Spaceborne Potential for Examining Taiga–Tundra Ecotone Form and Vulnerability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Sea Route Cargo Flows and Infrastructure- Present State And
Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources. -
Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region. -
Évolution Spatio-Temporelle Du Pergélisol Alpin Marginal Au Mont Jacques-Cartier, Massif Des Chic-Chocs, Gaspésie (Qc)
Université de Montréal Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic-Chocs, Gaspésie (Qc) par Gautier DAVESNE Département de Géographie Faculté des arts et sciences Mémoire présenté à la Faculté des arts et des sciences en vue de l’obtention du grade de maîtrise en géographie Août 2015 © Gautier Davesne, 2015 ii Université de Montréal Faculté des études supérieures et postdoctorales Ce mémoire intitulé : Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic- Chocs, Gaspésie (Qc) Présenté par : Gautier Davesne a été évalué par un jury composé des personnes suivantes : François Cavayas, président rapporteur Daniel Fortier, directeur de recherche James Gray, membre du jury iii iv Résumé L’objectif de ce mémoire est d’acquérir une connaissance détaillée sur l’évolution spatiale de la température de surface du sol (GST) au mont Jacques-Cartier et sur la réponse thermique de son îlot de pergélisol alpin aux changements climatiques passés et futurs. L’étude est basée sur un ensemble de mesures de température (GST, sous-sol) et de neige, ainsi que des modèles spatiaux de distribution potentielle de la GST et des simulations numériques du régime thermique du sol. Les résultats montrent que la distribution de la GST sur le plateau est principalement corrélée avec la répartition du couvert nival. Au-dessus de la limite de la végétation, le plateau est caractérisé par un couvert de neige peu épais et discontinu en hiver en raison de la topographie du site et l’action des forts vents. La GST est alors couplée avec les températures de l’air amenant des conditions froides en surface. -
Taiga Plains
ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta. -
An Evaluation of the Wetland and Upland Habitats And
AN EVALUATION OF THE WETLAND AND UPLAND HABITATS AND ASSOCIATED WILDLIFE RESOURCES IN SOUTHERN CANAAN VALLEY CANAAN VALLEY TASK FORCE SUBMl'l*IED BY: EDWIN D. MICHAEL, PH.D. PROFESSOR OF WILDLIFEMANAGEI\fENT DIVISION OF FORESTRY WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26506 December 1993 TABLB OP' CONTENTS Page EXECUTIVE SUMMARY 1 INTRODUCTION 6 OBJECTIVES 6 PROCEDURES 6 THE STUDY AREA Canaan Valley .... ..... 7 Southern Canaan Valley .... 8 Development and Land Use 8 Existing Environment Hydrology ........ 9 Plant Communities .... 11 1. Northern hardwoods . 11 2. Conifers ... 11 3. Aspen groves . 11 4. Alder thickets 12 5. Ecotone 12 6. Shrub savannah 12 7. Spiraea 13 8. Krummholz 13 9. Bogs ..... 13 10. Beaver ponds 13 11. Agriculture . l4 Vegetation of Southern Canaan Valley Wetlands 14 Rare and Endangered Plant Species 16 Vertebrate Animals 16 1. Fishes .. 16 2. Amphibians 18 3. Reptiles 19 4. Birds 20 5. Mammals 24 Rare and Endangered Animal Species 25 Game Animals 27 Cultural Values 28 Aesthetic Values 31 1. Landform contrast 31 2. Land-use contrast 31 3. Wetland-type diversity 32 4. Internal wetland contrast 32 5. Wetland size ... 32 6. Landform diversity .... 32 DISCUSSION Streams 32 Springs and Spring Seeps 34 Lakes . 35 Wetland Habitats 35 ii Wildlife 36 Management Potential 38 Off-road Vehicle Use 42 Fragmentation . 42 Cultural Values 44 Educational Values SIGNIFICANCE OF THE AREA OF CONCERN FOR FULFILLMENT OF THE CANAAN VALLEY NATIONAL WILDLIFE REFUGE 1979 EIS OBJECTIVES 46 CONCLUSIONS .. 47 LITERATURE CITED 52 TABLES 54 FIGURES 88 iii LIST OF TABLES 1. Property ownerships of Canaan Valley ... ..... 8 2. -
Treeline Dynamics on Southern Vancouver Island, British Columbia
Western Geography, 10/11(2000/01), pp. 43–63 ©Western Division, Canadian Association of Geographers Treeline Dynamics on Southern Vancouver Island, British Columbia Colin P. Laroque, David H. Lewis and Dan J. Smith* Department of Geography—Ring Laboratory University of Victoria Victoria, BC V8W 3P5 This paper describes the nature of treeline dynamics and upper-elevation tree establishment patterns on southern Vancouver Island, British Columbia. We examined tree growth, climate and seedling relationships at three upper-elevation locations using standard dendroecolog- ical approaches. Our data suggest that this habitat has experienced species-specific pulses of tree establishment that have had a major impact on the character of the local treeline boundaries. The stem data collected within quadrats at Gemini Mountain and Haley Bowl show that seedling establishment within the last three cen- turies was episodic and linked to historical climatic pat- terns. Successful mountain hemlock establishment in this setting is restricted to periods characterized by either cool summers and shallow winter snowpacks, or warmer than normal summers and moderately deep snowpacks. The establishment of amabilis and subalpine fir seedlings appears restricted to intervals with cool growing seasons and moderately deep seasonal snow- packs. Episodic seedling establishment in the 20th cen- tury has resulted in a gradual infilling of the local tree- line and the development of a more structured parkland belt that is expected to have habitat implications for endangered Vancouver Island marmot. Keywords: dendroecology, subalpine meadows, seedling establishment, tree rings, Vancouver Island, Vancouver Island marmot. *Corresponding author 44 Laroque, Lewis & Smith Introduction Little is known of the nature of long-term treeline dynamics on Vancouver Island. -
New Hampshire Wildlife Action Plan Appendix B Habitats -1 Appendix B: Habitats
Appendix B: Habitats Appendix B: Habitat Profiles Alpine ............................................................................................................................................................ 2 Appalachian Oak Pine Forest ........................................................................................................................ 9 Caves and Mines ......................................................................................................................................... 19 Grasslands ................................................................................................................................................... 24 Hemlock Hardwood Pine Forest ................................................................................................................. 34 High Elevation Spruce‐Fir Forest ................................................................................................................. 45 Lowland Spruce‐Fir Forest .......................................................................................................................... 53 Northern Hardwood‐Conifer Forest ........................................................................................................... 62 Pine Barrens ................................................................................................................................................ 72 Rocky Ridge, Cliff, and Talus ...................................................................................................................... -
R9 Community Conservation Assessment
Community Conservation Assessment for White Mountain Alpine Community USDA Forest Service, Eastern Region April 2003 Catherine Rees 719 Main St. Laconia, NH 03247 603-528-8721 WHITE MOUNTAIN NATIONAL FOREST Community Conservation Assessment for White Mountain Alpine Community 1 This document was prepared to compile the published and unpublished information on the subject community to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject community, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee. Wisconsin 53203. Community Conservation Assessment for White Mountain Alpine Community 2 Table of Contents EXECUTIVE SUMMARY..................................................................................... 4 COMMUNITY CLASSIFICATION SYSTEM AND SYNONYMS ................. 5 DESCRIPTION OF COMMUNITY..................................................................... 7 COMMUNITY ECOLOGY/ENVIRONMENTAL CONDITIONS ................ 16 RANGE OF NATURAL VARIABILITY: COMMUNITY DISTRIBUTION AND CONDITIONS ............................................................................................ -
A Review of the Theories to Explain Arctic and Alpine Treelines Around the World†
Article in press (2007), Journal of Sustainable Forestry [G.P. Berlyn Festschrift Special Issue, Volume 25, Issue 1-2] A review of the theories to explain Arctic and alpine treelines around the world† Andrew D. Richardson1* and Andrew J. Friedland2 ABSTRACT Forest growth is restricted at high latitudes and high elevations, and the limits of tree growth in these environments are dramatically marked by the treeline transition from vertical, erect tree stems to prostrate, stunted shrub forms. However, after four centuries of research, there is still debate over the precise mechanism that causes Arctic and alpine treelines. We review the various theories for treeline, including excessive light, low partial pressure of CO2, snow depth, wind exposure, reproductive failure, frost drought, and temperature. Some of these theories are very old and are no longer held in high esteem; while they may help to explain treeline physiognomy or local variation in treeline position, they generally fail as global explanations. Temperature- based theories appear to be the most reasonable, since cold temperature is really the only trait that is universally characteristic of treelines around the world. Temperature may limit a variety of physiological processes, such as carbon fixation, cuticular ripening, or new tissue development, and theories invoking these mechanisms are discussed. The vertical growth habit of trees is unfavorable to growth in this hostile environment: low- profile vegetation enjoys a far more favorable microenvironment for growth. Recent evidence gives strong support for a theory based on “sink limitation”, i.e., that new tissue development is restricted not by carbon availability but by cold treeline temperatures which limit cell division, and that this situation is exacerbated by arborescent growth (above-ground meristems coupled to cold ambient air temperatures) and self-shading (which keeps soil temperatures cold and restricts below-ground activity). -
Laptev Sea: LME #57
XI Arctic 491 XI-34 Laptev Sea: LME #57 S. Heileman and I. Belkin The Laptev Sea LME is topographically defined by the New Siberian Islands (Novosibirskie Ostrova) in the East and the Northern Land (Severnaya Zemlya) islands in the West. The LME is a continental marginal sea, most of which is shallow with a deeper northern section and a surface area of about 500,000 km2, of which 5.6% is protected (Sea Around Us 2007). According to the Atlas of the Oceans (USSR Navy, 1980), the Laptev Sea (defined in the north by the shelf break) has a surface area of 475,000 km2, water volume of 57,000 km3, and total water catchment area of 3,643,000 km2. Severe climatic conditions with major seasonal and annual changes, perennial ice cover over extensive areas, water exchange with the deep Arctic Ocean and freshwater input from Siberian rivers. The total river runoff exceeds 700 km3/year, including Lena (532), Khatanga (105), Olenek (38), Yana (31), Anabar, and Kotuy Rivers. I. Productivity The Laptev Sea LME is a Class I, high productivity ecosystem (>300 gCm-2yr-1). The availability of light and nutrients is restricted by seasonal ice cover during part of the year, limiting production to a brief period after the ice melts in the summer months. Locally, primary production may exceed 800 mgCm-2d-1.in the southern part of this LME, with high values (>300 mgCm-2d-1) also observed in the north where the Laptev Sea waters meet the Atlantic waters (Vetrov and Romankevich 2004). -
Alpine Tundra Zone
Chapter 18: Alpine Tundra Zone by J. Pojar and A.C. Stewart LOCATION AND DISTRIBUTION .......................................... 264 ECOLOGICAL CONDITIONS .............................................. 264 SUBZONES ............................................................... 268 SOME REPRESENTATIVE SITE ASSOCIATIONS ........................... 268 Dwarf willow Ð Small-awned sedge ..................................... 268 Entire-leaved mountain-avens Ð Blackish locoweed ...................... 270 Altai fescue Ð Mountain sagewort Ð Cetraria ........................... 270 Barratt's willow Ð Sweet coltsfoot ...................................... 271 WILDLIFE HABITATS ..................................................... 271 RESOURCE VALUES ...................................................... 273 LITERATURE CITED ...................................................... 274 263 LOCATION AND DISTRIBUTION The Alpine Tundra zone (AT) occurs on high mountains throughout the province (Figure 65). In southeastern British Columbia, the AT occurs at elevations above approximately 2250 m; in the southwest, above 1650 m; in the northeast, above 1400 m; in the northwest, above 1000 m. The zone is concentrated along the coastal mountains and in the northern and southeastern parts of the province and occurs above all three subalpine zones. The AT extends beyond British Columbia on the high mountains to the north, east, and south. ECOLOGICAL CONDITIONS The harsh alpine climate is cold, windy, and snowy, and characterized by low growing season temperatures and a very short frost-free period (Table 4). British Columbia has only two long-term, alpine climate stations: Old Glory Mountain, near Trail (Figure 66) and Mt. Fidelity in Glacier National Park. Available short- and long-term data indicate that the mean annual temperature ranges from -4 to 0°C. The average temperature remains below 0°C for 7-11 months. Frost can occur at any time. The AT is the only zone in the province where the mean temperature of the warmest month is less than 10°C. -
Boreal Treeline in North-Central Siberia
1 1 Vegetation, climate and lake changes over the last 7,000 years at the 2 boreal treeline in north-central Siberia 3 Quaternary Science Reviews 4 PAST-Gateways Special issue: Non-glaciated Arctic environments 5 Juliane Klemm* 1, 2, Ulrike Herzschuh1, 2 and Luidmila A. Pestryakova3 6 1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research 7 Unit, Telegraphenberg A 43, 14473 Potsdam, Germany 8 2 Institute for Earth and Environmental Science, University of Potsdam, Karl- Liebknecht-Straße 24- 9 25, 14476 Potsdam-Golm, Germany 10 3 Department for Geography and Biology, North-eastern Federal University of Yakutsk, Belinskogo 11 58, 67700 Yakutsk, Russia 12 * Corresponding Author: [email protected] 13 Abstract 14 Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential 15 to reveal Holocene environmental variations, which likely have consequences for global climate 16 change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a 17 small lake (radius~100 m), was used to reconstruct the development of the lake and its catchment as 18 well as vegetation and summer temperatures over the last 7,100 calibrated years. A multi-proxy 19 approach was taken including pollen and sedimentological analyses. Our data indicate a gradual 20 replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of 21 the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid- 22 Holocene summer temperatures until the establishment of modern conditions around 3,000 years ago 23 is reconstructed based on a regional pollen-climate transfer function.