Minutisphaerales (Dothideomycetes, Ascomycota): a New Order of Freshwater Ascomycetes Including a New Family, Minutisphaeraceae

Total Page:16

File Type:pdf, Size:1020Kb

Minutisphaerales (Dothideomycetes, Ascomycota): a New Order of Freshwater Ascomycetes Including a New Family, Minutisphaeraceae Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA By: Huzefa A. Raja, Tamam El-Elimat, Nicholas H. Oberlies, Carol A. Shearer, Andrew N. Miller, Kazuaki Tanaka, Akira Hashimoto, Jacques Fournier Raja, H.A., El-Elimat, T., Oberlies, N.H., Shearer, C.A., Miller, A.N., Tanaka, K., Hashimoto, A., Fournier, J. 2015. Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA. Mycologia. 107,4: 845-62. doi: 10.3852/15-013. Made available courtesy of Mycological Society of America: http://dx.doi.org/10.3852/15- 013 ***© Mycological Society of America. Reprinted with permission. No further reproduction is authorized without written permission from Mycological Society of America. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: Minutisphaera is a recently established genus of freshwater Dothideomycetes characterized by small, globose to subglobose or apothecioid, erumpent to superficial, brown ascomata; fissitunicate, eight-spored, ovoid to obclavate asci; and 1–2-septate, clavate to broadly fusiform, hyaline to pale brown ascospores with or without a gelatinous sheath and filamentous appendages. The genus currently contains two species: M. fimbriatispora, the type species, and M. japonica. The higher-level phylogenetic relationship of Minutisphaerawithin the Dothideomycetes currently is unresolved. To establish the phylogenetic position of Minutisphaera within the Dothideomycetes and evaluate the phylogenetic affinities of newly collected Minutisphaera-like taxa, we sequenced three rDNA regions—18S, ITS1-5.8SITS2 (ITS) and 28S nuc rDNA, and a protein-coding gene, MCM7, for newly collected strains of Minutisphaera.Based on maximum likelihood and Bayesian analyses of a combined dataset (18S and 28S) composed of 167 taxa, a more refined dataset (28S and MCM7) comprising 52 taxa and a separate ITS dataset, and an examination of morphology, we describe and illustrate two new species of Minutisphaera. TheMinutisphaera clade was strongly supported within the Dothideomycetes with likelihood and Bayesian statistics but did not share phylogenetic affinities with any existing taxonomic group within the Dothideomycetes. We therefore establish a new order, Minutisphaerales, and new family, Minutisphaeraceae, for this monophyletic clade of freshwater ascomycetes. Chemical analysis of the organic extract M. aspera (G427) resulted in isolation and characterization of five known secondary metabolites, of which four were dipeptides (1–4) and one an aromatic polyketide (5). Conversely, two aromatic polyketides (5, 6) were isolated and identified from the organic extract of M. parafimbriatispora(G156-4). The isolated compounds were tested for their antimicrobial activity against an array of bacteria and fungi. Compound 6 showed promising activity against Staphylococcus aureus and Mycobacterium smegmatis with minimal inhibitory concentration values of 30 and 60 μg/mL, respectively. Keywords: Aquatic | microfungi | submerged wood | systematics Article: ***Note: Full text of article below Mycologia, 107(4), 2015, pp. 845–862. DOI: 10.3852/15-013 # 2015 by The Mycological Society of America, Lawrence, KS 66044-8897 Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA Huzefa A. Raja1 and MCM7) comprising 52 taxa and a separate ITS Tamam El-Elimat dataset, and an examination of morphology, we Nicholas H. Oberlies describe and illustrate two new species of Minuti- Department of Chemistry and Biochemistry, University sphaera. The Minutisphaera clade was strongly sup- of North Carolina, Greensboro, North Carolina 27402 ported within the Dothideomycetes with likelihood Carol A. Shearer and Bayesian statistics but did not share phylogenetic Department of Plant Biology, University of Illinois, affinities with any existing taxonomic group within Urbana, Illinois 61801 the Dothideomycetes. We therefore establish a new order, Minutisphaerales, and new family, Minuti- Andrew N. Miller sphaeraceae, for this monophyletic clade of freshwa- Illinois Natural History Survey, University of Illinois, ter ascomycetes. Chemical analysis of the organic Champaign, Illinois 61820 extract M. aspera (G427) resulted in isolation and Kazuaki Tanaka characterization of five known secondary metabolites, Faculty of Agriculture and Life Sciences, Hirosaki of which four were dipeptides (1–4) and one an University, Bunkyo-cho, Hiroskaki, Aomori 036-8561, aromatic polyketide (5). Conversely, two aromatic Japan polyketides (5, 6) were isolated and identified from Akira Hashimoto the organic extract of M. parafimbriatispora (G156-4). The United Graduate School of Agricultural Sciences, The isolated compounds were tested for their Iwate University, 18-8 Ueda 3 chome, Morioka 020- antimicrobial activity against an array of bacteria 8550, Japan and fungi. Compound 6 showed promising activity Jacques Fournier against Staphylococcus aureus and Mycobacterium Las Muros, 09420 Rimont, France smegmatis with minimal inhibitory concentration values of 30 and 60 mg/mL, respectively. Key words: Aquatic, microfungi, submerged Abstract: Minutisphaera is a recently established wood, systematics genus of freshwater Dothideomycetes characterized by small, globose to subglobose or apothecioid, INTRODUCTION erumpent to superficial, brown ascomata; fissituni- cate, eight-spored, ovoid to obclavate asci; and 1–2- The freshwater Dothideomycetes currently comprises septate, clavate to broadly fusiform, hyaline to pale 200 taxa (32%) of ca. 622 ascomycetes reported from brown ascospores with or without a gelatinous sheath freshwater habitats (Shearer et al. 2014). In the past and filamentous appendages. The genus currently few years molecular phylogenetic studies have ad- contains two species: M. fimbriatispora,thetype vanced our understanding of the systematics of species, and M. japonica. The higher-level phyloge- freshwater Dothideomycetes (Inderbitzin et al. 2001, netic relationship of Minutisphaera within the Dothi- Schoch et al. 2009, Shearer et al. 2009, Hirayama et al. deomycetes currently is unresolved. To establish the 2010, Ferrer et al. 2011, Suetrong et al. 2011, Hyde et phylogenetic position of Minutisphaera within the al. 2013, Shearer et al. 2014). These studies have Dothideomycetes and evaluate the phylogenetic indicated that members of freshwater Dothideomy- affinities of newly collected Minutisphaera-like taxa, cetes are (i) distinct from terrestrial Dothideomycete we sequenced three rDNA regions—18S, ITS1-5.8S- lineages, (ii) have adapted to freshwater habitats ITS2 (ITS) and 28S nuc rDNA, and a protein-coding numerous times and (iii) most have phylogenetic gene, MCM7, for newly collected strains of Minuti- affinites to the subclass Pleosporomycetidae. Only sphaera. Based on maximum likelihood and Bayesian one taxon was described originally from freshwater analyses of a combined dataset (18S and 28S) (e.g. Mycosphaerella aquatica, Capnodiales) from composed of 167 taxa, a more refined dataset (28S submerged wood in a water cooling tower. Three other Mycosphaerella spp. reported from freshwater Submitted 20 Jan 2015; accepted for publication 23 Apr 2015. are related to the Dothideomycetidae (Shearer and 1 Corresponding author. E-mail: [email protected] Raja 2014), whereas only a few taxa are related to the 845 846 MYCOLOGIA Tubeufiales, Pleosporomycetidae (Boonmee et al. The goals of this study were to: (i) describe and 2014). Despite the progress in our understanding of illustrate the newly collected Minutisphaera spp. from the systematics of Dothideomycetes (Hyde et al. 2013) freshwater habitats in the Piedmont region; (ii) place and specifically freshwater Dothideomycetes (Shearer these newly collected taxa into a molecular phyloge- et al. 2009, Shearer et al. 2014) a number of newly netic framework by constructing a molecular phylog- described and/or previously reported taxa from eny of Minutisphaera spp. using partial 18S, internal freshwater are currently incertae sedis and their transcribed spacer regions (ITS) and partial 28S family and ordinal level positions within the Dothi- rDNA sequences, as well as the minichromosome deomycetes remain obscure (Hyde et al. 2013). One maintenance protein complex 7 gene (MCM7), to such freshwater dothideomycete genus is Minuti- better understand both the species as well as higher- sphaera. level relationships of Minutisphaera spp. within the Minutisphaera Shearer, A.N. Mill & Ferrer, typified Dothideomycetes; and (iii) screen isolates of newly by M. fimbriatispora Shearer, A.N. Mill & Ferrer collected species for secondary metabolites to de- originally was described from submerged wood in termine the relationships between secondary prod- freshwater habitats from USA (Ferrer et al. 2011). ucts of both screened and unscreened isolates. More recently a new species of Minutisphaera, M. japonica, was described and illustrated from Japan. MATERIALS AND METHODS This species is phylogenetically related to M. fimbria- tispora based on rDNA sequence comparisons (Raja et Collection, morphological examination and fungal isolates.— al. 2013b). In addition to the newly found M. Methods of collection, isolation and morphological
Recommended publications
  • Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
    J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work.
    [Show full text]
  • Based on a Newly-Discovered Species
    A peer-reviewed open-access journal MycoKeys 76: 1–16 (2020) doi: 10.3897/mycokeys.76.58628 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species Xinhao Li1, Hai-Xia Wu1, Jinchen Li1, Hang Chen1, Wei Wang1 1 International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China Corresponding author: Hai-Xia Wu ([email protected], [email protected]) Academic editor: N. Wijayawardene | Received 15 September 2020 | Accepted 25 November 2020 | Published 17 December 2020 Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628 Abstract During the field studies, aTranslucidithyrium -like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morpho- logical observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated diver- gence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Schoch CL, Crous PW, Groenewald JZS, Boehm EWA, Burgessti
    Schoch CL, Crous PW, Groenewald JZS, Boehm EWA, BurgessTI, Gruyter J De, Hoog GS De, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, Hoog GS De, Groenewald JZ (2009). Phylogenetic lineages in the Capnodiales. Studies in Mycology 64: 17–47. Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM, Marincowitz S, Spatafora JW, Schoch CL (2009). A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Studies in Mycology 64: 49–83. Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J De, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Hyde KD (2009). Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85–102. Mugambi GK, Huhndorf SM (2009). Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota). Studies in Mycology 64: 103–121. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, Hoog GS De (2009).
    [Show full text]
  • Ectomycorrhizal Fungal Community Structure in a Young Orchard of Grafted and Ungrafted Hybrid Chestnut Saplings
    Mycorrhiza (2021) 31:189–201 https://doi.org/10.1007/s00572-020-01015-0 ORIGINAL ARTICLE Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings Serena Santolamazza‑Carbone1,2 · Laura Iglesias‑Bernabé1 · Esteban Sinde‑Stompel3 · Pedro Pablo Gallego1,2 Received: 29 August 2020 / Accepted: 17 December 2020 / Published online: 27 January 2021 © The Author(s) 2021 Abstract Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting signifcantly infuenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a diferent ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips.
    [Show full text]
  • Ectomycorrhizal Ecology Is Imprinted in the Genome of the Dominant Symbiotic Fungus Cenococcum Geophilum Martina Peter, Annegret Kohler, Robin A
    Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum Martina Peter, Annegret Kohler, Robin A. Ohm, Alan Kuo, Jennifer Kruetzmann, Emmanuelle Morin, Matthias Arend, Kerrie W. Barry, Manfred Binder, Cindy Choi, et al. To cite this version: Martina Peter, Annegret Kohler, Robin A. Ohm, Alan Kuo, Jennifer Kruetzmann, et al.. Ectomycor- rhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, Nature Publishing Group, 2016, 7, pp.1-15. 10.1038/ncomms12662. hal- 01439098 HAL Id: hal-01439098 https://hal.archives-ouvertes.fr/hal-01439098 Submitted on 7 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ARTICLE Received 4 Nov 2015 | Accepted 21 Jul 2016 | Published 7 Sep 2016 DOI: 10.1038/ncomms12662 OPEN Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum Martina Peter1,*, Annegret Kohler2,*, Robin A. Ohm3,4, Alan Kuo3, Jennifer Kru¨tzmann5, Emmanuelle Morin2, Matthias Arend1, Kerrie W. Barry3, Manfred Binder6, Cindy Choi3, Alicia Clum3, Alex Copeland3, Nadine Grisel1, Sajeet Haridas3, Tabea Kipfer1, Kurt LaButti3, Erika Lindquist3, Anna Lipzen3, Renaud Maire1, Barbara Meier1, Sirma Mihaltcheva3, Virginie Molinier1, Claude Murat2, Stefanie Po¨ggeler7,8, C.
    [Show full text]
  • Syllabus 2017
    BI 432/532 Introductory Mycology Fall 2017 Credits: 5 Prerequisites: BI 214, 253 or instructor’s consent Required textbook: Introduction to Fungi, 3rd Ed. J. Webster and R. S. Weber. Cambridge Univ. Press. 2007. Lab manual: Mushrooms Demystified, 2nd Ed. D. Arora. Ten Speed Press. 1986. Mushrooms of the Pacific Northwest, Trudell and Ammirati, Timber Press, 2009. Additional learning resources will be provided. Reference materials on reserve: Webster and Weber, Introduction to Fungi Arora, Mushrooms Demystified Instructor: Jeff Stone, Office hours MF 11:30–12:30, 1600–1700 in KLA 5 & by arrangement [email protected] GE: Hannah Soukup, Office hours TBA, [email protected] Undergraduate Teaching Assistant Kylea Garces, [email protected] Lectures: MWF 10:00 – 10:50 Labs MF 13:00 – 15:50 Final Exam Dec 8, 10:15 Course description An overview of the kingdom Fungi together with fungus-like organisms traditionally studied by mycologists. Students will learn the unique biological (life history, physiological, structural, ecological, reproductive) characteristics that distinguish Fungi (and fungus-like taxa) from other organisms. Ecological roles and interactions of fungi will be emphasized within the organizational framework of the most recent findings of molecular phylogenetics. Students will learn the defining biological characteristics of the phyla of kingdom Fungi, and of several of the most important taxa (classes, orders, genera) within these. The unique aspects of each taxonomic group as agents of plant, animal, and human disease, as partners in symbioses with various organisms, and as mediators of ecological processes will be discussed in detail. In the laboratory portion of the class, students will learn to identify distinctive diagnostic structures of fungi, learn to differentiate various fungal taxa, and how to identify genera and species of macro- and microfungi.
    [Show full text]
  • A Taxonomic Revision and Phylogenetic Reconstruction of the Jahnulales (Dothideomycetes), and the New Family Manglicolaceae
    Fungal Diversity (2011) 51:163–188 DOI 10.1007/s13225-011-0138-5 A taxonomic revision and phylogenetic reconstruction of the Jahnulales (Dothideomycetes), and the new family Manglicolaceae Satinee Suetrong & Nattawut Boonyuen & Ka-Lai Pang & Jureerat Ueapattanakit & Anupong Klaysuban & Veera Sri-indrasutdhi & Somsak Sivichai & E. B. Gareth Jones Received: 30 August 2011 /Accepted: 30 September 2011 /Published online: 11 November 2011 # Kevin D. Hyde 2011 Abstract Genera assigned to the Jahnulales are mor- are rejected (Speiropsis irregularis, Xylomyces aquaticus, X. phologically diverse, especially in ascospores equipped elegans) while the phylogenetic placement of 6 Xylomyces,7 with or without appendages, sheaths or apical caps. They Speiropsis,1Brachiosphaera and 1 Manglicola require are predominantly freshwater fungi occurring on woody molecular data to confirm their placement in the order. substrata, with Manglicola guatemalensis, Xylomyces Sequences are derived from ex-holotype isolates and new chlamydosporus and X. rhizophorae the only species collections made in Thailand. Most taxa are included in the known from marine habitats. The order Jahnulales with family Aliquandostipitaceae and a new family Manglicola- 4 teleomorphic genera: Jahnula (15 species), Aliquandos- ceae is erected for the marine ascomycete Manglicola tipite (5), Megalohypha (1), Manglicola (2) and the guatemalensis with its large ascomata (1,100–1,750×290– anamorphic genera Brachiosphaera (2), Speiropsis (9), 640 μm), wide ostioles and ascospores that are fusiform, Xylomyces (8), amounting to a total of 42 species, is unequally one-septate with the apical cell larger than the reviewed and nomenclatural changes are proposed. Twenty turbinate basal cell and bear apical gelatinous appendages. species are treated at the molecular level, with 94 sequences, The genus Jahnula is polyphyletic grouping in three clades 13 of which are newly generated for this review.
    [Show full text]
  • 1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
    1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales.
    [Show full text]
  • Freshwater Ascomycetes: Minutisphaera (Dothideomycetes) Revisited, Including One New Species from Japan
    Mycologia, 105(4), 2013, pp. 959–976. DOI: 10.3852/12-313 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Freshwater Ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan Huzefa A. Raja1 likelihood and Bayesian analyses of combined 18S Nicholas H. Oberlies and 28S, and separate ITS sequences, as well as Mario Figueroa examination of morphology, we describe and illus- Department of Chemistry and Biochemistry, University trate a new species, M. japonica. One collection from of North Carolina at Greensboro, Greensboro, North North Carolina is confirmed as M. fimbriatispora, Carolina 27412 while two other collections are Minutisphaera-like Kazuaki Tanaka fungi that had a number of similar diagnostic Kazuyuki Hirayama morphological characters but differed only slightly Akira Hashimoto in ascospore sizes. The phylogeny inferred from the Faculty of Agriculture and Life Sciences, Hirosaki internal transcribed spacer region suggested that two University, Bunkyo-cho, Hiroskaki, Aomori 036-8561, out of the three North Carolina collections may be Japan novel and perhaps cryptic species within Minuti- Andrew N. Miller sphaera. Organic extracts of Minutisphaera from USA, Illinois Natural History Survey, University of Illinois, M. fimbriatispora (G155-1) and Minutisphaera-like Champaign, Illinois 61820 taxon (G156-1), revealed the presence of palmitic acid and (E)-hexadec-9-en-1-ol as major chemical Steven E. Zelski constituents. We discuss the placement of the Minuti- Carol A. Shearer sphaera
    [Show full text]