Fecundity of the Arrow Crab Stenorhynchus Seticornis in the Southern Brazilian Coast

Total Page:16

File Type:pdf, Size:1020Kb

Fecundity of the Arrow Crab Stenorhynchus Seticornis in the Southern Brazilian Coast See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231788899 Breeding period of the arrow crab Stenorhynchus seticornis from Couves Island, south-eastern Brazilian coast Article in Journal of the Marine Biological Association of the UK · December 2002 DOI: 10.1017/S0025315402006598 CITATIONS READS 18 79 1 author: Valter Cobo Universidade de Taubaté 62 PUBLICATIONS 605 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Hermit crabs from Western Atlantic View project All content following this page was uploaded by Valter Cobo on 09 December 2015. The user has requested enhancement of the downloaded file. J. Mar. Biol. Ass. U.K. (2003), 83,979^980 Printed in the United Kingdom Fecundity of the arrow crab Stenorhynchus seticornis in the southern Brazilian coast O Claudia Melissa Okamori* and Valter Jose¤Cobo *Departamento de Biologia, Universidade de Taubate¤öUNITAU, Pc° a. Marcelino Monteiro, 63, 12030-010, Taubate¤,(SP)Brasil. E-mail: [email protected] O Departamento de Biologia, Universidade de Taubate¤öUNITAU, Pc° a. Marcelino Monteiro, 63, 12030-010, Taubate¤,(SP)Brasiland Group of Studies on Crustacean Biology, Ecology and CultureöNEBECC. E-mail: [email protected] The arrow crab Stenorhynchus seticornis (Brachyura, Majidae), is a common inhabitant of the rocky subtidal along the Brazi- lian coast. Fecundity and the in£uence of environmental variables on egg production are investigated in this study. Information on egg size and egg loss through incubation are also provided. Monthly samples were conducted using SCUBA diving, from January to December 1998 in the Ubatuba region (23825025@S^44852003@W), south-eastern Brazilian coast. Early broods were used for the estimation of size-speci¢c relationships of fecundity. Egg loss was assessed by comparing average egg numbers of early and late broods. The fecundity was estimated in 621.1 Æ339.6 eggs, with an average diameter of 0.48 Æ0.1 and 0.57 Æ0.1mm for early and late eggs, respectively. The number of eggs produced was apparently constant year-round. No signi¢cant di¡erences were recorded among monthly fecundity values. The variation of abiotic factors did not show any rela- tionship with temporal variability of fecundity, suggesting that the environmental e¡ect in egg production is slight at best. Preliminary studies on the fecundity of crustaceans showed a to the laboratory of Zoology at the Universidade de Taubate¤ö positive relationship between fecundity and size of the parental UNITAU. female (e.g. Hynes, 1954). In fact, the size of the breeding female At the laboratory, each ovigerous female was measured (cara- has been pointed out as a key variable determining the number pace width, CW) with a Vernier caliper, and sorted in 1-mm of eggs extruded per batch and, thus, the reproductive output of size-classes (CW). The egg mass of each ovigerous female was brachyuran females. The weight of the egg mass is usually detached from the pleopods and the eggs were counted under a constrained to about 10% of the female’s somatic weight, since dissecting microscope with a manual counter. A sub-sample of the space enclosed in the cephalotorax for the accumulation of ¢ve eggs was taken in each case and measured using a micro- yolk is limited (Hines, 1982). metric scale. Fecundity is commonly measured as the number of eggs Only counts of early eggs were used to estimate the size- produced in each egg batch, and is described as a function of speci¢c fecundity relationship to avoid underestimation due to body size (Corey & Reid, 1991). Yet, it is convenient to distin- egg loss. Both early and late broods were used to assess egg loss. guish fecundity estimates according to the stage of egg produc- For this, median values were compared using the analysis of tion, i.e. potential fecundity (number of oocytes stored in the variance (ANOVA) and the Student’s t-test parametric proce- ovaries), realized fecundity (number of extruded eggs attached) dures (Zar, 1999). and actual fecundity (number of larvae released) (Steachey & The embryonic development stages were determined Somers, 1995; Luppi, et al., 1997). according to Boolootian et al. (1959), but adapted to this species The arrow crab Stenorhynchus seticornis is commonly found in as follows: the shallow subtidal on rock bottoms, corals, calcareous algae, ö initial stage¼the egg is completely ¢lled with yolk; no sign and also on soft sediments, such as shelly gravel and sand. This of cleavage nor cellular di¡erentiation; species distribution is restricted to the western Atlantic from ö ¢nal stage¼the yolk is restricted to a reduced patch; the North Carolina (USA) to Argentina. It was reported from embryo is fully di¡erentiated, with clear segmentation of shallow waters to great depths (Melo, 1996). limbs and developed eyes. In spite of being a common inhabitant of hard bottoms, several aspects of its biology remain poorly studied. In this Average values of temperature and salinity were provided by paper, the realized fecundity of the arrow crab is examined for a the LabMet at the Instituto Oceanogra¤¢co da Universidade de population from the south-eastern Brazilian coast. The role of Sa‹ oPauloöUSP. The section of climatology of the Instituto temperature, salinity and luminosity is also assessed by sampling Agrono“ mico de CampinasöBase de Ubatuba, provided the over a 1-y-period. In addition, we also report information on light intensity data. The relationship between the seasonal varia- egg size and loss during incubation. This information may tion of fecundity and the variation of environmental factors was contribute to the understanding of the reproductive biology of tested using the Pearson’s coe⁄cient. The 5% statistical signi¢- the arrow crab in south-eastern Brazil. cance level was used. Monthly samples were obtained from January to December A total of 113 ovigerous females was measured, within an 1998 at Couves Island, Ubatuba, south-eastern Brazilian coast average size of 9.24 Æ1.52 mm CW, spanning eight size-classes, (23825025@S44852003@W). Crabs were collected by hand, using from 6.0 to 14.0 mm CW.The number of eggs ranged from 69 to SCUBA diving with a monthly catch-e¡ort of approximately 1850 eggs. From the whole sample, 95 and 18 ovigerous females 4 h. Each crab was packed in plastic bags and transferred frozen were found with initial and ¢nal broods, respectively. Journal of the Marine Biological Association of the United Kingdom (2003) 980 C.M. Okamori and V.J. Cobo Fecundity of the Stenorhynchus seticornis According to Bryant & Hartnoll (1995), the terminal moult precedes the ¢rst oviposition in Inachus dorsettensis (Pennant, 1777). It is characterized by a high moult increment compared to the juvenile moults, and the gonads only ripen after moulting. There is thus a delay between ecdysis and brooding. Due to the high energetic cost of the terminal moult, the resources allo- cated for reproduction are limited and, therefore, the ¢rst brood is typically smaller. The egg increase during embryogenesis, as observed for S. seticornis, is a result of water uptake, a common feature in brachyurans (Wear, 1974). The eggs of S. seticornis are relatively large if compared to Pinotheres ostreum (Say, 1817), which produces the smallest eggs within the Brachyura (0.25 mm), but similar to Figure 1. Box^whisker plot of the fecundity average related to the the size observed in Geryon fenneri Manning & Holthuis, 1984, crab size-classes. (0.56 mm) (see Hines, 1982). There is often an inverse relation- ship between size and number of eggs produced. The arrow crab S. seticornis produces large eggs and small clutches, a strategy directly related to the type of larval development. Choy (1988) points out that large eggs ensure a long incubation period and provide endogenous food resources for larvae, thus reducing early larval mortality. The authors are grateful to the Universidade de Taubate¤ö UNITAU, for the ¢nancial support (P# 251/2001-PRPPG) and the OMNI-MARE Dive Center, for the logistical facilities dur- ing the samples programmes. Our special thanks to Dr Itamar Alves Martins, for his assistance during the dive sessions. REFERENCES Figure 2. Relationship between egg number and crab size (carapace width). Boolootian, R.A., Farmanfarmaian, A. & Turcker, J., 1959. Reproductive cycles of ¢ve west coast crabs. Physiological Zo˛logy, 4, 213^220. Average fecundity for females carrying early embryos was Bryant, A.D. & Hartnoll, R.G., 1995. Reproductive investment 621.1 Æ339.6 eggs. The values of mean fecundity in each size- in two spider crabs with di¡erent breeding strategies. Journal class (Figure 1) and the regression analysis ¢tting the allometric of Experimental Marine Biology and Ecology, 188,261^275. model to data (E ¼1.27CW 2.7, r2 ¼0.43) (Figure 2), show a close Choy, S.C., 1988. Reproductive biology of Liocarcinus puber and relationship between size and fecundity, despite the relatively L. holsatus (Decapoda, Brachyura, Portunidae) from the low coe⁄cient of determination obtained. Gower Peninsula, South Wales. Marine Ecology, 9, 227^241. Average number of eggs in ¢nal clutches was 474.61 Æ236.7, Corey, S. & Reid, D.M., 1991. Comparative fecundity of which did not di¡er signi¢cantly from initial clutches (Student’s decapod Crustacean. I. The fecundity of thirty-three species t-test, P40.05). Yet, the average number of eggs in early egg of nine families of caridean shrimp. Crustaceana, 60, 271^293. batches was 23% higher than the mean number of eggs in late Hines, A.H., 1982. Allometric constraints and variable of repro- ductive e¡ort in brachyuran crabs. Marine Biology, 69,309^ ones. 320. During the sampled period, no di¡erences were found among Hynes, H.B.N., 1954.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Molecular Genetics of Crustacean Feeding Appendage Development and Diversification
    seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 11, 2000: pp. 427–435 doi: 10.1006/scdb.2000.0196, available online at http://www.idealibrary.com on Molecular genetics of crustacean feeding appendage development and diversification William E. Browne and Nipam H. Patel ⇤ Arthropods dominate our seas, land, and air and have done groups, crustaceans display the greatest diversity of so for hundreds of millions of years. Among the arthropods, body plans and limb morphologies. crustaceans present us with a rich history of morphological Generally, crustacean limbs fall between two mor- change, much of which is still represented among extant phological extremes (Figure 1). At one extreme is the forms. Crustacea largely interact with their environment lobed phyllopodous appendage composed of limb via their appendages; thus vast amounts of variation exist branches that are broad and laterally compressed among the different appendages of a single individual [Figure 1(a)]. At the other extreme is the seemingly and between appendages from different species. Comparative uniramous appendage which appears to be one multi- studies of crustacean appendage development present us with articulated rod where all other limb branches have an important story regarding the evolution of morphology been eliminated or greatly reduced [Figure 1(c)]. over both relatively short (a few million years) and relatively The ancestral state of the crustacean limb most likely long (a few hundred million years) evolutionary time scales. was neither a strictly phyllopodous limb nor a strictly Recent studies have used the genetic and molecular data from uniramous limb but a biramous limb composed of Drosophila development to try to understand the molecular two primary branches [Figure 1(b)].1 basis for some of the variations seen in crustacean limbs.
    [Show full text]
  • Reef Fishes Use Sea Anemones As Visual Cues for Cleaning Interactions with Shrimp
    Journal of Experimental Marine Biology and Ecology 416–417 (2012) 237–242 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp Lindsay K. Huebner ⁎, Nanette E. Chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, AL 36849, USA article info abstract Article history: Marine cleaners benefit diverse fish clients via removal of ectoparasites, yet little is known about how fishes Received 17 August 2011 locate small, inconspicuous cleaner shrimps on coral reefs. Pederson shrimp Ancylomenes pedersoni are effec- Received in revised form 19 December 2011 tive cleaners in the Caribbean Sea, and additionally form obligate associations with corkscrew sea anemones Accepted 5 January 2012 Bartholomea annulata, which also serve as hosts to a variety of other crustacean symbionts. We examined the Available online 24 January 2012 visual role of B. annulata to reef fishes during cleaning interactions with A. pedersoni by comparing anemone characteristics with fish visitation rates, and by manipulating the visibility of anemones and cleaner shrimp in Keywords: fi fi Ancylomenes pedersoni eld experiments using mesh covers. Rates of visitation by shes to cleaning stations increased primarily Cleaner shrimp with anemone body size and the total number of crustacean symbionts, but did not change consistently in Cleaning symbiosis response to covers. Fishes posed for cleaning at stations only where anemones remained visible, regardless Client fishes of whether shrimp were visible. Shrimp at stations where anemones were covered performed fewer cleaning Sea anemone interactions with fishes, as fishes did not continue to pose when anemones were not visible.
    [Show full text]
  • Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me.
    [Show full text]
  • Protection of Host Anemones by Snapping Shrimps: a Case for Symbiotic Mutualism?
    Symbiosis DOI 10.1007/s13199-014-0289-8 Protection of host anemones by snapping shrimps: a case for symbiotic mutualism? AmberM.McCammon& W. Randy Brooks Received: 4 June 2014 /Accepted: 29 July 2014 # Springer Science+Business Media Dordrecht 2014 Abstract The sea anemone Bartholomea annulata is an eco- especially common in marine environments (Roughgarden logically important member of Caribbean coral reefs which host 1975; Poulin and Grutter 1996;Côté2000). Mutualism; a a variety of symbiotic crustacean associates. Crustacean type of symbiotic relationship in which both partners derive exosymbionts typically gain protection from predation by dwell- some benefit from the association, are also widespread across ing with anemones. Concurrently, some symbionts may provide taxa (Boucher et al. 1982). The benefit(s) of symbiont- protection to their host by defending against anemone predators mediated protection of host species from microbial disease, such as the predatory fireworm, Hermodice carunculata,which parasites, and predators is increasingly evident (Haine 2008). can severely damage or completely devour prey anemones. Protection mechanisms are diverse and include various sym- Herein we show through both field and laboratory studies that biont derived chemical defenses (Haine 2008) as well as anemones hosting the symbiotic alpheid shrimp Alpheus armatus maintenance behaviors (Heil and McKey 2003; Stier et al. are significantly less likely to sustain damage by H. carunculata 2012) and defensive social interactions (Glynn 1980; Brooks than anemones without this shrimp. Our results suggest that the and Gwaltney 1993; Heil and McKey 2003;McKeonetal. association between A. armatus and B. annulata, although com- 2012). Previous studies have demonstrated that some crusta- plex because of the numerous symbionts involved, may be closer ceans will actively defend host cnidarians in their natural to mutualism on the symbiotic continuum.
    [Show full text]
  • For Review Only 19 20 21 504 Ampuero D, T
    Page 1 of 39 Zoological Journal of the Linnean Society 1 2 3 1 DNA identification and larval morphology provide new evidence on the systematic 4 5 2 position of Ergasticus clouei A. Milne-Edwards, 1882 (Decapoda, Brachyura, 6 7 3 Majoidea) 8 9 10 4 11 1 2 1 3 12 5 Marco-Herrero, Elena , Torres, Asvin P. , Cuesta, José A. , Guerao, Guillermo , Palero, 13 14 6 Ferran 4, & Abelló, Pere 5 15 16 7 17 18 8 1Instituto de CienciasFor Marinas Review de Andalucía (ICMAN-C OnlySIC), Avda. República 19 20 21 9 Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. 22 2 23 10 Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent 24 25 11 s/n, 07015 Palma, Spain. 26 27 12 3IRTA, Unitat de Cultius Aqüàtics. Ctra. Poble Nou, Km 5.5, 43540 Sant Carles de la 28 29 30 13 Ràpita, Tarragona, Spain. 31 4 32 14 Unitat Mixta Genòmica i Salut CSISP-UV, Institut Cavanilles Universitat de Valencia, 33 34 15 C/ Catedrático José Beltrán 2, 46980 Paterna, Spain. 35 36 16 5Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 37 38 17 Barcelona, Catalonia. Spain. 39 40 41 18 42 43 19 44 45 20 46 47 21 RUN TITLE: Larval evidence and the systematic position of Ergasticus clouei 48 49 50 22 51 52 53 54 55 56 57 58 59 60 Zoological Journal of the Linnean Society Page 2 of 39 1 2 3 23 ABSTRACT: The morphology of the complete larval stage series of the crab Ergasticus 4 5 24 clouei is described and illustrated based on larvae (zoea I, zoea II and megalopa) 6 7 25 captured from plankton samples taken in Mediterranean waters.
    [Show full text]
  • Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
    EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA).
    [Show full text]
  • Geographic Variation in the Association of Decapod Crabs with the Sea Urchin Diadema Antillarum in the Southeastern Caribbean Sea
    Nauplius 14(1): 31-35, 2006 31 Geographic variation in the association of decapod crabs with the sea urchin Diadema antillarum in the southeastern Caribbean Sea Floyd E. Hayes; Joseph V. L.; Gurley H. S. and Brian Y. Y. Wong (FEH, VLJ, HSG, BYYW) Department of Biology, Caribbean Union College, P.O. Box 175, Port of Spain, Trinidad and Tobago, West Indies. (FEH) Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies. (FEH) Current address: Department of Biology, Pacific Union College, 1 Angwin Ave., Angwin, CA 94508, USA. E-mail: [email protected] (VLJ) Quarry Hill, Liberta Village, Antigua and Barbuda, West Indies. E-mail: [email protected] (HSG) Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008-5410, USA. E-mail: [email protected] (BYYW) Department of Biology, Pacific Union College, 1 Angwin Ave., Angwin, CA 94508, USA. E-mail: [email protected] Abstract Geographic variation in the degree of association of decapod (brachyuran and anomuran) crabs with the sea urchin Diadema antillarum was investigated in fringing coral reefs (< 5 m deep) of Bequia, Mayreau, Grenada, Barbados and Tobago in the southeastern Caribbean Sea. Of 991 D. antillarum urchins inspected, 298 (30.07%) hosted decapod crabs with an average of 0.49 crabs per urchin. The frequency of crabs associating with urchins varied geographically, being highest in Bequia (56.68%) and Grenada (40.74%), and lowest in Barbados (6.73% and 5.63% at two sites) and Mayreau (13.33%). Of 487 crabs observed, Percnon gibbesi was the most common species (79.05% of all crabs) followed by unidentified (possibly Pagurus spp.) hermit crabs (8.21%), Stenorhynchus seticornis (6.98%), and unidentified greyish (5.75%) and reddish (0.82%) crabs (possibly Mithraculus coryphe and M.
    [Show full text]
  • Character Evolution in Light of Phylogenetic Analysis and Taxonomic Revision of the Zooxanthellate Sea Anemone Families Thalassianthidae and Aliciidae
    CHARACTER EVOLUTION IN LIGHT OF PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION OF THE ZOOXANTHELLATE SEA ANEMONE FAMILIES THALASSIANTHIDAE AND ALICIIDAE BY Copyright 2013 ANDREA L. CROWTHER Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson Daphne G. Fautin ________________________________ Paulyn Cartwright ________________________________ Marymegan Daly ________________________________ Kirsten Jensen ________________________________ William Dentler Date Defended: 25 January 2013 The Dissertation Committee for ANDREA L. CROWTHER certifies that this is the approved version of the following dissertation: CHARACTER EVOLUTION IN LIGHT OF PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION OF THE ZOOXANTHELLATE SEA ANEMONE FAMILIES THALASSIANTHIDAE AND ALICIIDAE _________________________ Chairperson Daphne G. Fautin Date approved: 15 April 2013 ii ABSTRACT Aliciidae and Thalassianthidae look similar because they possess both morphological features of branched outgrowths and spherical defensive structures, and their identification can be confused because of their similarity. These sea anemones are involved in a symbiosis with zooxanthellae (intracellular photosynthetic algae), which is implicated in the evolution of these morphological structures to increase surface area available for zooxanthellae and to provide protection against predation. Both
    [Show full text]
  • A Checklist of Marine Plants and Animals of the South Coast of the Dominican Republic
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266864274 A checklist of marine plants and animals of the south coast of the Dominican Republic. Article in Caribbean Journal of Science CITATIONS READS 12 48 15 authors, including: Ernest H. Williams, Jr Ana Teresa Bardales University of Puerto Rico at Arecibo University of Miami 153 PUBLICATIONS 2,733 CITATIONS 11 PUBLICATIONS 278 CITATIONS SEE PROFILE SEE PROFILE Roy A. Armstrong University of Puerto Rico at Mayagüez 96 PUBLICATIONS 1,340 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Education and Training View project Life cycle and life history strategies of parasitic Crustacea View project All content following this page was uploaded by Ernest H. Williams, Jr on 26 January 2016. The user has requested enhancement of the downloaded file. A CHECKLIST OF MARINE PLANTS AND ANIMALS OF THE SOUTH COAST OF THE DOMINICAN REPUBLIC E RNEST H. WILLIAMS , JR ., ILEANA C LAVIJO, JOSEPH J. KIMMEL, P ATRICK L. COLIN, CECILIO DIAZ CARELA, ANA T. BARDALES, R OY A. ARMSTRONG, LUCY B UNKLEY W ILLIAMS, R ALF H. BOULON, AND J ORGE R. GARCIA Department of Marine Sciences University of Puerto Rico, Mayaguez, Puerto Rico 00708 INTRODUCTION study areas were selected (Fig. 1): (1) La Cale- ta, 18°26.2’N, 69°41.3’W, (2) Isla Saona, RESEARCH cruise on the R/V Crawford to 18°06’N, 68°40W (3) Isla Catalina, 18°21.4’W , A the South Coast of the Dominican Rep- 69°01‘W.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]