Glyceraldehyde-3-Phosphate Dehydrogenase on the Surface of Group a Streptococci Is Also an ADP-Ribosylating Enzyme VUAYKUMAR PANCHOLI* and VINCENT A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isocitrate Dehydrogenase Activity Assay Kit (MAK062)
Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening. -
Isocitrate Dehydrogenase 1 (NADP+) (I5036)
Isocitrate Dehydrogenase 1 (NADP+), human recombinant, expressed in Escherichia coli Catalog Number I5036 Storage Temperature –20 °C CAS RN 9028-48-2 IDH1 and IDH2 have frequent genetic alterations in EC 1.1.1.42 acute myeloid leukemia4 and better understanding of Systematic name: Isocitrate:NADP+ oxidoreductase these mutations may lead to an improvement of (decarboxylating) individual cancer risk assessment.6 In addition other studies have shown loss of IDH1 in bladder cancer Synonyms: IDH1, cytosolic NADP(+)-dependent patients during tumor development suggesting this may isocitrate dehydrogenase, isocitrate:NADP+ be involved in tumor progression and metastasis.7 oxidoreductase (decarboxylating), Isocitric Dehydrogenase, ICD1, PICD, IDPC, ICDC, This product is lyophilized from a solution containing oxalosuccinate decarboxylase Tris-HCl, pH 8.0, with trehalose, ammonium sulfate, and DTT. Product Description Isocitrate dehydrogenase (NADP+) [EC 1.1.1.42] is a Purity: ³90% (SDS-PAGE) Krebs cycle enzyme, which converts isocitrate to a-ketoglutarate. The flow of isocitrate through the Specific activity: ³80 units/mg protein glyoxylate bypass is regulated by phosphorylation of isocitrate dehydrogenase, which competes for a Unit definition: 1 unit corresponds to the amount of 1 common substrate (isocitrate) with isocitrate lyase. enzyme, which converts 1 mmole of DL-isocitrate to The activity of the enzyme is dependent on the a-ketoglutarate per minute at pH 7.4 and 37 °C (NADP formation of a magnesium or manganese-isocitrate as cofactor). The activity is measured by observing the 2 complex. reduction of NADP to NADPH at 340 nm in the 7 presence of 4 mM DL-isocitrate and 2 mM MnSO4. -
Biochemistry Entry of Fructose and Galactose
Paper : 04 Metabolism of carbohydrates Module : 06 Entry of Fructose and Galactose Dr. Vijaya Khader Dr. MC Varadaraj Principal Investigator Dr.S.K.Khare,Professor IIT Delhi. Paper Coordinator Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. S. P. Singh, Professor Content Reviewer UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. Charmy Kothari, Assistant Professor Content Writer Department of Biotechnology Christ College, Affiliated to Saurashtra University, Rajkot-5, Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of Carbohydrates Module Name/Title 06 Entry of Fructose and Galactose 2 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose METABOLISM OF FRUCTOSE Objectives 1. To study the major pathway of fructose metabolism 2. To study specialized pathways of fructose metabolism 3. To study metabolism of galactose 4. To study disorders of galactose metabolism 3 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose Introduction Sucrose disaccharide contains glucose and fructose as monomers. Sucrose can be utilized as a major source of energy. Sucrose includes sugar beets, sugar cane, sorghum, maple sugar pineapple, ripe fruits and honey Corn syrup is recognized as high fructose corn syrup which gives the impression that it is very rich in fructose content but the difference between the fructose content in sucrose and high fructose corn syrup is only 5-10%. HFCS is rich in fructose because the sucrose extracted from the corn syrup is treated with the enzyme that converts some glucose in fructose which makes it more sweet. -
(LCHAD) Deficiency / Mitochondrial Trifunctional Protein (MTF) Deficiency
Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / Mitochondrial trifunctional protein (MTF) deficiency Contact details Introduction Regional Genetics Service Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / mitochondrial trifunctional Levels 4-6, Barclay House protein (MTF) deficiency is an autosomal recessive disorder of mitochondrial beta- 37 Queen Square oxidation of fatty acids. The mitochondrial trifunctional protein is composed of 4 alpha London, WC1N 3BH and 4 beta subunits, which are encoded by the HADHA and HADHB genes, respectively. It is characterized by early-onset cardiomyopathy, hypoglycemia, T +44 (0) 20 7762 6888 neuropathy, and pigmentary retinopathy, and sudden death. There is also an infantile F +44 (0) 20 7813 8578 onset form with a hepatic Reye-like syndrome, and a late-adolescent onset form with primarily a skeletal myopathy. Tandem mass spectrometry of organic acids in urine, Samples required and carnitines in blood spots, allows the diagnosis to be unequivocally determined. An 5ml venous blood in plastic EDTA additional clinical complication can occur in the pregnant mothers of affected fetuses; bottles (>1ml from neonates) they may experience maternal acute fatty liver of pregnancy (AFLP) syndrome or Prenatal testing must be arranged hypertension/haemolysis, elevated liver enzymes and low platelets (HELLP) in advance, through a Clinical syndrome. Genetics department if possible. The genes encoding the HADHA and HADHB subunits are located on chromosome Amniotic fluid or CV samples 2p23.3. The pathogenic -
Is Glyceraldehyde-3-Phosphate Dehydrogenase a Central Redox Mediator?
1 Is glyceraldehyde-3-phosphate dehydrogenase a central redox mediator? 2 Grace Russell, David Veal, John T. Hancock* 3 Department of Applied Sciences, University of the West of England, Bristol, 4 UK. 5 *Correspondence: 6 Prof. John T. Hancock 7 Faculty of Health and Applied Sciences, 8 University of the West of England, Bristol, BS16 1QY, UK. 9 [email protected] 10 11 SHORT TITLE | Redox and GAPDH 12 13 ABSTRACT 14 D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an immensely important 15 enzyme carrying out a vital step in glycolysis and is found in all living organisms. 16 Although there are several isoforms identified in many species, it is now recognized 17 that cytosolic GAPDH has numerous moonlighting roles and is found in a variety of 18 intracellular locations, but also is associated with external membranes and the 19 extracellular environment. The switch of GAPDH function, from what would be 20 considered as its main metabolic role, to its alternate activities, is often under the 21 influence of redox active compounds. Reactive oxygen species (ROS), such as 22 hydrogen peroxide, along with reactive nitrogen species (RNS), such as nitric oxide, 23 are produced by a variety of mechanisms in cells, including from metabolic 24 processes, with their accumulation in cells being dramatically increased under stress 25 conditions. Overall, such reactive compounds contribute to the redox signaling of the 26 cell. Commonly redox signaling leads to post-translational modification of proteins, 27 often on the thiol groups of cysteine residues. In GAPDH the active site cysteine can 28 be modified in a variety of ways, but of pertinence, can be altered by both ROS and 29 RNS, as well as hydrogen sulfide and glutathione. -
How Is Alcohol Metabolized by the Body?
Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time. -
Dehydrogenase Classes
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4980-4984, May 1994 Biochemistry Fundamental molecular differences between alcohol dehydrogenase classes (Drosophila octano dehydrogenase/class m alcohol dehydrogenase/mo ur patterns/zinc enyme famy) OLLE DANIELSSON*, SILVIA ATRIANt, TERESA LUQUEt, LARS HJELMQVIST*, ROSER GONZALEZ-DUARTEt, AND HANS J6RNVALL*f *Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden; tCenter for Biotechnology, Karolinska Institutet, S-141 86 Huddinge, Sweden; and tDepartment of Genetics, University of Barcelona, E-08071 Barcelona, Spain Communicated by Sune Bergstrom, January 18, 1994 ABSTRACT Two types of alcohol dehydrogenase in sepa- ary patterns, with class III being "constant" and class I rate protein families are the "medium-chain" zinc enzymes "variable" (10), result in a consistent picture of the enzyme (including the classical liver and yeast forms) and the "short- system and place the classes of medium-chain alcohol dehy- chain" enzymes (including the insect form). Although the drogenases as separate enzymes in the cellular metabolism. medium-chain family has been characterized in prokaryotes Similarly, another protein family, short-chain dehydroge- and many eukaryotes (fungi, plants, cephalopods, and verte- nases, has also evolved into a family comprising many brates), insects have seemed to possess only the short-chain different enzyme activities, including an alcohol dehydroge- enzyme. We have now also characterized a medium-chain nase (11). This form operates by means of a completely alcohol dehydrogenase in Drosophila. The enzyme is identical different catalytic mechanism and is related to mammalian to insect octanol dehydrogenase. It Is a typical class m alcohol prostaglandin dehydrogenases/carbonyl reductase (12). -
Properties and Kinetic Analysis of UDP-Glucose Dehydrogenase from Group a Streptococci IRREVERSIBLE INHIBITION by UDP-CHLOROACETOL*
THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 272, No. 6, Issue of February 7, pp. 3416–3422, 1997 © 1997 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Properties and Kinetic Analysis of UDP-glucose Dehydrogenase from Group A Streptococci IRREVERSIBLE INHIBITION BY UDP-CHLOROACETOL* (Received for publication, September 19, 1996, and in revised form, November 6, 1996) Robert E. Campbell‡§, Rafael F. Sala‡, Ivo van de Rijn¶, and Martin E. Tanner‡i From the ‡Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada and ¶Wake Forest University Medical Center, Winston-Salem, North Carolina 27157 UDP-glucuronic acid is used by many pathogenic bac- the capsule enables the bacteria to evade the host’s immune teria in the construction of an antiphagocytic capsule system (7, 8). Group A and C streptococci are mammalian that is required for virulence. The enzyme UDP-glucose pathogens that use UDPGDH in the synthesis of a capsule dehydrogenase catalyzes the NAD1-dependent 2-fold ox- composed of hyaluronic acid (a polysaccharide consisting of idation of UDP-glucose and provides a source of the alternating glucuronic acid and N-acetylglucosamine residues) acid. In the present study the recombinant dehydrogen- (9, 10). Many of the known strains of Streptococcus pneumoniae ase from group A streptococci has been purified and also use UDP-glucuronic acid in the construction of their po- found to be active as a monomer. The enzyme contains lysaccharide capsule (11), and it has recently been shown that no chromophoric cofactors, and its activity is unaffected UDPGDH is required for capsule production in S. -
Xj 128 IUMP Glucose Substance Will Be Provisionally Referred to As UDPX (Fig
426 Studies on Uridine-Diphosphate-Glucose By A. C. PALADINI AND L. F. LELOIR Instituto de Inve8tigacione&s Bioquimicas, Fundacion Campomar, J. Alvarez 1719, Buenos Aires, Argentina (Received 18 September 1951) A previous paper (Caputto, Leloir, Cardini & found that the substance supposed to be uridine-2'- Paladini, 1950) reported the isolation of the co- phosphate was uridine-5'-phosphate. The hydrolysis enzyme of the galactose -1- phosphate --glucose - 1 - product of UDPG has now been compared with a phosphate transformation, and presented a tenta- synthetic specimen of uridine-5'-phosphate. Both tive structure for the substance. This paper deals substances were found to be identical as judged by with: (a) studies by paper chromatography of puri- chromatographic behaviour (Fig. 1) and by the rate fied preparations of uridine-diphosphate-glucose (UDPG); (b) the identification of uridine-5'-phos- 12A UDPG phate as a product of hydrolysis; (c) studies on the ~~~~~~~~~~~~~(a) alkaline degradation of UDPG, and (d) a substance similar to UDPG which will be referred to as UDPX. UMP Adenosine UDPG preparation8 8tudied by chromatography. 0 UjDPX Paper chromatography with appropriate solvents 0 has shown that some of the purest preparations of UDP UDPG which had been obtained previously contain two other compounds, uridinemonophosphate 0 4 (UMP) and a substance which appears to have the same constitution as UDPG except that it contains an unidentified component instead of glucose. This Xj 128 IUMP Glucose substance will be provisionally referred to as UDPX (Fig. la). The three components have been tested for co- enzymic activity in the galactose-1-phosphate-- 0-4 -J UDPX glucose-l-phosphate transformation, and it has been confirmed that UDPG is the active substance. -
Moldx : BCKDHB Gene Test
Local Coverage Article: Billing and Coding: MolDX: BCKDHB Gene Test (A55099) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Contractor Information CONTRACTOR NAME CONTRACT TYPE CONTRACT JURISDICTION STATE(S) NUMBER Noridian Healthcare Solutions, A and B MAC 01111 - MAC A J - E California - Entire State LLC Noridian Healthcare Solutions, A and B MAC 01112 - MAC B J - E California - Northern LLC Noridian Healthcare Solutions, A and B MAC 01182 - MAC B J - E California - Southern LLC Noridian Healthcare Solutions, A and B MAC 01211 - MAC A J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01212 - MAC B J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01311 - MAC A J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01312 - MAC B J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01911 - MAC A J - E American Samoa LLC California - Entire State Guam Hawaii Nevada Northern Mariana Islands Article Information General Information Article ID Original Effective Date Created on 12/19/2019. Page 1 of 6 A55099 10/17/2016 Article Title Revision Effective Date Billing and Coding: MolDX: BCKDHB Gene Test 12/01/2019 Article Type Revision Ending Date Billing and Coding N/A AMA CPT / ADA CDT / AHA NUBC Copyright Retirement Date Statement N/A CPT codes, descriptions and other data only are copyright 2018 American Medical Association. All Rights Reserved. Applicable FARS/HHSARS apply. Current Dental Terminology © 2018 American Dental Association. -
Ii- Carbohydrates of Biological Importance
Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons. -
The Effects of Glucose, N-Acetylglucosamine, Glyceraldehyde and Other Sugars on Insulin Release in Vivo S
Diabetologia 11,279-284 (1975) by Springer-Verlag 1975 The Effects of Glucose, N-Acetylglucosamine, Glyceraldehyde and Other Sugars on Insulin Release in Vivo S. J.H. Ashcroft and J.R. Crossley Department of Biochemistry, University of Bristol, England Received: February 18, 1975, and in revised form: April 28, 1975 Summary. The specificity for carbohydrates of insulin secretory duced hyperglycaemia, but peak insulin concentrations occurred responses in vivo was studied. Test sugars were injected via a left before any change in plasma glucose concentration. No evidence femoral vein cannula into conscious rats. Blood samples collected was obtained for a stimulatory effect of galactose on insulinrelease. over the ensuing 60 min via a left femoral arterial cannula were Infusion for 60 rain of N-acetylglucosarnine produced a sustained assayed for plasma insulin and glucose, and, in some experiments, elevated plasma insulin concentration and significant hypogly- for N-acetyl glucosamine. Whereas L-glucose or saline produced no caemia. The present in vivo results agree with previous in vitro significant changes in plasma insulin or glucose concentrations, observations, and could indicate a role for sugars other than glucose D-glucose, N-acetylglucosamine, D-glucosamine, fructose, D-glyc- in the regulation of insulin release. eraldehyde and DL-glyceraldehyde were potent secretagogues. Simultaneous injection of mannoheptulose abolished the insulin- Key words: N-acetylglucosamine, insulin release, glyceraldehy- otropic action of glucose and N-acetylglucosamine, but not of DL- de, glucose, glucosamine, fructose, galactose, mannoheptulose, glu- glyceraldehyde. Fructose, glucosamine, and DL-glyceraldehyde in- coreceptor. Detailed studies of the specificity of the insulin se- been conclusively established. Strong evidence for the cretory response to sugars have been performed with involvement of a metabolite has been provided by the mouse and rat islets of Langerhans in vitro [1, 2].