXXII) .... 72 Quinoxaline derivative ......... 73 2,4-Dinitrophenylhydrazone 73 Oxidation to phthalic a c i d ............. 79- Conversion to phthalaldehydic acid . 79- Reaction with potassium t-butoxide . 75 5-t-Butoxyphthalide (LXXXI) ............. 76 Hydrolysis to phthalaldehydic acid . 77 APPENDIX I: INFRARED ABSORPTION SPECTRA ......... 79 APPENDIX II: ULTRAVIOLET ABSORPTION SPECTRA . 87 AUTOBIOGRAPHY....................................... 96 LIST OP TABLES TABLE PAGE I. Ultraviolet Absorption Maxima for Benzocyclo­ butene, Indane, and Tetralin ............... 30 II. Influence of Reaction Variables in tbe Aroma- tization of Benzocyclobutadiene Dimer (XLVI) ..................................... 53 III. Fractional Distillation of Crude Benzocyclo­ butene ( I ) ........................ 59 LIST OF CHARTS CHART PAGE I. Proposed Mechanisms for the Formation of 1,2-Dibromobenzocyclobutene and 1,2- Diiodobenzocyclobutene . .................... 20 II. Proposed Mechanisms for the Formation of Triiodide (L) ..... ...................... 28 THE BENZOCYCLOBUTENE SYSTEM I. INTRODUCTION Until recently^" the simplest known alicylic-aroma- tic system was indane (II). Although the higher homologs of indane such as tetralin (III) are well known, no au­ thenticated synthesis of even a simple derivative of the 2 lower homolog, Benzocyclobutene (I) , has been previous- lL ly described. As early as 1888, W. H. Perkin, Jr. wrote of unsuccessful attempts to prepare benzocyclobutene der- I II III ivativas, however, no mention was made of the specific reactions employed. Since that time the problem has been attacked in principally two ways - by the attempted ring contraction of indane derivatives and ring closure of o~ xylene derivatives. ^A part of the work recorded in this dissertation has been published elsewhere. See reference 3« P For the nomenclature of these compounds see refer­ ence 3» ^M. Cava and D. Napier, J. Am. Chem. Soc., 500 (1956); ibid., Z2, 1701 (1957). \ . H. Perkin, Jr., J. Chem, Soc., 1 (1888). The lack of any success in these attempts can un- doubtably he attributed to the strain existing in a sys­ tem such as I. In the absence of any thermochemical data on unsubstituted cyclobutene only a crude approximation can be made as to the magnitude of the strain induced on passing from indane to benzocyclobutene. However, it must be considerably lower than that in the unknown benzo­ cyclobutadiene (IV) or the known biphenylene (V). Prom heats of combustion data it has been estimated that the latter is strained to the extent of 60 + 5 kcal. with re­ spect to biphenyl.^ It possesses however, a net stabil­ ization energy of some 22+5 kcal. On the assumption IV V that three of the bonds in I are aliphatic and comprable to those of cyclobutane (each with approximately 6 kcal. of strain)^ and the bond common to both rings is similar to the corresponding one in V, then the net strain is 18 + 15 or 33 kcal. ^From thermochemical data it is estimated that the strain in indane is no greater than in unsubstituted cy- clopentane (1.5-2 kcal.). See M. Dolliner, T. Gresham and G. Kistiakowsky, J. Am. Chem. Soc., ^9, 831 (1937)* 6R. Cass, H. Springall and P. Quincy, J. Chem. Soc., 1188, 1955. 7The experimental value for the strain in cyclobutane is 26.2 kcal. as determined by S. Kaarsemaker and J. Coops, Rec. trav. chim., 261, (1952). Although, the assumptions made are perhaps unjust­ ified, it is to be noted that value of 33 kcal. is less than that of the positive delocalization energy of benzene (36-40 kcal.), to which must be added a small but not in­ significant amount of hyperconjugation energy. Referring to biphenylene as an exception, doubts have been expressed concerning the stability of any other system containing a four membered ring fused to an aroma- 8 tic nucleus. These doubts were based on the nonexis­ tence of such systems at that time and on the expectation that the resonance stabilization of the aromatic ring would not fully compensate for the instability induced by straining the bond angles through 40 degrees. In regard to bond angles, it has been pointed out that the lines of maximum charge density for the orbitals forming the bonds do not necessarily coincide with the directions of the Q attached atoms. Also, it is to be noted that irrespec­ tive of the actual magnitude of the strain, unsubstituted cyclobutene is an isolable hydrocarbon."1'0 Referring next to benzocyclobutadiene (IY), the magnitude of the strain in this system - if comparable to that in biphenylene (60 ®W. baker, J. Chem. Soc., 258, 1945. ^Cf. C. Coulson and W. Moffitt, Phil. Mag., 40, 26 (1949). 10Por reconfirmations of Willstater and von Schmae- del's original synthesis, see J. Roberts and C. Sauer, J. Am. Chem. Soc., 5925 (1949). kcal.) - is significantly greater than that of its calcu- 11 lated resonance energy 2.38^ (42 kcal.). It might be expected, therefore, that this system would be consider­ ably less stable than that of benzocyclobutene. With the object of preparing the bridged tautomer 12 of napthalene, VI, Ingold and Challenor once attempted the synthesis of compounds Vila and Vllb which were to be used as intermediates. Treating the dibromides Villa or V U I b with a variety of different bases resulted in the isolation of only polymers of compositions approximating to those of the compounds Vila and Vllb. However, in the presence of ethyl sodiomalonate Vllb gave a small amount vr VIIa, R = VIII *,(?=C04EI V///, IX XI ^FromFrom simple M.OM.O. Calculations by J. Roberts and A Streitwieser, J. Am. Chem. Soc., 2fh» 9-579 (1954). 12C. Ingold and W. Challenor, J. Chem. Soc., 123, 2066 (1923). of an enolic material (subsequently converted to/^-Uap- " thol) which, was assigned the structure IX. Since the pro­ posed intermediate Vllb was never isolated, the possibil­ ity of the product being the ^- N a p thol derivative X(iso- meric with IX) cannot be excluded. It would then be un­ necessary to assume the existence of any four membered ring intermediates since, for example, X may arise by a Michael addition of ethyl malonate to an o-methylenequi- none intermediate XI; the subsequent formation of X in the basic medium would be unexceptional. More recently a claim to the effect that deriva­ tives of both the unknown systems I and IV are obtained in the same reaction has been made by the Russian chem- 13 ° ists Logidze and Petrov. Heating a mixture of 1,4-di­ ace toxybutyne -2 , benzene and aluminum chloride gave in addition to other products 20% of a liquid °12H14° 120°/2 mm.) which was assigned the structure XII and 12% of a solid GqqHqo (m.p. 103°) suggested to be XIII. The basis for the assignment of structure XII to the compound C12H14^ Was oxid-a'tiori 'fco hemimellitic acid. On re- o duction with Raney nickel the substance C^H-^q gave G-^^^ the Raman spectra of which indicated a very symmetrical molecule. Other reactions of XIII included its bromina- 1^R. Logidze and A. Petrov, Doklady Akad. Hauk S.S.S.R., 83, 235 (1952). tion to a monobromide, chromic oxide oxidation to Cn,,Ho0o m- o d and oxonolysis, resulting in the isolation of both formic and benzoic acids. The formation of benzoic acid on ozonolysis was cited as evidence that XIII had the pro-Q perties of a "chemical cliameleon". In the absence of more definited proof, it would appear that the structures of XII and XIII have been proposed without adequate ex­ perimental justification and must therefore be considered 14 untenable. Recent attempts have been made to prepare Ac ■X H XII XIII these compounds dn order to study them in more detail; o o however, in spite of extensive efforts no materials with physical or chemical properties resembling those ascrib­ ed to either XII or XIII could be isolated from reaction mixtures of benzene, aluminum chloride and 1,4-diacetoxy- butyne-2. Still another reference to a possible synthesis of a benzocyclobutene derivative is to be found in the clas­ sical work of E.
Recommended publications
  • DNA Alkylation by Leinamycin Can Be Triggered by Cyanide and Phosphines
    Bioorganic & Medicinal Chemistry Letters 11 (2001) 1511–1515 DNA Alkylation by Leinamycin Can Be Triggered by Cyanide and Phosphines Hong Zang, Leonid Breydo, Kaushik Mitra, Jeffrey Dannaldson and Kent S. Gates* Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA Received 24 January 2001; accepted 14 March 2001 Abstract—Previous work has shown that alkylation of DNA by the antitumor agent leinamycin (1) is potentiated by reaction of the antibiotic with thiols. Here, it is shown that other soft nucleophiles such as cyanide and phosphines can also trigger DNA alkylation by leinamycin. Overall, the results suggest that reactions of cyanide and phosphines with leinamycin produce the oxathiolanone intermediate (2), which is known to undergo rearrangement to the DNA-alkylating episulfonium ion 4. # 2001 Elsevier Science Ltd. All rights reserved. Leinamycin (1) is a potent antitumor antibiotic that properties of the antibiotic. Here we report that phos- contains a unique 1,2-dithiolan-3-one 1-oxide hetero- phines and cyanide are able to trigger DNA alkylation cycle.1,2 Reaction of thiols with this sulfur heterocycle in by the antitumor antibiotic leinamycin. Results of our leinamycin initiates chemistry that leads to oxidative chemical model reactions and DNA-damage experi- DNA damage and DNA alkylation.3À6 Thiol-triggered ments suggest that reaction of cyanide and phosphines DNA alkylation by leinamycin involves initial conver- with leinamycin affords the critical oxathiolanone inter- sion of the parent antibiotic to the oxathiolanone form mediate (2), which subsequently undergoes rearrangement 2,5,7 followed by rearrangement to the episulfonium ion to the DNA-alkylating episulfonium ion 4.
    [Show full text]
  • Sodium and Specialty Cyanides Production Facility Nicholas A
    University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Sodium and Specialty Cyanides Production Facility Nicholas A. Baylis University of Pennsylvania, [email protected] Parth N. Desai University of Pennsylvania, [email protected] Kyle J. Kuhns University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Baylis, Nicholas A.; Desai, Parth N.; and Kuhns, Kyle J., "Sodium and Specialty Cyanides Production Facility" (2018). Senior Design Reports (CBE). 101. https://repository.upenn.edu/cbe_sdr/101 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/101 For more information, please contact [email protected]. Sodium and Specialty Cyanides Production Facility Abstract Sodium cyanide and specialty cyanide production are essential operations for various industrial processes, with primary applications in mining and mineral processing. Sodium cyanide, despite the high toxicity inherent in the material and its production process, is expected to grow 5% annually, with a projected global demand of 1.1 million tonnes in 2018. This report details a process design for producing sodium cyanide through the use of two intermediate reactions and successive downstream separations. The first major step is the production of hydrogen cyanide gas from ammonia and methane derived from natural gas, via the industry standard Andrussow reaction over a platinum-rhodium gauze catalyst. Aqueous sodium cyanide is produced via a neutralization reaction of absorbed hydrogen cyanide gas with aqueous sodium hydroxide. Downstream processes include the crystallization of solid sodium cyanide from the aqueous product, with the solid product being removed from slurry and brought to low-moisture content through a series of solid-liquid separations.
    [Show full text]
  • Cyclobutane Derivatives in Drug Discovery
    Cyclobutane Derivatives in Drug Discovery Overview Key Points Unlike larger and conformationally flexible cycloalkanes, Cyclobutane adopts a rigid cyclobutane and cyclopropane have rigid conformations. Due to the ring strain, cyclobutane adopts a rigid puckered puckered conformation Offer ing advantages on (~30°) conformation. This unique architecture bestowed potency, selectivity and certain cyclobutane-containing drugs with unique pharmacokinetic (PK) properties. When applied appropriately, cyclobutyl profile. scaffolds may offer advantages on potency, selectivity and pharmacokinetic (PK) profile. Bridging Molecules for Innovative Medicines 1 PharmaBlock designs and Cyclobutane-containing Drugs synthesizes over 1846 At least four cyclobutane-containing drugs are currently on the market. cyclobutanes, and 497 Chemotherapy carboplatin (Paraplatin, 1) for treating ovarian cancer was cyclobutane products are prepared to lower the strong nephrotoxicity associated with cisplatin. By in stock. CLICK HERE to replacing cisplatin’s two chlorine atoms with cyclobutane-1,1-dicarboxylic find detailed product acid, carboplatin (1) has a much lower nephrotoxicity than cisplatin. On information on webpage. the other hand, Schering-Plough/Merck’s hepatitis C virus (HCV) NS3/4A protease inhibitor boceprevir (Victrelis, 2) also contains a cyclobutane group in its P1 region. It is 3- and 19-fold more potent than the 1 corresponding cyclopropyl and cyclopentyl analogues, respectively. Androgen receptor (AR) antagonist apalutamide (Erleada, 4) for treating castration-resistant prostate cancer (CRPC) has a spirocyclic cyclobutane scaffold. It is in the same series as enzalutamide (Xtandi, 3) discovered by Jung’s group at UCLA in the 2000s. The cyclobutyl- (4) and cyclopentyl- derivative have activities comparable to the dimethyl analogue although the corresponding six-, seven-, and eight-membered rings are slightly less 2 active.
    [Show full text]
  • 9.7 Summary of Substitution and Elimination Reactions of Alkyl Halides 421
    09_BRCLoudon_pgs4-3.qxd 11/26/08 12:25 PM Page 420 420 CHAPTER 9 • THE CHEMISTRY OF ALKYL HALIDES The occurrence of some inversion also shows that the lifetime of a tertiary carbocation is 8 very small. It takes about 10_ second for a chloride counterion to diffuse away from a carbo- cation and be replaced by solvent. The carbocations that undergo inversion do not last long enough for this process to take place. The competition of backside substitution (which gives inversion) with racemization shows that the lifetime of the carbocation is approximately in 8 this range. In other words, a typical tertiary carbocation exists for about 10_ second before it is consumed by its reaction with solvent. This very small lifetime provides a graphic illustration just how reactive carbocations are. PROBLEMS 9.27 The optically active alkyl halide in Eq. 9.61 reacts at 60 C in anhydrous methanol solvent to give a methyl ether A plus alkenes. The substitution reaction° is reported to occur with 66% racemization and 34% inversion. Give the structure of ether A and state how much of each enantiomer of A is formed. 9.28 In light of the ion-pair hypothesis, how would you expect the stereochemical outcome of an SN1 reaction (percent racemization and inversion) to differ from the result discussed in this section for an alkyl halide that gives a carbocation intermediate which is considerably (a) more stable or (b) less stable than the one involved in Eq. 9.61? E. Summary of the SN1 and E1 Reactions Let’s summarize the important characteristics of the SN1 and E1 reactions.
    [Show full text]
  • Recent Advances in the Total Synthesis of Cyclobutane-Containing Natural Products Cite This: Org
    Volume 7 | Number 1 | 7 January 2020 ORGANIC CHEMISTRY FRONTIERS rsc.li/frontiers-organic ORGANIC CHEMISTRY FRONTIERS View Article Online REVIEW View Journal | View Issue Recent advances in the total synthesis of cyclobutane-containing natural products Cite this: Org. Chem. Front., 2020, 7, 136 Jinshan Li,†a Kai Gao, †a Ming Bianb and Hanfeng Ding *a,c Complex natural products bearing strained cyclobutane subunits, including terpenoids, alkaloids and steroids, not only display fascinating architectures, but also show potent biological activities. Due to their unique structures as critical core skeletons in these molecules, a variety of new strategies for the con- Received 24th September 2019, struction of cyclobutane rings have greatly emerged during the last decade. In this review, we wish to Accepted 11th November 2019 summarize the recent progress in the cyclobutane-containing natural product synthesis with an emphasis DOI: 10.1039/c9qo01178a on disconnection tactics employed to forge the four-membered rings, aiming to provide a complement rsc.li/frontiers-organic to existing reviews. 1. Introduction stereoselectively, poses significant challenges in synthetic chemistry. On the other hand, cyclobutanes readily undergo a In the class of strained carbocycles, cyclobutanes have been number of ring-opening reactions by virtue of their tendency known as intriguing structural motifs for more than one to release inherent strain energies. In some cases, however, century but remained relatively less explored in parallel with striking ring strains can be dramatically reduced by the instal- their homologues.1 Due to the highly strained ring systems (ca. lation of a gem-dialkyl substituent (through the Thorpe–Ingold − 26.7 kcal mol 1), construction of cyclobutane rings, especially effect),2 a carbonyl group, a heteroatom, or other functional- ities (Fig.
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Sodium Cyanide: Properties, Toxicity, Uses and Environmental Impacts
    CHAPTER 39 SODIUM CYANIDE: PROPERTIES, TOXICITY, USES AND ENVIRONMENTAL IMPACTS Kerry Ketcheson and Merv Fingas Emergencies Science Division, Environment Canada, Environmental Technology Centre, River Road, Ottawa, Ontario 39.1 PROPERTIES Sodium cyanide (CAS No. 143-33-9) was first produced in 1834 by F. and E. Rogers, who heated Prussian blue (highly colored mixed oxidation state FeII / III derivatives) and sodium carbonate together (King, 1994). The mixture was cooled and sodium cyanide was extracted with alcohol. The compound had no intended purpose until J. S. MacArthur and the Forrest brothers patented a process for extracting gold and silver from ores in 1887 (Kirk-Othmer, 1979a). By 1899, half the cyanide manufactured in Europe was produced by the Beilby process. From 1900 to 1961, another process, called the Castner process, was used to make sodium cyanide. The Castner process is shown below: ϩ ϩ → ϩ 2Na 2C 2NH322NaCN 3H (39.1) Today, a process based on the neutralization of sodium hydroxide (aqueous) and hydrogen cyanide (gas) is the preferred method, as shown below (Kirk-Othmer, 1993): ϩ → ϩ HCN NaOH NaCN H2 O (39.2) A few chemical reactions that occur with sodium cyanide should be mentioned. In moist air, carbon dioxide (CO2) slowly decomposes sodium cyanide to hydrogen cyanide according to this reaction: ϩ ϩ → ϩ 2NaCN CO22HO Na 23 CO 2HCN (39.3) The carbonate salt produced becomes a brownish color due to the formation of polymeri- zation products of HCN (Ullmann’s, 1987). At elevated temperatures, oxygen reacts with sodium cyanide to yield nitrogen, carbonate, and carbon dioxide according to the two-step reaction (Ullmann’s, 1987): 39.1 39.2 CHAPTER THIRTY-NINE 2NaCN ϩ O → 2NaOCN 2 (39.4) ϩ → ϩ ϩ 2NaOCN 3/2O22322Na CO CO N When sodium cyanide is either stored for a long time or heated, there is a slow hydrolysis of the CϵN bond as per the equation (Ullmann’s, 1987): ϩ → ϩ NaCN 2H23 O HCOONa NH (39.5) Some basic physical properties of sodium cyanide are shown in Table 39.1.
    [Show full text]
  • Indane Acetic Acid Derivatives and Their Use As Pharmaceutical Agents, Intermediates, and Method of Preparation
    (19) TZZ___T (11) EP 1 578 715 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 57/62 (2006.01) C07C 69/612 (2006.01) 02.03.2011 Bulletin 2011/09 C07C 211/48 (2006.01) C07C 327/48 (2006.01) C07D 261/20 (2006.01) C07D 209/08 (2006.01) (2006.01) (2006.01) (21) Application number: 03800063.4 C07D 307/79 C07D 277/64 C07D 215/06 (2006.01) C07D 333/10 (2006.01) C07D 239/30 (2006.01) C07D 239/26 (2006.01) (22) Date of filing: 19.12.2003 C07D 401/04 (2006.01) A61K 31/33 (2006.01) A61K 31/185 (2006.01) (86) International application number: PCT/US2003/040842 (87) International publication number: WO 2004/058174 (15.07.2004 Gazette 2004/29) (54) INDANE ACETIC ACID DERIVATIVES AND THEIR USE AS PHARMACEUTICAL AGENTS, INTERMEDIATES, AND METHOD OF PREPARATION INDANESSIGSÄURE-DERIVATE UND IHRE VERWENDUNG ALS PHARMAZEUTISCHE MITTEL SOWIE ZWISCHENPRODUKTE UND METHODEN ZU IHRER HERSTELLUNG DERIVES D’ACIDE ACETIQUE D’INDANE ET LEUR UTILISATION EN TANT QU’AGENTS PHARMACEUTIQUES ET INTERMEDIAIRES, ET PROCEDE DE PREPARATION CORRESPONDANT (84) Designated Contracting States: • LIANG, Sidney, X. DE ES FR GB IT Bethany, CT 06524 (US) • AKUCHE, Christiana (30) Priority: 20.12.2002 US 435310 P Hamden, CT 06514 (US) • LAVOIE, Rico, C. (43) Date of publication of application: Hamden, CT 06517 (US) 28.09.2005 Bulletin 2005/39 • CHEN, Libing Milford, CT 06460 (US) (73) Proprietor: Bayer Pharmaceuticals Corporation • MAJUMDAR, Dyuti West Haven, CT 06516 (US) Milford, CT 06460 (US) • WICKENS, Philip, L.
    [Show full text]
  • Toxicological Profile for Cyanide
    CYANIDE 141 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION The demand for hydrogen cyanide in the United States during 2000 was 1.615 billion pounds, up slightly from 1.605 billion pounds in 1999 (CMR 2001). Production of hydrogen cyanide in 2003 was 2.019 billion pounds in the United States (FAS 2005). The demand for hydrogen cyanide was projected to be 1.838 billion pounds in 2004 (CMR 2001; NYSDOH 2005). Major producers of hydrogen cyanide are Adisseo USA, Inc. (Institute, West Virginia); Cyanco Co. (Winnemucca, Nevada); Cytec Industries (Waggoman, Louisiana); Degussa Corp. (Theodora, Alabama); The Dow Chemical Company (Freeport, Texas); E.I. du Pont de Neumours and Company (Memphis, Tennessee; Beaumont, Texas); Innovene (Green Lake, Texas and Lima, Ohio); Invista, Inc. (Orange, Texas and Victoria, Texas); Rhom and Haas Texas Inc. (Deer Park, Texas); Solutia, Inc. (Alvin, Texas); Sterling Chemicals, Inc. (Texas City, Texas); and Syngenta Crop Protection (St. Garbiel, Louisiana) (SRI 2005). The combined annual production capacity of these plants is approximately 2.036 billion pounds (SRI 2005). As of February 2005, the following companies produced other cyanide compounds in the United States (SRI 2005): ammonium Crompton, Taft, Louisiana; and Mallinckrodt, Inc., St. Louis, Missouri thiocyanate: cyanogen: Matheson Gas Products, Inc., Gloucester, Massachusetts potassium cyanide: DuPont Chemical Company, Memphis, Tennessee; and The Dow Chemical Company, Nashua, New Hampshire potassium silver Engelhard Corporation, Union, New Jersey; and Metalor Technologies USA, North cyanide: Attleboro, Massachusetts Facilities in the United States producing sodium cyanide and their annual capacity (in millions of pounds) in 2005 include: Cyanco Co., Winnemucca, Nevada (86); and E.I.
    [Show full text]
  • Jailbreaking Benzene Dimers † Andrey Yu
    Communication pubs.acs.org/JACS Jailbreaking Benzene Dimers † Andrey Yu. Rogachev, Xiao-Dong Wen, and Roald Hoffmann* Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States *S Supporting Information 5 and 6 were calculated as not much less stable than the known ABSTRACT: We suggest four new benzene dimers, dimers. (C6H6)2, all featuring one or more cyclohexadiene rings trans-fused to 4- or 6-membered rings. These hypothetical dimers are 50−99 kcal/mol less stable than two benzenes, but have computed activation energies to fragmentation ≥27 kcal/mol. A thorough search of potential escape routes was undertaken, through cyclobutane ring cleavage to 12-annulenes, sigmatropic 1,5-H-shifts, electrocyclic ring-openings of the 6-membered rings, and Diels−Alder dimerizations. Some channels for reaction emerge, but there is a reasonable chance that some of these new benzene dimers can be made. Apparently trans-bridging a butadiene 1,2 on a cyclobutane ring, with the latter’s freedom to pucker, is not as difficult as one n the course of thinking about benzene under gigapascal might think.11 Nor is it problematic for a butadiene to bridge the I pressure,1 we decided we might learn something from the gauche positions of an approximately staggered ethane. dimers of benzene, as signposts to the pressure-induced poly- No longer succumbing to the prejudice of avoiding trans- merization of the compound. To induce the benzenes to dimerize, bridging of a cyclobutane ring by a butadiene, from this point we brought two benzene molecules to an uncomfortably close we proceeded down a systematic (human, not machine) path, contact,2 and then let loose the geometry optimization of a 3 generating geometries for all reasonable cycloadducts.
    [Show full text]
  • Aminoindanesthe Next Wave of Legal Highs?
    Drug Testing Review and Analysis Received: 23 May 2011 Accepted: 24 May 2011 Published online in Wiley Online Library: 11 July 2011 (www.drugtestinganalysis.com) DOI 10.1002/dta.318 Aminoindanes – the next wave of ‘legal highs’? P.D. Sainsbury,a A.T. Kicman,a R.P. Archer,b L.A. Kinga and R.A. Braithwaitea∗ Due to its closed ring system, 2-aminoindane is a conformationally rigid analogue of amphetamine. Internet websites offering synthetic compounds as ‘research chemicals’ have recently been advertising 5,6-methylenedioxy-2-aminoindane (MDAI), 5, 6-methylenedioxy-N-methyl-2-aminoindane (MDMAI), 5-iodo-2-aminoindane (5-IAI), and 5-methoxy-6-methyl-2-aminoindane (MMAI). The chemistry, pharmacology, and toxicological aspects of this new class of psychoactive substances are reviewed, as these could become the next wave of ‘legal highs’. Copyright c 2011 John Wiley & Sons, Ltd. Keywords: aminoindanes; legal highs; MDAI; MDMAI; 5-IAI; MMAI; serotonin. Introduction Pharmacology Although Solomons and Sam reported in 1973 that the aminoin- Historically, the terms ‘legal highs’ and ‘herbal highs’ referred to danes possessed significant bronchodilating and analgesic blends of psychoactive plants or fungi that could be smoked properties,[2] more recent research points to the aminoindanes as or ingested to induce dissociative effects and hallucinations. having potent effects on serotonin release and re-uptake. A num- These terms, however, have more recently been widened to ber of studies undertaken in the late 1980s and early 1990s con- describe an extensive and growing range of entirely synthetic cerning Ecstasy (3,4-methylenedioxymethamphetamine; MDMA) substances that have become popular as recreational drugs of also included a comparison with a number of MDMA analogues abuse; this coincides with a period of intense media interest that incorporated an indane ring.
    [Show full text]
  • United States Patent Office Patented Mar
    3,239,568 United States Patent Office Patented Mar. 8, 1966 2 the metal atom bonded to the oxygen atom of the alkoxide 3,239,568 molecule. MANUFACTURE OF ALKALMETAL (COAEPOUNDS Thus the alkali metallometallic alkoxides of this inven David O. De Pree and anaes D. Johnston, Baton Rotage, tion are bifunctional compounds-that is they contain two La., assignors to Ethyl Corporation, New York, N.Y., 5 reactive centers. One of the striking features of this in a corporation of Virginia vention is that in a reaction with a hydrocarbon halide or No Drawing. Filled Aug. 9, 1960, Ser. No. 48,356 hydrocarbon sulfate alkylating agent only the “metal 6 Claims. (C. 260-632) lo,' i.e. This invention involves a process for the manufacture O of organic compounds, in particular, alkali metal alkox --M ides, which can easily be converted to the corresponding functional group reacts, and the "metallic,” i.e. alcohols. This invention is also concerned with bimetal lic organometallic compounds which are utilized in pre paring the alkali metal alkoxides of this invention. --OM Prior to this invention no satisfactory method was reactive center does not. known for increasing the molecular weight of metal alk Although the terms alkali metallometallic alkoxide and oxides using direct reactions of organic halides or organic metal alkoxide are employed throughout this specifica Sulfates. A process which employs hydrocarbon halides tion the process of this invention can be carried out using or hydrocarbon sulfates, and in particular, long chain hy 20 the corresponding alkenoxides and aryioxides, as these drocarbon halides, to produce alkali metal alkoxides of compounds are essentially equivalent to alkoxides for the increased chain length would be of particular value to purposes of this invention.
    [Show full text]