Bandwidth Estimation and Optimisation in Rain Faded Dvb-Rcs Networks
Total Page:16
File Type:pdf, Size:1020Kb
BANDWIDTH ESTIMATION AND OPTIMISATION IN RAIN FADED DVB-RCS NETWORKS Mohamed A. Al-Mosawi This thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth. September 2014 Abstract Broadband satellite communication networks operating at Ka band (20-30 GHz) play a very important role in today’s worldwide telecommunication infrastructure. The problem, however, is that rain can be the most dominant impairment factor for radio propagation in these frequency bands. Allocating frequency bandwidth based on the worst-case rain fading leads to the waste of the frequency spectrum due to over reservation, as actual rain levels may vary. Therefore, it is essential that satellite systems include adaptive radio resource allocation combined with fade mitigation techniques to efficiently counteract rain impairments in real-time. This thesis studies radio resource management problem for rain faded Digital Video Broadcast-Return Channel via Satellite (DVB-RCS) networks. This research stems from taking into account two aspects in the bandwidth estimation and allocation process: the consideration of multiple rain fading levels; and the geographical area size where users are distributed. The thesis investigates how using multiple rain fading levels in time slot allocation can improve bandwidth utilisation in DVB-RCS return links. The thesis presents a mathematical model to calculate the bandwidth on demand. The radio resource allocation is formulated as an optimisation problem, and a novel algorithm for dynamic carrier bandwidth and time slots allocation is proposed, which works with constant bit rate type of traffic. The research provides theoretical analysis for the time slot allocation problem and shows that the proposed algorithm achieves optimal results. This thesis also studies Return Channel Satellite Terminals (RCSTs) geographical distribution effects on bandwidth demand and presents a novel mathematical model to estimate the maximum instantaneous bandwidth demand for RCSTs randomly distributed over a geographical area in a satellite spot beam. All the proposed algorithms have been evaluated using a novel simulation with historical rain data. ii Acknowledgement I would like to express my gratitude to the many people that helped me during my time as a PhD student. First of all, I would like to thank my supervisors Dr. Rinat Khusainov and Dr. Boris Gremont for all the support and the brilliant insights they provided throughout the different stages of the research. I am grateful to Dr. Khusainov for the encouragement and the endless patience in editing the enormous drafts of papers and chapters. I also would like to thank the amazing academic and support staff in the school of Engineering, University of Portsmouth. I am especially thankful to my fellow researchers Sebastian Bersch and Ifeyinwa Achumba who kept me company during the long hours I spent in the office. I will like to thank my family and friends for their continued support, and unwavering belief in me. iii Dedicated to my parents, the two shining stars in my night sky iv Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The result and the conclusions embodies in this thesis are work of the named candidate and have not been submitted for any other academic award. v Dissemination Conference Proceedings: • M. Al-Mosawi, R. Khusainov, and B. Gremont, “A Real Time Algorithm for Bandwidth and Time-slot Assignment for Rain Faded DVB-RCS Systems,” Proceedings of the Fourth International Conference on Advances in Satellite and Space Communications, SPACOMM ’12: Mont-Blanc, Apr. 2012, pp. 1–5. Journal Papers: • M. Al-Mosawi, R. Khusainov, and B. Gremont, “Rain granularity effects on bandwidth demand for faded DVB-RCS systems,” International Journal of Satellite Communications and Networking, 2014. vi Table of Contents Abstract ............................................................................................................................ ii Acknowledgement ........................................................................................................ iii Declaration ....................................................................................................................... v Dissemination ................................................................................................................ vi Table of Contents ......................................................................................................... vii List of Figures .................................................................................................................. x List of Tables ................................................................................................................ xiii Abbreviation Glossary ............................................................................................... xiv 1. Introduction ...........................................................................................................1 1.1. DVB-RCS Systems ...................................................................................................... 1 1.2. Research Motivation ............................................................................................... 3 1.3. Objectives and Contributions of the Thesis .................................................... 5 1.4. Overview of the Thesis Contents......................................................................... 7 2. DVB-RCS Systems ............................................................................................... 10 2.1. DVB-RCS Structure ................................................................................................ 11 2.1.1. Network Architecture ................................................................................................ 11 2.1.2. Multi-spotbeams Satellite systems ....................................................................... 12 2.1.3. Return Channel Description .................................................................................... 16 2.1.3.1. MF-TDMA Structure ........................................................................................................... 17 2.1.3.2. Segmentation of the Return Link Capacity ............................................................... 21 2.2. Quality of Service ................................................................................................... 23 2.2.1. Quality of Service Classes ......................................................................................... 24 2.2.2. Traffic Descriptors ...................................................................................................... 26 2.3. Rain Attenuation .................................................................................................... 27 2.3.1. Rain Attenuation Calculation .................................................................................. 27 2.3.2. Rain Impact on Satellite Networks ....................................................................... 30 2.4. Fade Mitigation Techniques .............................................................................. 30 2.4.1. Adaptive Coding and Modulation (ACM) ........................................................... 30 2.4.1.1. ACM With Constant Bit Rate ........................................................................................... 32 2.4.1.2. ACM With Constant Bandwidth..................................................................................... 33 2.4.2. Burst Length Control (BLC) ..................................................................................... 34 2.5. Call Admission Control ........................................................................................ 36 2.5.1. Connection Contract ................................................................................................... 37 2.5.2. Call Admission Control Algorithms ...................................................................... 39 2.5.2.1. Approximation Based Algorithms ................................................................................ 41 vii 2.5.2.2. Measurement Based Algorithms................................................................................... 49 2.6. Summary................................................................................................................... 50 3. Research Problem ............................................................................................. 51 3.1. Multiple Levels of Rain Fading Allocation .................................................... 51 3.1.1. Multiple Levels of Rain Fading in Radio Resource Management ............. 52 3.1.2. Multiple Levels of Rain Fading in Call Admission Control Process ......... 53 3.2. Rain Field Size ......................................................................................................... 54 3.2.1. Rain Modelling .............................................................................................................. 56 3.2.2. Rain field Studies ......................................................................................................... 59 3.3. Research Questions .............................................................................................. 62 3.4. Summary..................................................................................................................