Climate Change in Eastern Taimyr Over the Last 80 Years and the Warming Impact on Biodiversity and Ecosystem Processes in Its Territory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Sea Route Cargo Flows and Infrastructure- Present State And
Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources. -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR)
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 ON THIS PAGE Photograph of two hot water outlets in the uppermost part of the A field. The hot springs are surrounded by azonal, lush fern vegetation. The central part of the A field consisted mainly of broken sinter material and very sparse vegetation. Photograph courtesy of Lisa Strecker ON THE COVER Photograph of A field of the Reed River Hot Springs and the Reed River as seen from the slope above the hot springs. The bright green vegetation of the hot springs area contrasts starkly with plant cover on the other side of the Reed River which is characteristic for the area. Photograph courtesy of Lisa Strecker Botanical Survey at Reed River Hot Springs, Gates of the Arctic National Park and Preserve (GAAR) Natural Resource Report NPS/GAAR/NRR—2016/1136 Lisa Strecker Gates of the Arctic National Park and Preserve 4175 Geist Road Fairbanks, AK 99709 February 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. -
Spaceborne Potential for Examining Taiga–Tundra Ecotone Form and Vulnerability
Biogeosciences, 13, 3847–3861, 2016 www.biogeosciences.net/13/3847/2016/ doi:10.5194/bg-13-3847-2016 © Author(s) 2016. CC Attribution 3.0 License. Spaceborne potential for examining taiga–tundra ecotone form and vulnerability Paul M. Montesano1,2, Guoqing Sun2,3, Ralph O. Dubayah3, and K. Jon Ranson2 1Science Systems and Applications, Inc., Lanham, MD 20706, USA 2Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3University of Maryland, Department of Geographical Sciences, College Park, MD 20742, USA Correspondence to: Paul M. Montesano ([email protected]) Received: 9 November 2015 – Published in Biogeosciences Discuss.: 15 January 2016 Revised: 31 May 2016 – Accepted: 9 June 2016 – Published: 6 July 2016 Abstract. In the taiga–tundra ecotone (TTE), site-dependent tainty of height estimates in forest patches may improve de- forest structure characteristics can influence the subtle and piction of TTE form, which may help explain variable forest heterogeneous structural changes that occur across the broad responses in the TTE to climate change and the vulnerability circumpolar extent. Such changes may be related to ecotone of portions of the TTE to forest structure change. form, described by the horizontal and vertical patterns of for- est structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, vari- 1 Introduction able, and widespread vegetation change warrants the appli- cation of spaceborne data including high-resolution (< 5 m) 1.1 TTE vegetation structure and processes spaceborne imagery (HRSI) across broad scales for examin- ing TTE form and predicting dynamics. -
Astereae, Asteraceae) Using Molecular Phylogeny of ITS
Turkish Journal of Botany Turk J Bot (2015) 39: 808-824 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1410-12 Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS 1, 2,3 4 Elena KOROLYUK *, Alexey MAKUNIN , Tatiana MATVEEVA 1 Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 2 Institute of Molecular and Cell Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 3 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia 4 Department of Genetics & Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia Received: 12.10.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: The subtribe Asterinae (Astereae, Asteraceae) includes highly variable, often polyploid species. Recent findings based on molecular methods led to revision of its volume. However, most of these studies lacked species from Eurasia, where a lot of previous taxonomic treatments of the subtribe exist. In this study we used molecular phylogenetics methods with internal transcribed spacer (ITS) as a marker to resolve evolutionary relations between representatives of the subtribe Asterinae from Siberia, Kazakhstan, and the European part of Russia. Our reconstruction revealed that a clade including all Asterinae species is paraphyletic. Inside this clade, there are species with unresolved basal positions, for example Erigeron flaccidus and its relatives. Moreover, several well-supported groups exist: group of the genera Galatella, Crinitaria, Linosyris, and Tripolium; group of species of North American origin; and three related groups of Eurasian species: typical Eurasian asters, Heteropappus group (genera Heteropappus, Kalimeris), and Asterothamnus group (genera Asterothamnus, Rhinactinidia). -
Seeds of Success Program (SOS) Has Been Collecting Native Plant Seeds in Alaska for Over a Decade
Summary of Alaska Collections 2002-2012 AK025, AK040, AK930 A report submitted to BLM Alaska State Office 222 West 7th Avenue Anchorage AK 99501 Prepared by Alaska Natural Heritage Program University of Alaska Anchorage 707 A Street Anchorage AK 99501 and Michael Duffy Biological Consulting Services PO Box 243364 Anchorage AK 99524 Contents Introduction ……………………………………………………………… 1 Summary of collections …………………………………………………. 3 Seed storage and increase ………………………………………………… 5 Target list update ………………………………………………………… 8 Development of preliminary seed zones ………………………………… 12 Summary of collections by seed zone Arctic Alaska Seed Zone ………………………………………… 16 Interior Seed Zone ……………………………………………….. 20 West Alaska Seed Zone ………………………………………….. 26 Southwest Alaska Seed Zone …………………………………….. 32 South Central Alaska Seed Zone …………………………………. 34 Southeast Alaska Seed Zone ……………………………………… 40 Further recommendations ………………………………………………… 44 Literature cited …………………………………………………………… 45 Appendices ………………………………………………………………… 47 INTRODUCTION The Bureau of Land Management Seeds of Success Program (SOS) has been collecting native plant seeds in Alaska for over a decade. Beginning in 2002, collections have been made by staff from three offices: the Northern Field Office (whose SOS abbreviation is AK025), the Anchorage Field Office (AK040), and the Alaska State Office (AK930). Most of the AK025 and AK040 collections were made in partnership with the Kew Millennium Seed Bank Project (http://www.kew.org/science-conservation/save-seed- prosper/millennium-seed-bank/index.htm). Collecting trips over the period 2002-2007 produced 108 collections, and were made with the assistance of contract botanists from University of Alaska and the Alaska Plant Materials Center. With the conclusion of the Millennium Seed Bank partnership, the state program has focused on obtaining native plant seed to be stored and increased, with the objective of providing greater seed availability for restoration efforts. -
Spaceborne Potential for Examining Taiga-Tundra Ecotone Form and Vulnerability Paul M
Spaceborne potential for examining taiga-tundra ecotone form and vulnerability Paul M. Montesano1,2, Guoqing Sun2,3, Ralph O. Dubayah3, and K. Jon Ranson2 1Science Systems and Applications, Inc., Lanham, MD, 20706, USA 5 2Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3University of Maryland, Department of Geographical Sciences, College Park, MD 20742, USA Correspondence to: Paul M. Montesano ([email protected]) Abstract. In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone 10 form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable and widespread vegetation change warrants the application of spaceborne data including high-resolution (< 5m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch-scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We 15 demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data, and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. -
Waterton Lakes National Park • Common Name(Order Family Genus Species)
Waterton Lakes National Park Flora • Common Name(Order Family Genus species) Monocotyledons • Arrow-grass, Marsh (Najadales Juncaginaceae Triglochin palustris) • Arrow-grass, Seaside (Najadales Juncaginaceae Triglochin maritima) • Arrowhead, Northern (Alismatales Alismataceae Sagittaria cuneata) • Asphodel, Sticky False (Liliales Liliaceae Triantha glutinosa) • Barley, Foxtail (Poales Poaceae/Gramineae Hordeum jubatum) • Bear-grass (Liliales Liliaceae Xerophyllum tenax) • Bentgrass, Alpine (Poales Poaceae/Gramineae Podagrostis humilis) • Bentgrass, Creeping (Poales Poaceae/Gramineae Agrostis stolonifera) • Bentgrass, Green (Poales Poaceae/Gramineae Calamagrostis stricta) • Bentgrass, Spike (Poales Poaceae/Gramineae Agrostis exarata) • Bluegrass, Alpine (Poales Poaceae/Gramineae Poa alpina) • Bluegrass, Annual (Poales Poaceae/Gramineae Poa annua) • Bluegrass, Arctic (Poales Poaceae/Gramineae Poa arctica) • Bluegrass, Plains (Poales Poaceae/Gramineae Poa arida) • Bluegrass, Bulbous (Poales Poaceae/Gramineae Poa bulbosa) • Bluegrass, Canada (Poales Poaceae/Gramineae Poa compressa) • Bluegrass, Cusick's (Poales Poaceae/Gramineae Poa cusickii) • Bluegrass, Fendler's (Poales Poaceae/Gramineae Poa fendleriana) • Bluegrass, Glaucous (Poales Poaceae/Gramineae Poa glauca) • Bluegrass, Inland (Poales Poaceae/Gramineae Poa interior) • Bluegrass, Fowl (Poales Poaceae/Gramineae Poa palustris) • Bluegrass, Patterson's (Poales Poaceae/Gramineae Poa pattersonii) • Bluegrass, Kentucky (Poales Poaceae/Gramineae Poa pratensis) • Bluegrass, Sandberg's (Poales -
Rare Vascular Plants of the North Slope a Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’S North Slope Region
BLM U. S. Department of the Interior Bureau of Land Management BLM Alaska Technical Report 58 BLM/AK/GI-10/002+6518+F030 December 2009 Rare Vascular Plants of the North Slope A Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’s North Slope Region Helen Cortés-Burns, Matthew L. Carlson, Robert Lipkin, Lindsey Flagstad, and David Yokel Alaska The BLM Mission The Bureau of Land Management sustains the health, diversity and productivity of the Nation’s public lands for the use and enjoyment of present and future generations. Cover Photo Drummond’s bluebells (Mertensii drummondii). © Jo Overholt. This and all other copyrighted material in this report used with permission. Author Helen Cortés-Burns is a botanist at the Alaska Natural Heritage Program (AKNHP) in Anchorage, Alaska. Matthew Carlson is the program botanist at AKNHP and an assistant professor in the Biological Sciences Department, University of Alaska Anchorage. Robert Lipkin worked as a botanist at AKNHP until 2009 and oversaw the botanical information in Alaska’s rare plant database (Biotics). Lindsey Flagstad is a research biologist at AKNHP. David Yokel is a wildlife biologist at the Bureau of Land Management’s Arctic Field Office in Fairbanks. Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or rec- ommendation for use by the federal government. Technical Reports Technical Reports issued by BLM-Alaska present results of research, studies, investigations, literature searches, testing, or similar endeavors on a variety of scientific and technical subjects. The results pre- sented are final, or a summation and analysis of data at an intermediate point in a long-term research project, and have received objective review by peers in the author’s field. -
Laptev Sea: LME #57
XI Arctic 491 XI-34 Laptev Sea: LME #57 S. Heileman and I. Belkin The Laptev Sea LME is topographically defined by the New Siberian Islands (Novosibirskie Ostrova) in the East and the Northern Land (Severnaya Zemlya) islands in the West. The LME is a continental marginal sea, most of which is shallow with a deeper northern section and a surface area of about 500,000 km2, of which 5.6% is protected (Sea Around Us 2007). According to the Atlas of the Oceans (USSR Navy, 1980), the Laptev Sea (defined in the north by the shelf break) has a surface area of 475,000 km2, water volume of 57,000 km3, and total water catchment area of 3,643,000 km2. Severe climatic conditions with major seasonal and annual changes, perennial ice cover over extensive areas, water exchange with the deep Arctic Ocean and freshwater input from Siberian rivers. The total river runoff exceeds 700 km3/year, including Lena (532), Khatanga (105), Olenek (38), Yana (31), Anabar, and Kotuy Rivers. I. Productivity The Laptev Sea LME is a Class I, high productivity ecosystem (>300 gCm-2yr-1). The availability of light and nutrients is restricted by seasonal ice cover during part of the year, limiting production to a brief period after the ice melts in the summer months. Locally, primary production may exceed 800 mgCm-2d-1.in the southern part of this LME, with high values (>300 mgCm-2d-1) also observed in the north where the Laptev Sea waters meet the Atlantic waters (Vetrov and Romankevich 2004). -
Rare Vascular Plants of the North Slope a Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’S North Slope Region
BLM U. S. Department of the Interior Bureau of Land Management BLM Alaska Technical Report 58 BLM/AK/GI-10/002+6518+F030 December 2009 Rare Vascular Plants of the North Slope A Review of the Taxonomy, Distribution, and Ecology of 31 Rare Plant Taxa That Occur in Alaska’s North Slope Region Helen Cortés-Burns, Matthew L. Carlson, Robert Lipkin, Lindsey Flagstad, and David Yokel Alaska The BLM Mission The Bureau of Land Management sustains the health, diversity and productivity of the Nation’s public lands for the use and enjoyment of present and future generations. Cover Photo Drummond’s bluebells (Mertensii drummondii). © Jo Overholt. This and all other copyrighted material in this report used with permission. Author Helen Cortés-Burns is a botanist at the Alaska Natural Heritage Program (AKNHP) in Anchorage, Alaska. Matthew Carlson is the program botanist at AKNHP and an assistant professor in the Biological Sciences Department, University of Alaska Anchorage. Robert Lipkin worked as a botanist at AKNHP until 2009 and oversaw the botanical information in Alaska’s rare plant database (Biotics). Lindsey Flagstad is a research biologist at AKNHP. David Yokel is a wildlife biologist at the Bureau of Land Management’s Arctic Field Office in Fairbanks. Disclaimer The mention of trade names or commercial products in this report does not constitute endorsement or rec- ommendation for use by the federal government. Technical Reports Technical Reports issued by BLM-Alaska present results of research, studies, investigations, literature searches, testing, or similar endeavors on a variety of scientific and technical subjects. The results pre- sented are final, or a summation and analysis of data at an intermediate point in a long-term research project, and have received objective review by peers in the author’s field. -
WILDFLOWER NEWS ‘Growing Nature’S Garden’ AUGUST 2021
WILDFLOWER NEWS ‘Growing Nature’s Garden’ AUGUST 2021 H.Taube Showy Aster, Eurybia conspicua, Oleskiw Park, July 2021 From Your Editor: In This Issue: Welcome to the Wildflower News for August. Events No Events this month The weather this season has certainly proved challenging. Even the drought-tolerant native News plants in some areas in the wild are showing No News this month signs of stress. Certainly our native plant growers are having a bit of a struggle to keep all Articles those plants in pots watered and alive. A few Top 5 Native Plants for Birds in a City Garden days of steady rain would be most welcome! • • If you go down to the marsh today…look for the umbel-bearing plants in flower and fruit Websites of the Month Something Different Stop the presses! Native plants in local gardens: Alan Jones: Here are some pictures of my wildflower patches. L: Giant hyssop, Agastache foeniculum; C: Tufted white prairie aster, Symphyotrichum ericoides; R: Showy fleabane. Erigeron speciosus. WN: Your little patches with native plants seem to be filling in very nicely! From the Habitat Garden at the St. Albert Botanical Garden: Top row left to right: mixed native wildflowers; curly-cup gumweed, Grindelia squarrosa; meadow blazingstar, Liatris ligulistylis and giant hyssop, Agastachne foeniculum Bottom row left to right: Joe Pye weed, Eutrochium maculatum; rhomblic-leaved sunflower, Helianthus pauciflorus subsp. subrhomboideus WN: Definitely worth a trip to see! From a trip to Big Island by Hubert Taube: Physostegia ledinghamii, Glycyrrhiza lepidota, wild liquorice. Eurybia sibirica, Ledingham’s false-dragonhead Siberian aster Erigeron strigosus, Alisma triviale, Sium suave, common waterparsnip.