Questions for the Record Public Meeting on the Petition Regarding Additive Organohalogen Flame Retardants U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asian Journal of Chemistry Asian Journal of Chemistry
Asian Journal of Chemistry; Vol. 26, No. 24 (2014), 8402-8406 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2014.17741 Investigation of Synthetic Musks Fragrances Pollutants in Human Breast Milk 1,2,* 3 S.M. YAKOUT and AHMED M. ISA 1Biochemistry Department, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Kingdom of Saudi Arabia 2Hot Laboratories Centre, Atomic Energy Authority, Cairo 13759, Egypt 3Department of Obstetrics and Gynecology, King Saud University, College of Medicine, Assisted Conception Unit, P.O. 7805, Riyadh 11472, Saudi Arabia *Corresponding author: E-mail: [email protected] Received: 1 April 2014; Accepted: 18 October 2014; Published online: 1 December 2014; AJC-16370 Synthetic musks, including nitro musks and polycyclic musks are widely used in a variety of personal care and cleaning products as fragrance ingredients. Synthetic musks have been reported to be ubiquitously present in the environment and can accumulate in animal and human tissues owing to their lipophilic nature. Recently, as a result of the potential toxicity of synthetic musks observed in both in vivo and in vitro studies, human exposure to these compounds has been a great concern. Synthetic musks are detected in human maternal blood, breast milk and adipose tissue samples. Human milk is extensively used for identifying and monitoring the body burden of lipophilic and persistent environmental pollutants due to great samples volumes can be collected non-invasively compared with blood and adipose tissue. Additionally, the concentrations of organic pollutants in human milk can reflect the exposure levels of breastfed infants, as well as the contamination status of the local environment. -
R Graphics Output
Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 ) -
Chlorinated and Polycyclic Aromatic Hydrocarbons in Riverine and Estuarine Sediments from Pearl River Delta, China
Environmental Pollution 117 (2002) 457–474 www.elsevier.com/locate/envpol Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China Bi-Xian Maia,*, Jia-Mo Fua, Guo-Ying Shenga, Yue-Hui Kanga, Zheng Lina, Gan Zhanga, Yu-Shuan Mina, Eddy Y. Zengb aState Key Lab Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, PO Box 1130, Guangzhou, Guangdong 510640, People’s Republic of China bSouthern California Coastal Water Research Project, 7171 Fenwick Lane, Westminster, CA 92683, USA Received 5 January 2001; accepted 3 July 2001 ‘‘Capsule’’: Sediments of the Zhujiang River and Macao Harbor have the potential to be detrimental to biological systems. Abstract Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and poly- cyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6–1658 ng/g, while concentrations of PCBs are in the range 10–339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic con- dition, and land erosion due to urbanization processes. -
Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium Fortunei
International Journal of Molecular Sciences Article Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium fortunei Chun-Hao Chang 1, Semon Wu 2, Kai-Cheng Hsu 3,4, Wei-Jan Huang 5,6 and Jih-Jung Chen 7,8,9,* 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 2 Department of Life Science, Chinese Culture University, Taipei 110, Taiwan; [email protected] 3 Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; [email protected] 4 Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan 5 Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; [email protected] 6 Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan 7 Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 8 Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan 9 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2826-7195; Fax: +886-2-2823-2940 Abstract: Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8- methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6-16). -
Synthetic Turf Scientific Advisory Panel Meeting Materials
California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update ..... -
Nitrogen Oxides in the Troposphere – What Have We Learned from Satellite Measurements?
Eur. Phys. J. Conferences 1, 149–156 (2009) © EDP Sciences, 2009 THE EUROPEAN DOI: 10.1140/epjconf/e2009-00916-9 PHYSICAL JOURNAL CONFERENCES Nitrogen oxides in the troposphere – What have we learned from satellite measurements? A. Richtera Institute of Environmental Physics, University of Bremen, 28359 Bremen, Germany Abstract. Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2, some examples of typical applications and an outlook on future prospects. 1 NOx in the troposphere Nitrogen oxides play several important roles in the atmosphere. In the stratosphere, they act as catalysts in ozone destruction reducing ozone levels and at the same time form reservoir substances with the halogen oxides thereby reducing their ozone depletion potential. In the troposphere, photolysis of NO2 is the only known route for ozone formation. As ozone is also rapidly destroyed by reaction with NO, nitrogen oxides (NOx =NO+NO2)and ozone are often in photochemical equilibrium in the troposphere. In the presence of HO2 or peroxy radicals (RO2), NO2 is reformed without destruction of an ozone molecule leading to accumulating of O3. Thereby, high levels of NOx together with volatile organic compounds and sufficient illumination lead to photochemical smog. -
Indane Acetic Acid Derivatives and Their Use As Pharmaceutical Agents, Intermediates, and Method of Preparation
(19) TZZ___T (11) EP 1 578 715 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 57/62 (2006.01) C07C 69/612 (2006.01) 02.03.2011 Bulletin 2011/09 C07C 211/48 (2006.01) C07C 327/48 (2006.01) C07D 261/20 (2006.01) C07D 209/08 (2006.01) (2006.01) (2006.01) (21) Application number: 03800063.4 C07D 307/79 C07D 277/64 C07D 215/06 (2006.01) C07D 333/10 (2006.01) C07D 239/30 (2006.01) C07D 239/26 (2006.01) (22) Date of filing: 19.12.2003 C07D 401/04 (2006.01) A61K 31/33 (2006.01) A61K 31/185 (2006.01) (86) International application number: PCT/US2003/040842 (87) International publication number: WO 2004/058174 (15.07.2004 Gazette 2004/29) (54) INDANE ACETIC ACID DERIVATIVES AND THEIR USE AS PHARMACEUTICAL AGENTS, INTERMEDIATES, AND METHOD OF PREPARATION INDANESSIGSÄURE-DERIVATE UND IHRE VERWENDUNG ALS PHARMAZEUTISCHE MITTEL SOWIE ZWISCHENPRODUKTE UND METHODEN ZU IHRER HERSTELLUNG DERIVES D’ACIDE ACETIQUE D’INDANE ET LEUR UTILISATION EN TANT QU’AGENTS PHARMACEUTIQUES ET INTERMEDIAIRES, ET PROCEDE DE PREPARATION CORRESPONDANT (84) Designated Contracting States: • LIANG, Sidney, X. DE ES FR GB IT Bethany, CT 06524 (US) • AKUCHE, Christiana (30) Priority: 20.12.2002 US 435310 P Hamden, CT 06514 (US) • LAVOIE, Rico, C. (43) Date of publication of application: Hamden, CT 06517 (US) 28.09.2005 Bulletin 2005/39 • CHEN, Libing Milford, CT 06460 (US) (73) Proprietor: Bayer Pharmaceuticals Corporation • MAJUMDAR, Dyuti West Haven, CT 06516 (US) Milford, CT 06460 (US) • WICKENS, Philip, L. -
Environmental and Human Health Concerns Relating to Synthetic Musk Compounds
Environmental and human health concerns relating to synthetic musk compounds Walters, A., Santillo, D. & Johnston, P. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, UK June 2005 Technical Note: 07/2005 1 GRL-TN-07-2005 Contents Executive summary................................................................................................................. 3 1. Introduction..................................................................................................................... 4 2. Physiochemical Data....................................................................................................... 4 3. Usage............................................................................................................................... 4 4. Fate in Waste Water Treatment Plants............................................................................ 5 5. Environmental prevalence.............................................................................................. 5 6. Aquatic Biota Concentrations and Accumulation........................................................... 6 7. Ecotoxicity in the Aquatic Environment......................................................................... 7 8. Mammalian Toxicity....................................................................................................... 8 9. Regulatory position......................................................................................................... 9 10. References.................................................................................................................... -
Toxicological Profile for Acetone Draft for Public Comment
ACETONE 1 Toxicological Profile for Acetone Draft for Public Comment July 2021 ***DRAFT FOR PUBLIC COMMENT*** ACETONE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** ACETONE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. -
Aminoindanesthe Next Wave of Legal Highs?
Drug Testing Review and Analysis Received: 23 May 2011 Accepted: 24 May 2011 Published online in Wiley Online Library: 11 July 2011 (www.drugtestinganalysis.com) DOI 10.1002/dta.318 Aminoindanes – the next wave of ‘legal highs’? P.D. Sainsbury,a A.T. Kicman,a R.P. Archer,b L.A. Kinga and R.A. Braithwaitea∗ Due to its closed ring system, 2-aminoindane is a conformationally rigid analogue of amphetamine. Internet websites offering synthetic compounds as ‘research chemicals’ have recently been advertising 5,6-methylenedioxy-2-aminoindane (MDAI), 5, 6-methylenedioxy-N-methyl-2-aminoindane (MDMAI), 5-iodo-2-aminoindane (5-IAI), and 5-methoxy-6-methyl-2-aminoindane (MMAI). The chemistry, pharmacology, and toxicological aspects of this new class of psychoactive substances are reviewed, as these could become the next wave of ‘legal highs’. Copyright c 2011 John Wiley & Sons, Ltd. Keywords: aminoindanes; legal highs; MDAI; MDMAI; 5-IAI; MMAI; serotonin. Introduction Pharmacology Although Solomons and Sam reported in 1973 that the aminoin- Historically, the terms ‘legal highs’ and ‘herbal highs’ referred to danes possessed significant bronchodilating and analgesic blends of psychoactive plants or fungi that could be smoked properties,[2] more recent research points to the aminoindanes as or ingested to induce dissociative effects and hallucinations. having potent effects on serotonin release and re-uptake. A num- These terms, however, have more recently been widened to ber of studies undertaken in the late 1980s and early 1990s con- describe an extensive and growing range of entirely synthetic cerning Ecstasy (3,4-methylenedioxymethamphetamine; MDMA) substances that have become popular as recreational drugs of also included a comparison with a number of MDMA analogues abuse; this coincides with a period of intense media interest that incorporated an indane ring. -
Global Modeling of the Nitrate Radical (NO3)Forpresentand Pre-Industrial Scenarios
Atmospheric Research 164–165 (2015) 347–357 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos Global modeling of the nitrate radical (NO3)forpresentand pre-industrial scenarios M.A.H. Khan a,M.C.Cookea,1, S.R. Utembe a,2, A.T. Archibald a,3,R.G.Derwentb,P.Xiaoa,C.J.Percivalc, M.E. Jenkin d, W.C. Morris a, D.E. Shallcross a,⁎ a Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK b rdscientific, Newbury, Berkshire, UK c The Centre for Atmospheric Science, The School of Earth, Atmospheric and Environmental Science, The University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL, UK d Atmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK article info abstract Article history: Increasing the complexity of the chemistry scheme in the global chemistry transport model STOCHEM to STOCHEM- Received 23 February 2015 CRI (Utembe et al., 2010) leads to an increase in NOx as well as ozone resulting in higher NO3 production over Received in revised form 26 May 2015 forested regions and regions impacted by anthropogenic emission. Peak NO3 is located over the continents near Accepted 8 June 2015 NO emission sources. NO is formed in the main by the reaction of NO with O ,andthesignificant losses of NO Available online 14 June 2015 x 3 2 3 3 are due to the photolysis and the reactions with NO and VOCs. Isoprene is an important biogenic VOC, and the possibility of HO recycling via isoprene chemistry and other mechanisms such as the reaction of RO with HO Keywords: x 2 2 STOCHEM-CRI has been investigated previously (Archibald et al., 2010a). -
Butyraldehyde Casrn: 123-72-8 Unii: H21352682a
BUTYRALDEHYDE CASRN: 123-72-8 UNII: H21352682A FULL RECORD DISPLAY Displays all fields in the record. For other data, click on the Table of Contents Human Health Effects: Human Toxicity Excerpts: /HUMAN EXPOSURE STUDIES/ Three Asian subjects who reported experiencing severe facial flushing in response to ethanol ingestion were subjects of patch testing to aliphatic alcohols and aldehydes. An aqueous suspension of 75% (v/v) of each alcohol and aldehyde was prepared and 25 uL was used to saturate ashless grade filter paper squares which were then placed on the forearm of each subject. Patches were covered with Parafilm and left in place for 5 minutes when the patches were removed and the area gently blotted. Sites showing erythema during the next 60 minutes were considered positive. All three subjects displayed positive responses to ethyl, propyl, butyl, and pentyl alcohols. Intense positive reactions, with variable amounts of edema, were observed for all the aldehydes tested (valeraldehyde as well as acetaldehyde, propionaldehyde, and butyraldehyde). [United Nations Environment Programme: Screening Information Data Sheets on n-Valeraldehyde (110-62-3) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** [United Nations Environment Programme: Screening Information Data Sheets on nValeraldehyde (110623) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** /SIGNS AND SYMPTOMS/ May act as irritant, /SRP: CNS depressant/ ...[Budavari, S. (ed.). The Merck Index - Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ: Merck and Co., Inc., 1989., p.