NASA's Space Launch System

Total Page:16

File Type:pdf, Size:1020Kb

NASA's Space Launch System RECOMMENDATIONS FOR THE NEW POLICY BRIEF ADMINISTRATION NASA’s Space Launch System George W.S. Abbey, Senior Fellow in Space Policy This brief is part of a series of policy recommendations for the administration of President Joe Biden. Focusing on a range of important issues facing the country, the briefs are intended to provide decision-makers with relevant and effective ideas for addressing domestic and foreign policy priorities. View the entire series at www.bakerinstitute.org/recommendations-2021. NASA is currently developing the largest Committee.1 The commercially available rocket the United States has ever built, SpaceX Falcon Heavy rocket, with two- the Space Launch System (SLS). It will be thirds of the lift capability of the early capable of carrying between 150,000 and version of the SLS, can be purchased for 290,000 pounds to lower Earth orbit. significantly less per launch. Reliability is At the same time, aerospace industrial also an important factor, and due to its companies have and are developing a series launch costs, the SLS is unlikely to fly very of heavy-lift launch vehicles. SpaceX has often—probably only once or twice a year. already flown their Falcon Heavy, a larger With that launch rate, it will be difficult to version of the Falcon 9 rocket. The United build up any demonstrated reliability. Launch Alliance (ULA) is also developing a The SLS has also suffered significant new launch vehicle called the Vulcan that’s cost overruns and schedule delays. A 2020 scheduled to fly in 2021 or 2022. And Blue Office of Inspector General (OIG) report While the SLS is to Origin, a third U.S. aerospace company, is stated the cost of the booster had already have the capability developing the New Glenn, a launch vehicle grown by nearly 30% (about $2 billion) and that will be able to deliver 100,000 pounds that the first launch of the rocket, originally to launch a larger to lower Earth orbit. planned for late 2017, would be delayed to payload than the While the SLS is to have the capability June 2021 or later.2 The lack of transparency commercial rockets to launch a larger payload than the relative to the program’s costs also made it that are currently under commercial rockets that are currently difficult to determine the expected true cost under development and available, a key of the program. NASA had estimated the development and factor for a rocket is launch costs. Due to development costs through its first launch to available, a key factor its high launch costs and the availability have grown to $8.75 billion, when a launch for a rocket is of other, more cost-effective commercial had been assumed in November 2020, an launch costs. launch vehicles, the Biden administration increase of 25%.3 should review the need for the SLS and take That original commitment set the cost these factors into consideration during the of SLS development through the first launch negotiation of the annual federal budget. at $7 billion, a figure that does not include A government cost estimate for flying $2.7 billion in earlier formulation costs for a single SLS rocket was estimated to come the heavy-lift rocket. That commitment to over $2 billion in a recent administration also missed costs associated with other letter to the Senate Appropriations aspects of the SLS program not directly tied RICE UNIVERSITY’S BAKER INSTITUTE FOR PUBLIC POLICY // POLICY BRIEF to the first launch, which had the effect, the somewhat depending on each mission, OIG concluded, of masking the actual cost but if the vehicle does just three flights a growth of the program. It concluded that year, it can get more into space than the costs would grow by 33% through the end SLS for a fraction of the cost. Meanwhile, of fiscal year 2019 and by an estimated 43% Blue Origin’s New Glenn12 and a heavy-lift through the new projected launch date.4 version of ULA’s Vulcan13 are expected to That assessment also did not capture lift about the same weight. ULA and Blue the full cost of the SLS program, such as Origin have not stated a cost to launch funds spent on work for the second or these vehicles. However, even if the rockets later launches. The OIG report estimated each cost $500 million to launch twice a that NASA would spend $17 billion on the year, they have already matched the SLS SLS through the end of fiscal year 2020, of for a lower cost. which $5.9 billion was not included in the SpaceX is also developing another baseline commitment.5 rocket—the Starship—a fully-reusable NASA leadership, the report stated, two-stage-to-orbit super heavy-lift acknowledged their cost management launch vehicle. The Starship will feature approach “is not a good fit for managing a six Raptor engines, three sea-level Raptors long-term human exploration program with for atmospheric flight, and three vacuum- multiple planned missions over decades.”6 optimized Raptors for propulsion in space.14 However, they decided to focus on costs Elon Musk, the CEO of SpaceX, has stated through the first launch early in the SLS that a Raptor could eventually achieve a program, given the uncertainty about long- thrust-to-weight ratio of 200 and that, The commercially term plans. over time, a Starship will be capable to available SpaceX Falcon “While we understand the difficulty launch over 100 tons of cargo. “By any Heavy will be able of setting baselines long into the future, measure, the high thrust variant of Raptor to carry more than total SLS Program cost increases will not will probably have the highest thrust-to- be readily transparent because NASA is not weight ratio of any engine ever,” Musk 100,000 pounds to tracking and reporting all costs against an stated in a tweet on September 1, 2020.15 lower Earth orbit. official baseline,” the report stated. “For SpaceX is quoting that the Super Heavy will example, NASA currently does not have have a gross liftoff mass of over 3 million a cost estimate for the second launch of kilograms. the SLS and is not tracking or reporting The second stage of the large rocket, cost impacts caused by schedule delays or also referred to as “Starship,” is being technical challenges for that mission.”7 designed as a long-duration cargo, Since 2011, Congress has appropriated and eventually, a passenger-carrying approximately $2 billion per year for the spacecraft. It is being used initially development of the SLS rocket.8 There without any booster stage, as part of an are, in addition to other costs that are extensive development program to assess not included, hundreds of millions of the launch and landing of the vehicle and dollars spent annually on ground systems to evaluate design variations associated development for the support of the rocket’s with the vehicle’s atmospheric reentry. launch at the Kennedy Space Center. If The spacecraft was tested on its own at these costs are amortized over 10 launches suborbital altitudes in 2019 and 2020. It will of the SLS vehicle, the cost would be later be utilized on orbital launches with an approximately $4 billion per flight.9 additional booster stage, the Super Heavy. The commercially available SpaceX On these flights, the spacecraft will serve Falcon Heavy will be able to carry more as both the two-stage-to-orbit launch than 100,000 pounds to lower Earth vehicle and the in-space orbital spacecraft. orbit.10 That’s about half of the capability Integrated system testing of a proof of SLS, but SpaceX is quoting a price per of concept for the Starship began in flight that will start at only $90 million.11 March 2019, with the addition of a single It’s possible that the price may increase 2 NASA’S SPACE LAUNCH SYSTEM Raptor rocket engine to a reduced-height prototype. On December 9, 2020, at their ENDNOTES test site in Boca Chica, Texas, a full-size 1. Letter to the Chair and Vice Chair prototype of SpaceX’s heavy-lift Starship of the Senate Appropriations Committee, launch vehicle was flown in a spectacular Executive Office of the President, Office test flight and successfully guided itself to of Management and Budget, October a beachside landing site before exploding 23, 2019, https://www.whitehouse.gov/ 16 at touchdown. The hard landing and wp-content/uploads/2019/10/shelby- explosion were due to unexpected low mega-approps-10-23-19.pdf. pressure in the methane header tank, 2. Office of Inspector General, NASA’s resulting in the vehicle exploding on the Management of Space Launch System landing pad. The successful completion Program Costs and Contracts, Report No. of many test objectives on this test flight, IG-20-012, March 10, 2020, https://oig. however, was a major milestone for the nasa.gov/docs/IG-20-012.pdf. Starship program. More prototype Starships 3. Ibid. have been built, and more are under 4. Ibid. construction as various design variations 5. Ibid. are to be tested. 6. Ibid. The Super Heavy (the booster stage of 7. Ibid. the Starship) will have the capability to return 8. Eric Berger, “NASA does not deny from space and perform a controlled landing, the “over $2 billion” cost of a single SLS powered by its Raptor engines. It will land on launch,” Ars Technica, November 8, 2019, its legs, like the company’s Falcon 9 rocket. https://arstechnica.com/science/2019/11/ Falcon 9 is the first orbital-class rocket in the nasa-does-not-deny-the-over-2-billion- world that has successfully landed over 50 cost-of-a-single-sls-launch/.
Recommended publications
  • Validation of Wind Tunnel Test and Cfd Techniques for Retro-Propulsion (Retpro): Overview on a Project Within the Future Launchers Preparatory Programme (Flpp)
    VALIDATION OF WIND TUNNEL TEST AND CFD TECHNIQUES FOR RETRO-PROPULSION (RETPRO): OVERVIEW ON A PROJECT WITHIN THE FUTURE LAUNCHERS PREPARATORY PROGRAMME (FLPP) D. Kirchheck, A. Marwege, J. Klevanski, J. Riehmer, A. Gulhan¨ German Aerospace Center (DLR) Supersonic and Hypersonic Technologies Department Cologne, Germany S. Karl O. Gloth German Aerospace Center (DLR) enGits GmbH Spacecraft Department Todtnau, Germany Gottingen,¨ Germany ABSTRACT and landing (VTVL) spacecraft, assisted by retro-propulsion. Up to now, in Europe, knowledge and expertise in that field, The RETPRO project is a 2-years activity, led by the Ger- though constantly growing, is still limited. Systematic stud- man Aerospace Center (DLR) in the frame of ESA’s Future ies were conducted to compare concepts for possible future Launchers Preparatory Program (FLPP), to close the gap of European launchers [2, 3], and activities on detailed inves- knowledge on aerodynamics and aero-thermodynamics of tigations of system components of VTVL re-usable launch retro-propulsion assisted landings for future concepts in Eu- vehicles (RLV) recently started in the RETALT project [4, 5]. rope. The paper gives an overview on the goals, strategy, and Nevertheless, validated knowledge on the aerodynamic current status of the project, aiming for the validation of inno- and aerothermal characteristics of such vehicles is still lim- vative WTT and CFD tools for retro-propulsion applications. ited to a small amount of experimental and numerical inves- Index Terms— RETPRO, retro-propulsion, launcher tigations mostly on lower altitude VTVL trajectories, e. g. aero-thermodynamics, wind tunnel testing, CFD validation within the CALLISTO project [6, 7, 8]. Other studies were conducted to analyze the aerothermodynamics of a simplified generic Falcon 9 geometry during its re-entry and landing 1.
    [Show full text]
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • By Tamman Montanaro
    4 Reusable First Stage Rockets y1 = 15.338 m m1 = 2.047 x 10 kg 5 y2 = 5.115 m m2 = 1.613 x 10 kg By Tamman Montanaro What is the moment of inertia? What is the force required from the cold gas thrusters if we assume constancy. Figure 1. Robbert Goddard’s design of the first ever rocket to fly in 1926. Source: George Edward Pendray. The moment of inertia of a solid disk: rper The Rocket Formula Now lets stack a bunch of these solid disk on each other: Length = l Divide by dt Figure 2: Flight path for the Falcon 9; After separation, the first stage orientates itself and prepares itself for landing. Source: SpaceX If we do the same for the hollow cylinder, we get a moment of inertia Launch of: Specific impulse for a rocket: How much mass is lost? What is the mass loss? What is the moment of inertia about the center of mass for these two objects? Divide by m Figure 3: Falcon 9 first stage after landing on drone barge. Source: SpaceX nd On December 22 2015, the Falcon 9 Orbcomm-2 What is the constant force required for its journey halfway (assuming first stage lands successfully. This is the first ever orbital- that the force required to flip it 90o is the equal and opposite to class rocket landing. From the video and flight logs, we Flip Maneuver stabilize the flip). can gather specifications about the first stage. ⃑ How much time does it take for the first stage to descend? We assume this is the time it takes � Flight Specifications for the first stage to reorientate itself.
    [Show full text]
  • Mitchell Thomas JOS Article
    H-SC Journal of Sciences (2017) Vol. VI Thomas Mars: A prospect for settlement Mitchell H. Thomas’17 Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943 The exploration of Mars was once left to the imagination. However, in recent years, the topic of exploring Mars has become more realistic and increasingly popular in news articles and scientific communities. Technology developed in the previous half-century have already allowed humans to send rovers to Mars in order to retrieve some basic data about the planet. Current technological advancements are resulting in reusable rockets that could one day travel between Earth and Mars. Exploration and colonization of Mars are important for the development of research on the planet and the search for life. Current data is limited, but shows that the conditions on Mars could have supported life in the past. To further our knowledge of the red planet, The atmosphere surrounding Earth is nearly organizations like NASA and companies like SpaceX one-hundred times denser than that of Mars and its are developing plans to colonize Mars. Many composition is crucial to life. According to NASA, the obstacles stand in the way before humans can reach Earth’s atmosphere is comprised of 78% Nitrogen, and colonize the red planet. However, Mars is the 21% Oxygen, and 1% Other. On Mars, the sparse best option for interplanetary colonization and the atmosphere is comprised of nearly 96% Carbon most feasible way to research current and future life Dioxide, less than 2% Argon, less than 2% Nitrogen, on a planet other than Earth.
    [Show full text]
  • Reusable Launch Vehicle Technology Program{
    Acta Astronautica Vol. 41, No. 11, pp. 777±790, 1997 # 1998 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0094-5765(97)00197-5 0094-5765/98 $19.00 + 0.00 REUSABLE LAUNCH VEHICLE TECHNOLOGY PROGRAM{ DELMA C. FREEMAN{ JR. and THEODORE A. TALAY} NASA Langley Research Center, Hampton, Virginia 23681-0001, USA R. EUGENE AUSTIN} NASA Marshall Space Flight Center, Marshall Space Flight Center, Alabama 35812-1000, USA (Received 25 April 1997) AbstractÐIndustry/NASA reusable launch vehicle (RLV) technology program eorts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Signi®cant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and oper- ational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 ¯ight systems and associated technology programs. It addresses the speci®c technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propul- sion, and subsystem operability enhancements. The recently concluded DC-XA test program demon- strated some of these technologies in ground and ¯ight tests. Contracts were awarded recently for both the X-33 and X-34 ¯ight demonstrator systems. The Orbital Sciences Corporation X-34 ¯ight test ve- hicle will demonstrate an air-launched reusable vehicle capable of ¯ight to speeds of Mach 8.
    [Show full text]
  • Cape Canaveral Air Force Station Support to Commercial Space Launch
    The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs;
    [Show full text]
  • Space Launch System (Sls) Motors
    Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS.
    [Show full text]
  • IAC-17-D2.4.3 Page 1 of 18 IAC-17
    68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017. Copyright ©2017 by DLR-SART. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-17- D2.4.3 Evaluation of Future Ariane Reusable VTOL Booster stages Etienne Dumonta*, Sven Stapperta, Tobias Eckerb, Jascha Wilkena, Sebastian Karlb, Sven Krummena, Martin Sippela a Department of Space Launcher Systems Analysis (SART), Institute of Space Systems, German Aerospace Center (DLR), Robert Hooke Straße 7, 28359 Bremen, Germany b Department of Spacecraft, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Gottingen, Germany *[email protected] Abstract Reusability is anticipated to strongly impact the launch service market if sufficient reliability and low refurbishment costs can be achieved. DLR is performing an extensive study on return methods for a reusable booster stage for a future launch vehicle. The present study focuses on the vertical take-off and vertical landing (VTOL) method. First, a restitution of a flight of Falcon 9 is presented in order to assess the accuracy of the tools used. Then, the preliminary designs of different variants of a future Ariane launch vehicle with a reusable VTOL booster stage are described. The proposed launch vehicle is capable of launching a seven ton satellite into a geostationary transfer orbit (GTO) from the European spaceport in Kourou. Different stagings and propellants (LOx/LH2, LOx/LCH4, LOx/LC3H8, subcooled LOx/LCH4) are considered, evaluated and compared. First sizing of a broad range of launcher versions are based on structural index derived from existing stages.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Paper Session IA-Shuttle-C Heavy-Lift Vehicle of the 90'S
    The Space Congress® Proceedings 1989 (26th) Space - The New Generation Apr 25th, 2:00 PM Paper Session I-A - Shuttle-C Heavy-Lift Vehicle of the 90's Robert G. Eudy Manager, Shuttle-C Task Team, Marshall Space Flight Center Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Eudy, Robert G., "Paper Session I-A - Shuttle-C Heavy-Lift Vehicle of the 90's" (1989). The Space Congress® Proceedings. 5. https://commons.erau.edu/space-congress-proceedings/proceedings-1989-26th/april-25-1989/5 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SHUTTLE-C HEAVY-LIFT VEHICLE OF THE 90 ' S Mr. Robert G. Eudy, Manager Shuttle-C Task Team Marshall Space Flight Center ABSTRACT United States current and planned space activities identify the need for increased payload capacity and unmanned flight to complement the existing Shuttle. To meet this challenge the National Aeronautics and Space Administration is defining an unmanned cargo version of the Shuttle that can give the nation early heavy-lift capability. Called Shuttle-C, this unmanned vehicle is a natural, low-cost evolution of the current Space Shuttle that can be flying 100,000 to 170,000 pound payloads by late 1994. At the core of Shuttle-C design philosophy is the principle of evolvement from the United State's Space Transportation System.
    [Show full text]
  • Corporate Initiative for Space Tourism
    UNIVERSITY OF LJUBLJANA FACULTY OF ECONOMICS MASTER’S THESIS “OUT OF THIS WORLD” BUSINESS: CORPORATE INITIATIVE FOR SPACE TOURISM Ljubljana, March 2014 JAN KRIŠTOF RAMOVŠ AUTHORSHIP STATEMENT The undersigned Jan K. Ramovš, a student at the University of Ljubljana, Faculty of Economics, (hereafter: FELU), declare that I am the author of the master’s thesis entitled “Out Of This World” Business: Corporate Initiative for Space Tourism, written under supervision of Prof. Dr. Metka Tekavčič. In accordance with the Copyright and Related Rights Act (Official Gazette of the Republic of Slovenia, Nr. 21/1995 with changes and amendments) I allow the text of my master’s thesis to be published on the FELU website. I further declare the text of my master’s thesis to be based on the results of my own research; the text of my master’s thesis to be language-edited and technically in adherence with the FELU’s Technical Guidelines for Written Works which means that I o cited and / or quoted works and opinions of other authors in my master’s thesis in accordance with the FELU’s Technical Guidelines for Written Works and o obtained (and referred to in my master’s thesis) all the necessary permits to use the works of other authors which are entirely (in written or graphical form) used in my text; to be aware of the fact that plagiarism (in written or graphical form) is a criminal offence and can be prosecuted in accordance with the Criminal Code (Official Gazette of the Republic of Slovenia, Nr. 55/2008 with changes and amendments); to be aware of the consequences a proven plagiarism charge based on the submitted master’s thesis could have for my status at the FELU in accordance with the relevant FELU Rules on Master’s Thesis.
    [Show full text]