Taiga Shield

Total Page:16

File Type:pdf, Size:1020Kb

Taiga Shield ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Shield Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories 2008 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA SHIELD This report may be cited as: Ecosystem Classification Group. 2008. Ecological Regions of the Northwest Territories – Taiga Shield. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 146 pp. + insert map. ISBN 978-0-7708-0173-1 Web Site: http://www.enr.gov.nt.ca For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small digital images in the inset boxes are enlarged with captions on pages 24 (Taiga Shield High Subarctic (HS) Ecoregion), 44 (Taiga Shield Low Subarctic (LS) Ecoregion), 66 (Taiga Shield High Boreal (HB) Ecoregion) and 78 (Taiga Shield Mid-Boreal (MB) Ecoregion). Aerial images and main cover image: Dave Downing, Timberline Natural Resource Group. Ground images and plant images: Bob Decker, Government of the Northwest Territories. Document images: Except where otherwise credited, aerial images in the document were taken by Dave Downing, Timberline Natural Resource Group, and ground-level images were taken by Bob Decker, Government of the Northwest Territories. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Lane Feschuk GIS Specialist, Timberline Natural Resource Group, Edmonton, Alberta. i Acknowledgements The authors acknowledge the contribution of the following Environment and Natural Resources (ENR) staff to the Taiga Shield mapping revisions and report – Suzanne Carrière, Ray Case, Susan Corey, Susan Fleck, Evelyn Gah and Tom Lakusta. The contribution by regional ENR staff – Ken Mercredi and Richard Olsen (South Slave Region), Roger Fraser and Lance Schmidt (North Slave Region) and Paul Rivard (Sahtu Region) – in the timely placement of fuel caches, critical to the success of the field program, is also acknowledged. We thank David Kroetsch, Agriculture and Agri-Food Canada, for providing the initial classification upon which the Northwest Territories version was built; John Downing, for assistance in obtaining and interpreting bedrock geology information; and Wayne Pettapiece, for compiling most of the glossary of terms in Appendix 5. We also acknowledge members of the 1995 Ecological Stratification Working Group, members of the 1989 Ecoclimatic Regions Working Group and authors of the 1982 report “An Ecological Land Survey of the Lockhart River Mapsheet, Northwest Territories” who provided the original conceptual and mapping framework upon which this version of the Taiga Shield classification is based. Alex Hall provided detailed observations on wildlife. We thank Jim and Margaret Peterson for their valuable logistic support and hospitality. Pilots Dustin Lunde and Jim Archibald provided safe and courteous air transport throughout the 2006 summer field season. The Forest Management Division and Wildlife Division of Environment and Natural Resources, Government of the Northwest Territories (GNWT) provided the primary funding for the Taiga Shield Ecosystem Classification Project. The West Kitikmeot/Slave Study (WKKS) provided additional funding support. The WKKS, initiated in 1996, provides funding to assist in the collection of necessary baseline data to help industry, regulators, communities and government assess, mitigate, monitor and manage environmental impacts of proposed developments in the western Northwest Territories. Four of the report’s co-authors (from left to right, Bob Decker, Bas Oosenbrug, Charles Tarnocai and Dave Downing), with James (Jim) Peterson (far right) who passed away on April 15, 2008. We are grateful for his hospitality, good-natured humour and knowledge of the Point Lake area. This photo was taken on the last day of the 2006 field survey (August 1, 2006) at Point Lake, Northwest Territories. Photo: Jim Archibald. ii Preface The Taiga Shield, the ancient bedrock heartland of northern Canada, arcs west from Labrador to the eastern shores of Great Bear Lake. The erosive forces of wind, water and ice have worn down what once were high mountain ranges a billion years ago to rolling bedrock that is blanketed in some areas by clay, sand, gravels and boulders sorted and deposited by receding glaciers. Lakes and rivers are a prominent feature of the Shield. Boreal and Subarctic climates that change from north to south and east to west are modified by bedrock and glacial landforms to produce diverse landscapes with distinctive vegetation and soil features. Broad-scale vegetation cover and geological features provide, in part, the basis for defining and understanding the climatic and physiographic patterns that control vegetation and soil distribution. Both plant communities and soils develop in response to abiotic factors such as latitude, elevation and parent materials that affect temperature, moisture, light and nutrient conditions, and biotic factors, for example, competition between species, or individual species tolerances to climatic conditions. The relative influence of each factor at any place in the landscape is determined by the interaction of atmospheric and landscape attributes – climate, topography, parent materials and biotic elements – all acting over time, as described by Major (1951) and Jenny (1941) for vegetation and soils, respectively. These attributes can be delineated and represented as abstract ecological map units and may be described at various scales. At the global scale, the Biome or Vegetation Zone is recognized (Walter 1979, Scott 1995, Commission for Environmental Cooperation 1997). At the national scale in Canada, Ecozones, Ecoregions and Ecodistricts are described (Ecological Stratification Working Group 1995). The Northwest Territories has modified the Canadian national scale and classification framework to match the multi-level continental ecosystem classification framework – Ecological Regions of North America – developed by the Commission for Environmental Cooperation in 1997. The Canadian and continental systems are outlined in Section 1 of this report. The value of regional ecosystem classification systems as a foundation for sustainable resource management has been recognized since the 1960s in Canada. Ecosystem classifications provide a means of presenting and understanding biophysical patterns in a geographic context and a common basis for communication. The Government of the Northwest Territories has used the national ecosystem classification framework since 1996 as the basis for identifying candidate protected areas, forest management planning, wildlife habitat management and environmental impact assessment and mitigation. In 2004, in response to increasing development pressures in the Mackenzie River Corridor, the 1996 Taiga Plains Ecozone was evaluated. A series of workshops in 2004 – 2006 and an intensive survey of the entire Taiga Plains in 2005 led to significant changes to the 1996 map, and a revised map and report were produced in early 2007 (Ecosystem Classification Group 2007). The same approach was followed in 2006 for the 1996 Taiga Shield Ecozone that borders the Taiga Plains to the east. A variety of spatial data sources including Landsat imagery, digital elevation models, hydrology, permafrost, bedrock and surficial geology, soils and interpolated climate models were brought together within a geographic information system. This information allowed participants to view landscapes and existing mapped ecosystem units from a number of different perspectives. A core element of the Taiga Shield classification was the detailed and comprehensive work done by S. W. Bradley, J.S. Rowe, C. Tarnocai and G.R. Ironside for the Lockhart River mapsheet (Bradley et al. 1982). Their map units, descriptive information and classification approach were used with a few modifications for about 60 percent of the Taiga Shield within the Northwest Territories. iii Air and ground verification of the proposed changes was an integral part of the revision process. In the summer of 2006, an intensive float plane and helicopter survey was undertaken throughout the entire Northwest Territories Taiga Shield between the Northwest Territories – Nunavut border, the Northwest Territories – Saskatchewan border, the eastern boundary of the Taiga Plains, and the southern boundary of the Southern Arctic (tree line). Over 25,000 km of transects were flown and a detailed and large-scale record of landscape features was captured in over 15,000 geographically referenced digital images accompanied by text commentaries; site, vegetation and soil information was also collected from 44 ground plots. Both the photographs and thematic maps derived from the commentaries proved to be indispensable for the revision process. This report and the accompanying map (Appendix
Recommended publications
  • H a Guide to Sport Fishing in Nunavut
    h a guide to sport fishing in nunavut SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT 1 PLUMMER’S ARCTIC LODGES PLUMMER’S Fly into an untouched, unspoiled landscape for the adventure of a lifetime. Fish for record-size lake trout and pike in the treeless but colourful barrenlands. Try for arctic grayling in our cold clear waters. And, of course, set your sights on an arctic char on the Tree River, the Coppermine River, or dozens of other rivers across Nunavut that flow to the Arctic seas. Spend a full 24 hours angling for the species of your choice under the rays of the midnight sun. PLUMMER’S ARCTIC LODGES PLUMMER’S Pristine, teeming with trophy fish, rare wildlife and Read on to explore more about this remarkable place: nature at its rawest, Nunavut is a cut above any ordinary about the Inuit and their 1000-year history of fishing in sport fishing destination. Brave the stark but stunning one of the toughest climates in the world; about the wilderness of the region. Rise to the unique challenges experienced guides and outfitters ready to make your of Nunavut. And come back with jaw-dropping trophy- adventure run smoothly. Read on to discover your next sized catches, as well as memories and stories that great sport fishing experience! you’ll never tire of. Welcome To Sport Fishing Paradise. 2 SPORT FISHING GUIDE / NUNAVUT TOURISM / NUNAVUTTOURISM.COM / 1.866.NUNAVUT PLUMMER’S ARCTIC LODGES PRIZE OF THE ARCTIC Arctic Char The arctic char is on every sport fisher’s bucket list.
    [Show full text]
  • Yukon College Student Survey Results
    Yukon College Student Survey Results 2014-15 Dawn Macdonald Institutional Research and Planning Officer December 24, 2014 Yukon College Student Survey Results: 2014-15 TABLE OF CONTENTS HIGHLIGHTS ...................................................................................................................................................... 3 PURPOSE AND METHODS ............................................................................................................................. 5 RESULTS .............................................................................................................................................................. 6 STUDENT SATISFACTION ............................................................................................................................................ 6 More than nine out of ten would recommend their program or courses .................................... 6 Nearly everyone is satisfied with the quality of instruction ............................................................. 7 More than nine out of ten are satisfied with course content ........................................................... 7 Nine out of ten are satisfied with support services ............................................................................. 8 Nine out of ten are satisfied with program advising and library resources ............................... 9 Satisfaction with spaces for group work lags behind satisfaction with social spaces and study spaces ...................................................................................................................................................
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Geographic Patterns in Morphometric and Genetic Variation for Coyote Populations with Emphasis on Southeastern Coyotes
    Received: 19 March 2018 | Revised: 2 December 2018 | Accepted: 20 December 2018 DOI: 10.1002/ece3.4966 ORIGINAL RESEARCH Geographic patterns in morphometric and genetic variation for coyote populations with emphasis on southeastern coyotes Joseph W. Hinton1 | Elizabeth Heppenheimer2 | Kyla M. West3 | Danny Caudill4 | Melissa L. Karlin5 | John C. Kilgo6 | John Joseph Mayer7 | Karl V. Miller1 | Margaret Walch8 | Bridgett vonHoldt2 | Michael J. Chamberlain1 1Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Abstract Georgia Prior to 1900, coyotes (Canis latrans) were restricted to the western and central re- 2 Department of Ecology and Evolutionary gions of North America, but by the early 2000s, coyotes became ubiquitous through- Biology, Princeton University, Princeton, New Jersey out the eastern United States. Information regarding morphological and genetic 3Tacoma, Washington structure of coyote populations in the southeastern United States is limited, and 4 Florida Fish and Wildlife Conservation where data exist, they are rarely compared to those from other regions of North Commission, Gainesville, Florida America. We assessed geographic patterns in morphology and genetics of coyotes 5Department of Physics and Environmental Sciences, St. Mary’s University, San Antonio, with special consideration of coyotes in the southeastern United States. Mean body Texas mass of coyote populations increased along a west‐to‐east gradient, with southeast- 6United States Department of Agriculture, Forest Service Southern ern coyotes being intermediate to western and northeastern coyotes. Similarly, prin- Research Station, New Ellenton, South cipal component analysis of body mass and linear body measurements suggested Carolina that southeastern coyotes were intermediate to western and northeastern coyotes in 7United States Department of Energy, Environmental Sciences, and body size but exhibited shorter tails and ears from other populations.
    [Show full text]
  • Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
    58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region.
    [Show full text]
  • The Eastern Africa Coastal Forests Ecoregion
    The Eastern Africa Coastal Forests Ecoregion Strategic Framework for Conservation 2005 – 2025 Strategic Framework for Conservation (2005–2025) The Eastern Afrca Coastal Forests Ecoregon Strategc Framework for Conservaton 2005–2025 The Eastern Africa Coastal Forests Ecoregion Publshed August 2006 Editor: Kimunya Mugo Design and layout: Anthony Mwangi Cover design: Kimunya Mugo Front cover main photo: WWF-EARPO / John SALEHE Front cover other photos: WWF-UK / Brent STIRTON / Getty Images Back cover photo: WWF-EARPO / John SALEHE Photos: John Salehe, David Maingi and Neil Burgess or as credited. © Graphics (2006) WWF-EARPO. All rights reserved. The material and geographic designations in this report do not imply the expression of any opinion whatsoever on the part of WWF concerning the legal status of any country, territory or area or concerning the delimitation of its frontiers and boundaries. WWF Eastern Africa Regional Programme Office ACS Plaza, Lenana Road P.O. Box 62440-00200 Nairobi, Kenya Tel: +254 20 3877355, 3872630/1 Fax: +254 20 3877389 E-mail: [email protected] Web: www.panda.org/earpo Strategic Framework for Conservation (2005–2025) Contents Acknowledgements......................................................................................................... iv Foreword........................................................................................................................... v Lst of abbrevatons and acronyms.............................................................................. v A new approach to
    [Show full text]
  • Selected Bibliography on the Geology of Canadian Deposits and Occurrences of Uranium and Thorium
    GEOLOGICAL SURVEY OF CANADA COMMISSION GEOLOGIQUE DU CANADA PAPER 75-45 SELECTED BIBLIOGRAPHY ON THE GEOLOGY OF CANADIAN DEPOSITS AND OCCURRENCES OF URANIUM AND THORIUM DENYSE M. GARNEAU Energy, Mines and Energie, Mines et Resources Canada Ressources Canada 1976 GEOLOGICAL SURVEY PAPEP 75-45 SELECTED BIBLIOGRAPHY ON THE GEOLOGY OF CANADIAN DEPOSITS AND OCCURRENCES OF URANIUM AND THORIUM DENYSE M. GARNEAU 1976 © Minister of Supply and Services Canada 1976 Printing and Publishing Supply and Services Canada, Ottawa, Canada K1A 0S9, from the Geological Survey of Canada 601 Booth St., Ottawa, K1A 0E8 or through your bookseller. r, i . »T .... „,- ... Price: Canada: $2.00 Catalogue No. M44-75-45 Othe_„ r countries:$2. !„ . 4.0„ Price subject to change without notice FOREWORD The only previous bibliography on the occurrence of uranium in Canada was compiled by J. W. Griffith and published by the Geological Survey of Canada nearly 20 years ago, in 1956. Shortly afterward interest in prospecting for uranium faded, to be revived for a brief period 19G6 to 1970, when much literature on Canadian deposits and occurrencesjias published. It appears likely that uranium will play a significant role in meeting Canada's energy needs in the future. To assist those con- cerned with uranium exploration a revision of the previous bibliography has been prepared. Miss Garneau was assigned the task of compilation of the new bibliography, which was based upon a file index built up since 1967 by Eric Smith, T. J. Bottrill, Andre Boyer, and H.W. Little. Miss Garneau has checked these references and added many herself.
    [Show full text]
  • Vegetative Ecology of a Montane Mire, Crater Lake National
    AJ ABSTRACT OF THE THESIS OF Susan Cornelia Seyer for the degree of Master of Science in Botany and Plant Pathology presented on December 14, 1979 Title: VEGETATIVE ECOLOGY OF A MONTANE MIRE, CRATER LAKE NATIONAL PARK, OREGON Redacted for Privacy Abstract approved: Jerry F. Franklin Mires, or peat-producing ecosystems, dominated by sedges, shrubs, and brown mosses, are common features in Cascade subalpine regions, occurring where moisture accumulates in small basins or on poorly-drained slopes. Although descriptions and classifications have been developed for mire vegetation in much of the world, there is little information of even a descriptive nature for these montane mires in Oregon and Washington. This thesis reports on phytosocia- logical structure, env'ironental relations, and successional trends in one such mire in the Oregon Cascade mountains. To characterize the general phytosociological structure of the mire vegetation at Sphagnum Bog, Crater Lake National Park, quantitative species cover data were used in conjunction with a Braun-Blanquet tabular analysis and two-dimensional stand ordinations, reciprocal averaging and a Bray-Curtis polar ordination. Defined community types correspond to physiognomic types as follows: Carex rostrata (reedswamp); Eleocharis pauciflora-Carex limosa, Eleocharis pauciflora/bryophytes (low sedge fens); Carex sichensis (tall sedge fen); Vaccinium/ Aulacomnium palustre, Vaccinium occidentala/Carex sitchensis (shrub thickets; Alnus incana/Brachythacium sp. and Salix barclayi (marginal carrs).Phases were defined when appropriate. A vegetation map was made to illustrate the locations and extent of the variouscommunities. Comparisons with other montane mires in thearea determined that the physiognomic units defined are repeatable when appropriate habitat conditions are present, and that they usually includemany of the same characteristic species, the dominant mosses being particularly constant.
    [Show full text]
  • Grasslands 4/16/03 3:46 PM
    Ecoregion: Grasslands 4/16/03 3:46 PM Grasslands INTRODUCTION About 25% of Earth’s land surface is covered by temperate grassland. These large expanses of flat or hilly country cover much of North America, as well as large areas of Europe, Asia, and South America. Most grasslands are found in the interiors of continents, where there is too little rainfall for a forest but too much rain for a desert. Art Explosion Art Explosion Rolling hills covered with grasses and very few trees A few scattered trees are found on savannas, are typical of North American grassland prairies. tropical grasslands of Africa. Temperate grasslands have subtle differences and different names throughout the world. Prairies and plains of North America are grasslands with tall grasses, while the steppes of Russia are grasslands with short grasses. Veldts are found in South Africa, the puszta in Hungary, and the pampas in Argentina and Uruguay. Savannas are tropical grasslands that support scattered trees and shrubs. They often form a transitional biome file:///Ecoregion/grass/content.html Page 1 of 6 Ecoregion: Grasslands 4/16/03 3:46 PM between deserts and rain forests. Some temperate grasslands are also called savannas. The word savanna comes from the Spanish word zavanna, meaning “treeless plain.” Savannas cover almost half of Africa (mostly central Africa) and large areas of Australia and South America. ABIOTIC DATA The grassland climate is rather dry, averaging about 20 to 100 centimeters (8–40 inches) of precipitation a year. Summers are very hot and may reach 45°C (113°F). Winter temperatures often fall below freezing, which is 0°C (32°F).
    [Show full text]
  • Russian–American Telegraph from Wikipedia, the Free Encyclopedia (Redirected from Western Union Telegraph Expedition)
    Russian–American telegraph From Wikipedia, the free encyclopedia (Redirected from Western Union Telegraph Expedition) The Russian American telegraph , also known as the Western Union Telegraph Expedition and the Collins Overland telegraph , was a $3,000,000 undertaking by the Western Union Telegraph Company in 1865-1867, to lay an electric telegraph line from San Francisco, California to Moscow, Russia. The route was intended to travel from California via Oregon, Washington Territory, the Colony of British Columbia and Russian Alaska, under the Bering Sea and across Siberia to Moscow, where lines would communicate with the rest of Europe. It was proposed as an alternate to long, deep underwater cables in the Atlantic. Abandoned in 1867, the Russian American Telegraph was considered an economic failure, but history now deems it a "successful failure" because of the many benefits the exploration brought to the regions that were traversed. Contents ■ 1 Perry Collins and Cyrus West Field ■ 2 Preparations ■ 3 Route through Russian Alaska ■ 4 Route through British Columbia ■ 5 Legacy ■ 6 Places named for the expedition members ■ 7 Books and memoirs written about the expedition ■ 8 Further reading ■ 9 External links ■ 10 Notes Perry Collins and Cyrus West Field By 1861 the Western Union Telegraph Company had linked the eastern United States by electric telegraph all the way to San Francisco. The challenge then remained to connect North America with the rest of the world. [1] Working to meet that challenge was Cyrus West Field's Atlantic Telegraph Company, who in 1858 had laid the first undersea cable across the Atlantic Ocean. However, the cable had broken three weeks afterwards and additional attempts had thus far been unsuccessful.
    [Show full text]
  • Évolution Spatio-Temporelle Du Pergélisol Alpin Marginal Au Mont Jacques-Cartier, Massif Des Chic-Chocs, Gaspésie (Qc)
    Université de Montréal Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic-Chocs, Gaspésie (Qc) par Gautier DAVESNE Département de Géographie Faculté des arts et sciences Mémoire présenté à la Faculté des arts et des sciences en vue de l’obtention du grade de maîtrise en géographie Août 2015 © Gautier Davesne, 2015 ii Université de Montréal Faculté des études supérieures et postdoctorales Ce mémoire intitulé : Évolution spatio-temporelle du pergélisol alpin marginal au mont Jacques-Cartier, massif des Chic- Chocs, Gaspésie (Qc) Présenté par : Gautier Davesne a été évalué par un jury composé des personnes suivantes : François Cavayas, président rapporteur Daniel Fortier, directeur de recherche James Gray, membre du jury iii iv Résumé L’objectif de ce mémoire est d’acquérir une connaissance détaillée sur l’évolution spatiale de la température de surface du sol (GST) au mont Jacques-Cartier et sur la réponse thermique de son îlot de pergélisol alpin aux changements climatiques passés et futurs. L’étude est basée sur un ensemble de mesures de température (GST, sous-sol) et de neige, ainsi que des modèles spatiaux de distribution potentielle de la GST et des simulations numériques du régime thermique du sol. Les résultats montrent que la distribution de la GST sur le plateau est principalement corrélée avec la répartition du couvert nival. Au-dessus de la limite de la végétation, le plateau est caractérisé par un couvert de neige peu épais et discontinu en hiver en raison de la topographie du site et l’action des forts vents. La GST est alors couplée avec les températures de l’air amenant des conditions froides en surface.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]