Évolution Spatio-Temporelle Du Pergélisol Alpin Marginal Au Mont Jacques-Cartier, Massif Des Chic-Chocs, Gaspésie (Qc)

Total Page:16

File Type:pdf, Size:1020Kb

Évolution Spatio-Temporelle Du Pergélisol Alpin Marginal Au Mont Jacques-Cartier, Massif Des Chic-Chocs, Gaspésie (Qc) Université de Montréal Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic-Chocs, Gaspésie (Qc) par Gautier DAVESNE Département de Géographie Faculté des arts et sciences Mémoire présenté à la Faculté des arts et des sciences en vue de l’obtention du grade de maîtrise en géographie Août 2015 © Gautier Davesne, 2015 ii Université de Montréal Faculté des études supérieures et postdoctorales Ce mémoire intitulé : Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic- Chocs, Gaspésie (Qc) Présenté par : Gautier Davesne a été évalué par un jury composé des personnes suivantes : François Cavayas, président rapporteur Daniel Fortier, directeur de recherche James Gray, membre du jury iii iv Résumé L’objectif de ce mémoire est d’acquérir une connaissance détaillée sur l’évolution spatiale de la température de surface du sol (GST) au mont Jacques-Cartier et sur la réponse thermique de son îlot de pergélisol alpin aux changements climatiques passés et futurs. L’étude est basée sur un ensemble de mesures de température (GST, sous-sol) et de neige, ainsi que des modèles spatiaux de distribution potentielle de la GST et des simulations numériques du régime thermique du sol. Les résultats montrent que la distribution de la GST sur le plateau est principalement corrélée avec la répartition du couvert nival. Au-dessus de la limite de la végétation, le plateau est caractérisé par un couvert de neige peu épais et discontinu en hiver en raison de la topographie du site et l’action des forts vents. La GST est alors couplée avec les températures de l’air amenant des conditions froides en surface. Dans les îlots de krummholz et les dépressions topographiques sur les versants SE sous le vent, la neige soufflée du plateau s’accumule en un couvert très épais induisant des conditions de surface beaucoup plus chaude que sur le plateau dû à l’effet isolant de la neige. En raison de la quasi-absence de neige en hiver et de la nature du substrat, la réponse du pergélisol du sommet du mont Jacques-Cartier au signal climatique est très rapide. De 1978 à 2014, la température du sol a augmenté à toutes les profondeurs au niveau du forage suivant la même tendance que les températures de l’air. Si la tendance au réchauffement se poursuit telle que prévue par les simulations climatiques produites par le consortium Ouranos, le pergélisol pourrait disparaître d’ici à 2040-2050. Mots-clés : pergélisol alpin, neige, température de surface du sol, changements climatiques i Abstract The objective of the study was to acquire detailed knowledge of the spatial evolution of the ground surface temperature (GST) on Mont Jacques-Cartier and the thermal response of its marginal permafrost body to the past and future climate changes. The study is based on temperature (GST, underground) and snow measurements, and spatial modeling of the potential GST distribution and numerical modeling of the ground thermal regime. The result showed that the spatio-temporal variability of the GST over the summit is mainly correlated with the snowpack distribution. On the wind-exposed plateau, the snowpack is thin and discontinuous. The GST is thus closely connected to the very cold air temperature in winter. In the krummholz patches and in the topographic depression on the leeward slope, drifted snow accumulation is significant leading to surface condition warmer than over the wind-exposed plateau. Because of the near snow-free condition of the plateau summit and the highly conductive nature of its bedrock, the response of the permafrost to the climate signal is rapid. From 1978 to 2014, the ground warmed at all depths. If the recent trend continues as predicted by the climate simulations provided by the Ouranos consortium, the complete disappearance of the permafrost body at Mont Jacques-Cartier could occur around 2040-2050. Keywords: mountain permafrost, snow, ground surface temperature, climate changes ii Table des matières Résumé ............................................................................................................................................... i Abstract ............................................................................................................................................. ii Table des matières ............................................................................................................................ iii Liste des tableaux .............................................................................................................................. v Liste des figures ................................................................................................................................ vi Liste des sigles ................................................................................................................................... x Remerciements ................................................................................................................................. xi Introduction ....................................................................................................................................... 1 Chapitre 1 : Concepts fondamentaux et revue de littérature ........................................................... 3 I.1. Qu’est-ce que le pergélisol ........................................................................................................ 3 I.1.1. La définition de l’invisible .................................................................................................. 3 I.1.2. La formation du pergélisol ................................................................................................. 5 I.1.3. La structure et le régime thermique du pergélisol ............................................................... 6 I.2. Le pergélisol alpin, quelles spécificités ? ................................................................................... 8 I.2.1. Une dépendance au relief : entre le contrôle de l’altitude et de la topographie ................... 8 I.2.2. Les types de pergélisol alpin .............................................................................................. 9 I.2.3. Les facteurs contrôlant la distribution spatiale du pergélisol alpin ................................... 10 I.3. Les effets des changements climatiques sur le pergélisol ......................................................... 16 I.3.1. Évidences des changements climatiques dans les régions alpines ..................................... 16 I.3.2. Les réponses du pergélisol alpin aux changements climatiques ......................................... 18 I.3.3. Impact de la dégradation du pergélisol sur les géosystèmes alpins ................................... 21 Conclusion Chapitre 1. .................................................................................................................... 23 Chapitre 2 : Contexte de l’étude et problématique ........................................................................ 24 II.2. Le site d’étude ....................................................................................................................... 24 II.2.1. La géologie ..................................................................................................................... 25 II.2.2. Les dépôts de surface ...................................................................................................... 25 II.2.3. La glaciation wisconsinienne dans les Chic-Chocs .......................................................... 26 II.2.4. L’environnement périglaciaire ........................................................................................ 29 II.2.5. Le climat ......................................................................................................................... 36 II.3. L’intérêt du site ...................................................................................................................... 38 II.4. Questions et objectifs de recherche ........................................................................................ 39 II.5. Implications et retombées potentielles du projet de recherche ................................................. 40 iii Chapitre 3 : Articles Scientifiques .................................................................................................. 41 III.1. Article 1 ............................................................................................................................... 42 III.1.1. Abstract ......................................................................................................................... 42 III.1.2. Introduction ................................................................................................................... 43 III.1.3. Study site ....................................................................................................................... 44 III.1.4. Methods and data .......................................................................................................... 46 III.1.5. Results ........................................................................................................................... 55 III.1.6. Discussion ..................................................................................................................... 70 III.1.7. Conclusion .................................................................................................................... 78 III.2. Article
Recommended publications
  • Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
    58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • An Evaluation of the Wetland and Upland Habitats And
    AN EVALUATION OF THE WETLAND AND UPLAND HABITATS AND ASSOCIATED WILDLIFE RESOURCES IN SOUTHERN CANAAN VALLEY CANAAN VALLEY TASK FORCE SUBMl'l*IED BY: EDWIN D. MICHAEL, PH.D. PROFESSOR OF WILDLIFEMANAGEI\fENT DIVISION OF FORESTRY WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26506 December 1993 TABLB OP' CONTENTS Page EXECUTIVE SUMMARY 1 INTRODUCTION 6 OBJECTIVES 6 PROCEDURES 6 THE STUDY AREA Canaan Valley .... ..... 7 Southern Canaan Valley .... 8 Development and Land Use 8 Existing Environment Hydrology ........ 9 Plant Communities .... 11 1. Northern hardwoods . 11 2. Conifers ... 11 3. Aspen groves . 11 4. Alder thickets 12 5. Ecotone 12 6. Shrub savannah 12 7. Spiraea 13 8. Krummholz 13 9. Bogs ..... 13 10. Beaver ponds 13 11. Agriculture . l4 Vegetation of Southern Canaan Valley Wetlands 14 Rare and Endangered Plant Species 16 Vertebrate Animals 16 1. Fishes .. 16 2. Amphibians 18 3. Reptiles 19 4. Birds 20 5. Mammals 24 Rare and Endangered Animal Species 25 Game Animals 27 Cultural Values 28 Aesthetic Values 31 1. Landform contrast 31 2. Land-use contrast 31 3. Wetland-type diversity 32 4. Internal wetland contrast 32 5. Wetland size ... 32 6. Landform diversity .... 32 DISCUSSION Streams 32 Springs and Spring Seeps 34 Lakes . 35 Wetland Habitats 35 ii Wildlife 36 Management Potential 38 Off-road Vehicle Use 42 Fragmentation . 42 Cultural Values 44 Educational Values SIGNIFICANCE OF THE AREA OF CONCERN FOR FULFILLMENT OF THE CANAAN VALLEY NATIONAL WILDLIFE REFUGE 1979 EIS OBJECTIVES 46 CONCLUSIONS .. 47 LITERATURE CITED 52 TABLES 54 FIGURES 88 iii LIST OF TABLES 1. Property ownerships of Canaan Valley ... ..... 8 2.
    [Show full text]
  • Spaceborne Potential for Examining Taiga–Tundra Ecotone Form and Vulnerability
    Biogeosciences, 13, 3847–3861, 2016 www.biogeosciences.net/13/3847/2016/ doi:10.5194/bg-13-3847-2016 © Author(s) 2016. CC Attribution 3.0 License. Spaceborne potential for examining taiga–tundra ecotone form and vulnerability Paul M. Montesano1,2, Guoqing Sun2,3, Ralph O. Dubayah3, and K. Jon Ranson2 1Science Systems and Applications, Inc., Lanham, MD 20706, USA 2Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3University of Maryland, Department of Geographical Sciences, College Park, MD 20742, USA Correspondence to: Paul M. Montesano ([email protected]) Received: 9 November 2015 – Published in Biogeosciences Discuss.: 15 January 2016 Revised: 31 May 2016 – Accepted: 9 June 2016 – Published: 6 July 2016 Abstract. In the taiga–tundra ecotone (TTE), site-dependent tainty of height estimates in forest patches may improve de- forest structure characteristics can influence the subtle and piction of TTE form, which may help explain variable forest heterogeneous structural changes that occur across the broad responses in the TTE to climate change and the vulnerability circumpolar extent. Such changes may be related to ecotone of portions of the TTE to forest structure change. form, described by the horizontal and vertical patterns of for- est structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, vari- 1 Introduction able, and widespread vegetation change warrants the appli- cation of spaceborne data including high-resolution (< 5 m) 1.1 TTE vegetation structure and processes spaceborne imagery (HRSI) across broad scales for examin- ing TTE form and predicting dynamics.
    [Show full text]
  • Treeline Dynamics on Southern Vancouver Island, British Columbia
    Western Geography, 10/11(2000/01), pp. 43–63 ©Western Division, Canadian Association of Geographers Treeline Dynamics on Southern Vancouver Island, British Columbia Colin P. Laroque, David H. Lewis and Dan J. Smith* Department of Geography—Ring Laboratory University of Victoria Victoria, BC V8W 3P5 This paper describes the nature of treeline dynamics and upper-elevation tree establishment patterns on southern Vancouver Island, British Columbia. We examined tree growth, climate and seedling relationships at three upper-elevation locations using standard dendroecolog- ical approaches. Our data suggest that this habitat has experienced species-specific pulses of tree establishment that have had a major impact on the character of the local treeline boundaries. The stem data collected within quadrats at Gemini Mountain and Haley Bowl show that seedling establishment within the last three cen- turies was episodic and linked to historical climatic pat- terns. Successful mountain hemlock establishment in this setting is restricted to periods characterized by either cool summers and shallow winter snowpacks, or warmer than normal summers and moderately deep snowpacks. The establishment of amabilis and subalpine fir seedlings appears restricted to intervals with cool growing seasons and moderately deep seasonal snow- packs. Episodic seedling establishment in the 20th cen- tury has resulted in a gradual infilling of the local tree- line and the development of a more structured parkland belt that is expected to have habitat implications for endangered Vancouver Island marmot. Keywords: dendroecology, subalpine meadows, seedling establishment, tree rings, Vancouver Island, Vancouver Island marmot. *Corresponding author 44 Laroque, Lewis & Smith Introduction Little is known of the nature of long-term treeline dynamics on Vancouver Island.
    [Show full text]
  • New Hampshire Wildlife Action Plan Appendix B Habitats -1 Appendix B: Habitats
    Appendix B: Habitats Appendix B: Habitat Profiles Alpine ............................................................................................................................................................ 2 Appalachian Oak Pine Forest ........................................................................................................................ 9 Caves and Mines ......................................................................................................................................... 19 Grasslands ................................................................................................................................................... 24 Hemlock Hardwood Pine Forest ................................................................................................................. 34 High Elevation Spruce‐Fir Forest ................................................................................................................. 45 Lowland Spruce‐Fir Forest .......................................................................................................................... 53 Northern Hardwood‐Conifer Forest ........................................................................................................... 62 Pine Barrens ................................................................................................................................................ 72 Rocky Ridge, Cliff, and Talus ......................................................................................................................
    [Show full text]
  • R9 Community Conservation Assessment
    Community Conservation Assessment for White Mountain Alpine Community USDA Forest Service, Eastern Region April 2003 Catherine Rees 719 Main St. Laconia, NH 03247 603-528-8721 WHITE MOUNTAIN NATIONAL FOREST Community Conservation Assessment for White Mountain Alpine Community 1 This document was prepared to compile the published and unpublished information on the subject community to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject community, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee. Wisconsin 53203. Community Conservation Assessment for White Mountain Alpine Community 2 Table of Contents EXECUTIVE SUMMARY..................................................................................... 4 COMMUNITY CLASSIFICATION SYSTEM AND SYNONYMS ................. 5 DESCRIPTION OF COMMUNITY..................................................................... 7 COMMUNITY ECOLOGY/ENVIRONMENTAL CONDITIONS ................ 16 RANGE OF NATURAL VARIABILITY: COMMUNITY DISTRIBUTION AND CONDITIONS ............................................................................................
    [Show full text]
  • A Review of the Theories to Explain Arctic and Alpine Treelines Around the World†
    Article in press (2007), Journal of Sustainable Forestry [G.P. Berlyn Festschrift Special Issue, Volume 25, Issue 1-2] A review of the theories to explain Arctic and alpine treelines around the world† Andrew D. Richardson1* and Andrew J. Friedland2 ABSTRACT Forest growth is restricted at high latitudes and high elevations, and the limits of tree growth in these environments are dramatically marked by the treeline transition from vertical, erect tree stems to prostrate, stunted shrub forms. However, after four centuries of research, there is still debate over the precise mechanism that causes Arctic and alpine treelines. We review the various theories for treeline, including excessive light, low partial pressure of CO2, snow depth, wind exposure, reproductive failure, frost drought, and temperature. Some of these theories are very old and are no longer held in high esteem; while they may help to explain treeline physiognomy or local variation in treeline position, they generally fail as global explanations. Temperature- based theories appear to be the most reasonable, since cold temperature is really the only trait that is universally characteristic of treelines around the world. Temperature may limit a variety of physiological processes, such as carbon fixation, cuticular ripening, or new tissue development, and theories invoking these mechanisms are discussed. The vertical growth habit of trees is unfavorable to growth in this hostile environment: low- profile vegetation enjoys a far more favorable microenvironment for growth. Recent evidence gives strong support for a theory based on “sink limitation”, i.e., that new tissue development is restricted not by carbon availability but by cold treeline temperatures which limit cell division, and that this situation is exacerbated by arborescent growth (above-ground meristems coupled to cold ambient air temperatures) and self-shading (which keeps soil temperatures cold and restricts below-ground activity).
    [Show full text]
  • Alpine Tundra Zone
    Chapter 18: Alpine Tundra Zone by J. Pojar and A.C. Stewart LOCATION AND DISTRIBUTION .......................................... 264 ECOLOGICAL CONDITIONS .............................................. 264 SUBZONES ............................................................... 268 SOME REPRESENTATIVE SITE ASSOCIATIONS ........................... 268 Dwarf willow Ð Small-awned sedge ..................................... 268 Entire-leaved mountain-avens Ð Blackish locoweed ...................... 270 Altai fescue Ð Mountain sagewort Ð Cetraria ........................... 270 Barratt's willow Ð Sweet coltsfoot ...................................... 271 WILDLIFE HABITATS ..................................................... 271 RESOURCE VALUES ...................................................... 273 LITERATURE CITED ...................................................... 274 263 LOCATION AND DISTRIBUTION The Alpine Tundra zone (AT) occurs on high mountains throughout the province (Figure 65). In southeastern British Columbia, the AT occurs at elevations above approximately 2250 m; in the southwest, above 1650 m; in the northeast, above 1400 m; in the northwest, above 1000 m. The zone is concentrated along the coastal mountains and in the northern and southeastern parts of the province and occurs above all three subalpine zones. The AT extends beyond British Columbia on the high mountains to the north, east, and south. ECOLOGICAL CONDITIONS The harsh alpine climate is cold, windy, and snowy, and characterized by low growing season temperatures and a very short frost-free period (Table 4). British Columbia has only two long-term, alpine climate stations: Old Glory Mountain, near Trail (Figure 66) and Mt. Fidelity in Glacier National Park. Available short- and long-term data indicate that the mean annual temperature ranges from -4 to 0°C. The average temperature remains below 0°C for 7-11 months. Frost can occur at any time. The AT is the only zone in the province where the mean temperature of the warmest month is less than 10°C.
    [Show full text]
  • Southern Arctic
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Southern Arctic Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories 2012 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES SOUTHERN ARCTIC This report may be cited as: Ecosystem Classification Group. 2012. Ecological Regions of the Northwest Territories – Southern Arctic. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. x + 170 pp. + insert map. Library and Archives Canada Cataloguing in Publication Northwest Territories. Ecosystem Classification Group Ecological regions of the Northwest Territories, southern Arctic / Ecosystem Classification Group. ISBN 978-0-7708-0199-1 1. Ecological regions--Northwest Territories. 2. Biotic communities--Arctic regions. 3. Tundra ecology--Northwest Territories. 4. Taiga ecology--Northwest Territories. I. Northwest Territories. Dept. of Environment and Natural Resources II. Title. QH106.2 N55 N67 2012 577.3'7097193 C2012-980098-8 Web Site: http://www.enr.gov.nt.ca For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small digital images in the inset boxes are enlarged with captions on pages 28 (Tundra Plains Low Arctic (north) Ecoregion) and 82 (Tundra Shield Low Arctic (south) Ecoregion). Aerial images: Dave Downing. Main cover image, ground images and plant images: Bob Decker, Government of the Northwest Territories. Document images: Except where otherwise credited, aerial images in the document were taken by Dave Downing and ground-level images were taken by Bob Decker, Government of the Northwest Territories. Members of the Ecosystem Classification Group Dave Downing Ecologist, Onoway, Alberta.
    [Show full text]
  • Breeding and Genetic Resources of Five-Needle Pines: Growth, Adaptability, and Pest Resistance; 2001 July 23-27; Medford, OR, USA
    United States Department of Agriculture Breeding and Genetic Forest Service Resources of Five- Rocky Mountain Research Station Proceedings Needle Pines: RMRS-P-32 May 2004 Growth, Adaptability, and Pest Resistance IUFRO Working Party 2.02.15 International Conference Medford, Oregon, USA July 23-27, 2001 Abstract ___________________________________________________ Sniezko, Richard A.; Samman, Safiya; Schlarbaum, Scott E.; Kriebel, Howard B. eds. 2004. Breeding and genetic resources of five-needle pines: growth, adaptability, and pest resistance; 2001 July 23-27; Medford, OR, USA. IUFRO Working Party 2.02.15. Proceedings RMRS-P-32. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 259 p. This volume presents 29 overview and research papers on the breeding, genetic variation, genecology, gene conservation, and pest resistance of five-needle pines (Pinus L. subgenus Strobus Lemm.) from throughout the world. Overview papers provide information on past and present research as well as future needs for research on white pines from North America, Europe, and Asia. Research papers, more narrowly focused, cover various aspects of genetics. Throughout the distribution of five-needle pines, but particularly in many of the nine North American species, the pathogen Cronartium ribicola J.C. Fisch. continues to cause high levels of mortality and threatens ecosystems and plantations. Studies on genetic resistance to C. ribicola are described in papers from different regions of the world. Use of P. strobus as an exotic species in Europe and Russia and corresponding problems with white pine blister rust are discussed in several papers. Other papers focus on examining and exploiting patterns of genetic variation of different species.
    [Show full text]
  • Appalachian Trail Vital Signs
    National Park Service U.S. Department of the Interior Northeast Region Boston, Massachusetts Appalachian Trail Vital Signs Technical Report NPS/NER/NRTR--2005/026 ON THE COVER Androscoggin River, ME Blood Mountain Sunset, GA Laurel Falls, TN Mt Katahdin, ME © Photos by Joe Cook Appalachian Trail Vital Signs Technical Report NPS/NER/NRTR--2005/026 Greg Shriver1, Tonnie Maniero2, Kent Schwarzkopf3, Dan Lambert4, Fred Dieffenbach1, Don Owen3, Y. Q. Wang5, Joy Nugranad- Marzilli5, Geri Tierney6, Casey Reese3, Theresa T. Moore1 1National Park Service Inventory and Monitoring Program 54 Elm Street Woodstock, Vermont 05091 2National Park Service Northeast Region 15 State Street Boston, Massachusetts 02109 3National Park Service Appalachian National Scenic Trail Harpers Ferry Center Harpers Ferry, West Virginia 25425 4Vermont Institute of Natural Science Conservation Biology Department 2723 Church Hill Road Woodstock, Vermont 05091 5University of Rhode Island Department of Natural Resource Science Kingston, Rhode Island 02881 6State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse, New York 13210 November 2005 U.S. Department of the Interior National Park Service Northeast Region Boston, Massachusetts The Northeast Region of the National Park Service (NPS) comprises national parks and related areas in 13 New England and Mid- Atlantic states. The diversity of parks and their resources are reflected in their designations as national parks, seashores, historic sites, recreation areas, military parks, memorials, and rivers and trails. Biological, physical, and social science research results, natural resource inventory and monitoring data, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences related to these park units are disseminated through the NPS/NER Technical Report (NRTR) and Natural Resources Report (NRR) series.
    [Show full text]